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GeneralizedPattern Avoidance

ANDERSCLAESSON

Recently, Babson and Steingrı́msson have introduced generalized permutation patterns that allow
the requirement that two adjacent letters in a pattern must be adjacent in the permutation. We will
consider pattern avoidance for such patterns, and give a complete solution for the number of per-
mutations avoiding any single pattern of length three with exactly one adjacent pair of letters. For
eight of these 12 patterns the answer is given by the Bell numbers. For the remaining four the an-
swer is given by the Catalan numbers. We also give some results for the number of permutations
avoiding two different patterns. These results relate the permutations in question to Motzkin paths,
involutions and non-overlapping partitions. Furthermore, we define a new class of set partitions,
called monotone partitions, and show that these partitions are in one-to-one correspondence with
non-overlapping partitions.

c© 2001 Academic Press

1. INTRODUCTION

In the last decade a wealth of articles has been written on the subject of pattern avoidance,
also known as the study of ‘restricted permutations’ and ‘permutations with forbidden subse-
quences’. Classically, a pattern is a permutationσ ∈ Sk, and a permutationπ ∈ Sn avoidsσ if
there is no subsequence inπ whose letters are in the same relative order as the letters ofσ . For
example,π ∈ Sn avoids 132 if there is no 1≤ i < j < k ≤ n such thatπ(i ) < π(k) < π( j ).
In [4] Knuth established that for allσ ∈ S3, thenumber of permutations inSn avoidingσ
equals thenth Catalan number,Cn =

1
1+n

(2n
n

)
. Onemay also consider permutations that are

required to avoid several patterns. In [5] Simion and Schmidt gave a complete solution for
permutations avoiding any set of patterns of length three. Even patterns of length greater than
three have been considered. For instance, West showed in [8] that permutations avoiding both
3142 and2413 are enumerated by the Schröder numbers,Sn =

∑n
i=0

(2n−i
i

)
Cn−i .

In [1] Babson and Steingrı́msson introducedgeneralized permutation patterns that allow
the requirement that two adjacent letters in a pattern must be adjacent in the permutation.
The motivation for Babson and Steingrı́msson in introducing these patterns was the study
of Mahonian statistics, and they showed that essentially all Mahonian permutation statistics
in the literature can be written as linear combinations of such patterns. An example of a
generalized pattern is(a--cb). An (a--cb)-subword of a permutationπ = a1a2 · · ·an is a
subwordai a j a j+1, (i < j ), such thatai < a j+1 < a j . More generally, a patternp is a
word over the alphabeta < b < c < d · · · where two adjacent letters may or may not be
separated by a dash. The absence of a dash between two adjacent letters in ap indicates that
the corresponding letters in ap-subword of a permutation must be adjacent. In addition, the
ordering of the letters in thep-subword must match the ordering of the letters in the pattern.
This definition, as well as any other definition in this Introduction, will be stated rigorously in
Section2. All classical patterns are generalized patterns where each pair of adjacent letters is
separated bya dash. For example, the generalized pattern equivalent to 132 is(a--c--b).

We extend the notion of pattern avoidance by defining that a permutation avoids a (gener-
alized) patternp if it does not contain anyp-subwords. We show that this is a fruitful exten-
sion, by establishing connections to other well known combinatorial structures, not previously
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shown to be related to pattern avoidance. The main results are given below.

P |Sn(P)| Description
a--bc Bn Partitions of[n]
a--cb Bn Partitions of[n]
b--ac Cn Dyck paths of length 2n
a--bc, ab--c B∗n Non-overlapping partitions of[n]
a--bc, a--cb In Involutions inSn

a--bc, ac--b Mn Motzkin paths of lengthn

Here,Sn(P) = {π ∈ Sn : π avoidsp for all p ∈ P}, and[n] = {1,2, . . . ,n}. When proving
that |Sn(a--bc, ab--c)| = B∗n (thenth Bessel number), we first prove that there is a one-to-
one correspondence between{a--bc,ab--c}-avoiding permutations andmonotone partitions.
A partition is monotone if its non-singleton blocks can be written in increasing order of their
least element and increasing order of their greatest element, simultaneously. This new class of
partitions is then shown to be in one-to-one correspondence with non-overlapping partitions.

2. PRELIMINARIES

By analphabet Xwe mean a non-empty set. An element ofX is called aletter. Awordover
X is a finite sequence of letters fromX. We also consider theempty word, that is, the word
with no letters; it is denoted byε. Let x = x1x2 · · · xn be a word overX. We call|x| := n the
lengthof x. A subwordof x is a wordv = xi1xi2 · · · xik , where 1≤ i1 < i2 < · · · < ik ≤ n.
A segmentof x is a wordv = xi xi+1 · · · xi+k. If X andY are two linearly ordered alphabets,
then two wordsx = x1x2 · · · xn andy = y1y2 · · · yn over X andY, respectively, are said to
beorder equivalentif xi < x j precisely whenyi < y j .

Let X = A∪ {--} whereA is a linearly ordered alphabet. For each wordx let x̄ be the word
obtained fromx by deleting all dashes inx. A word p over X is called apatternif it contains
no two consecutive dashes andp̄ has no repeated letters. By slight abuse of terminology we
refer to thelength of a pattern pas the length of̄p. If the i th letter in p is a dash precisely
when thei th letter inq is a dash, andp andq are order equivalent, thenp andq areequivalent.
In what follows all patterns will be over the alphabet{a,b, c,d, . . . } ∪ {--} wherea < b <
c < d < · · ·.

Let [n] := {1,2, . . . ,n} (so [0] = ∅). A permutationof [n] is a bijection from[n] to
[n]. Let Sn be the set of permutations of[n]. We shall usually think of a permutationπ
as the wordπ(1)π(2)· · ·π(n) over the alphabet[n]. In particular,S0 = {ε}, since there
is only one bijection from∅ to ∅, the empty map. We say that a subwordσ of π is a p-
subwordif by replacing (possibly empty) segments ofπ with dashes we can obtain a pattern
q equivalent top such thatq̄ = σ . However, all patterns that we will consider will have
a dash at the beginning and one at the end. For convenience, we therefore leave them out.
For example,(a--bc) is a pattern, and the permutation 491273865 contains three(a--bc)-
subwords, namely 127, 138, and 238. A permutation is said to bep-avoidingif it does not
contain anyp-subwords. DefineSn(p) to be the set ofp-avoiding permutations inSn and,
more generally,Sn(A) =

⋂
p∈A Sn(p).

We may think of a patternp as a permutation statistic, that is, definepπ as the num-
ber of p-subwords inπ , thus regardingp as a function fromSn to N. For example,(a--bc)
491273865= 3. In particular,π is p-avoiding if and only if pπ = 0. We say that two
permutation statistics stat and stat′ areequidistributedover A ⊆ Sn, if∑

π∈A

xstatπ
=

∑
π∈A

xstat′ π .
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In particular, this definition applies to patterns.
Let π = a1a2 · · ·an ∈ Sn. An i such thatai > ai+1 is called adescentin π . We denote

by desπ the number of descents inπ . Observe that des can be defined as the pattern(ba),
that is, desπ = (ba)π . A left-to-right minimumof π is an elementai such thatai < a j for
every j < i . The number of left-to-right minima is a permutation statistic. Analogously we
also defineleft-to-right maximum,right-to-left minimum, andright-to-left maximum.

In this paper we will relate permutations avoiding a given set of patterns to other better
known combinatorial structures. Here follows a brief description of these structures. Two
excellent references on combinatorial structures are [6] and [7].

Set partitions. A partition of a setS is a family,π = {A1, A2, . . . , Ak}, of pairwise disjoint
non-empty subsets ofS such thatS = ∪i Ai . We call Ai a block of π . The total number of
partitions of[n] is called aBell numberand is denotedBn. For reference, the first few Bell
numbers are

1,1,2,5,15,52,203,877,4140,21147,115975,678570,4213597.

Let S(n, k) be the number of partitions of[n] into k blocks; these numbers are called the
Stirling numbers of the second kind.

Non-overlapping partitions.Two blocksA andB of a partitionπ overlapif

min A < min B < maxA < maxB.

A partition isnon-overlappingif no pairs of blocks overlap. Thus

π = {{1,2,5,13},{3,8},{4,6,7},{9},{10,11,12}}

is non-overlapping. A pictorial representation ofπ is

π =

◦−−−−−◦−−◦
◦−−−−−−−−−−−−−−◦ ◦ ◦−−◦−−◦

◦−−◦−−−−−−−−◦−−−−−−−−−−−−−−−−−−−−−−−◦

1 2 3 4 5 6 7 8 9 10 11 12 13
.

Let B∗n be the number of non-overlapping partitions of[n]; this number is called thenth Bessel
number[3, p. 423]. The first few Bessel numbers are

1,1,2,5,14,43,143,509,1922,7651,31965,139685,636712.

Wedenote byS∗(n, k) the number of non-overlapping partitions of[n] into k blocks.

Involutions. An involution is a permutation which is its own inverse. We denote byIn the
number of involutions inSn. The sequence{In}

∞

0 starts with

1,1,2,4,10,26,76,232,764,2620,9496,35696,140152.

Dyck paths. A Dyck pathof length 2nis a lattice path from(0,0) to (2n,0)with steps(1,1)
and(1,−1) that never goes below thex-axis. Lettingu andd represent the steps(1,1) and
(1,−1), respectively, we code such a path with a word over{u,d}. For example, the path
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is coded byuuduuddd. A return stepin a Dyck pathδ is ad such thatδ = αuβdγ , for some
Dyck pathsα, β, andγ . A useful observation is that every non-empty Dyck pathδ can be
uniquely decomposed asδ = uαdβ, whereα andβ are Dyck paths. This is the so-calledfirst
return decompositionof δ.

Thenth Catalan number Cn =
1

n+1

(2n
n

)
counts thenumber of Dyck paths of length 2n. The

sequence of Catalan numbers starts with

1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012.

Motzkin paths. A Motzkin pathof lengthn is a lattice path from(0,0) to (n,0) with steps
(1,0), (1,1), and(1,−1) that never goes below thex-axis. Letting`, u, andd represent the
steps(1,0), (1,1), and(1,−1), respectively, we code such a path with a word over{`,u,d}.
For example, the path

is coded byu``ud`d`. If δ is a non-empty Motzkin path, thenδ can be decomposed asδ = `γ
or δ = uαdβ, whereα, β andγ are Motzkin paths.

The nth Motzkin number Mn is the number of Motzkin paths of lengthn. The first few
Motzkin numbers are

1,1,2,4,9,21,51,127,323,835,2188,5798,15511.

3. THREE CLASSES OFPATTERNS

Let π = a1a2 · · ·an ∈ Sn. Define thereverseof π asπ r
:= an · · ·a2a1, and define the

complementof π by πc(i ) = n+ 1− π(i ), wherei ∈ [n].
PROPOSITION1. With respect to being equidistributed, the 12 pattern statistics of

length three with one dash fall into the following three classes.

(i) a--bc, c--ba, ab--c, cb--a.
(ii) a--cb, c--ab, ba--c, bc--a.

(iii) b--ac, b--ca, ac--b, ca--b.

PROOF. The bijectionsπ 7→ π r , π 7→ πc, andπ 7→ (π r )c give the equidistribution part
of the result. Calculations show that these three distributions differ pairwise onS4. 2

4. PERMUTATIONS AVOIDING A PATTERN OF CLASS ONE OR TWO

PROPOSITION2. Partitions of[n] are in one-to-one correspondence with(a--bc)-avoiding
permutations inSn. Hence|Sn(a--bc)| = Bn.

FIRST PROOF. Recall that the Bell numbers satisfyB0 = 1, and

Bn+1 =

n∑
k=0

(
n

k

)
Bk.

We show that|Sn(a--bc)| satisfy the same recursion. Clearly,S0(a--bc) = {ε}. For n > 0,
let M = {2,3, . . . ,n + 1}, and letS be ak element subset ofM . For each(a--bc)-avoiding
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permutationσ of S we constructa unique(a--bc)-avoiding permutationπ of [n + 1]. Let τ
be the word obtained by writing the elements ofM \ S in decreasing order. Defineπ := σ1τ.

Conversely, ifπ = σ1τ is a given(a--bc)-avoiding permutation of[n+ 1], where|σ | = k,
then the letters ofτ are in decreasing order, andσ is an(a--bc)-avoiding permutation of thek
element set{2,3, . . . ,n+ 1} \ {i : i is a letter inτ }. 2

SECOND PROOF. Given a partitionπ of [n], we introduce a standard representation ofπ

by requiring that:

(a) Each block is written with its least element first, and the rest of the elements of that
block arewritten in decreasing order.

(b) The blocks are written in decreasing order of their least element, and with dashes sepa-
rating theblocks.

Defineπ̂ to be the permutation we obtain fromπ by writing it in standard form and erasing
the dashes. We now argue thatπ̂ := a1a2 · · ·an avoids(a--bc). If ai < ai+1, thenai and
ai+1 are the first and the second element of some block. By the construction ofπ̂ , ai is a
left-to-right minimum, hence there is noj ∈ [i − 1] such thata j < ai .

Conversely,π can be recovered uniquely from̂π by inserting a dash in̂π preceding each
left-to-right minimum, apart from the first letter in̂π . Indeed, it easy to see that the partition,
π , obtained in this way is written in standard form. Thusπ 7→ π̂ gives the desired bijection.2

EXAMPLE 1. As an illustration of the map defined in the above proof, let

π = {{1,3,5},{2,6,9},{4,7},{8}}.

Its standard form is8--47--296--153. Thuŝπ = 847296153.

PORISM 1. Let L(π) bethe number of left-to-right minima ofπ . Then∑
π∈Sn(a--bc)

xL(π)
=

∑
k≥0

S(n, k)xk.

PROOF. This result follows readily from the second proof of Proposition2. We give here a
differentproof, which is based on the fact that the Stirling numbers of the second kind satisfy

S(n, k) = S(n− 1,k− 1)+ kS(n− 1,k).

Let T(n, k) be the number of permutations inSn(a--bc) with k left-to-right minima. We
show that theT(n, k) satisfy the same recursion as theS(n, k).

Let π be an (a--bc)-avoiding permutation of[n − 1]. To insert n in π , preserving
(a--bc)-avoidance, we can putn in front of π or we can insertn immediately after each
left-to-right minimum. Puttingn in front of π creates a new left-to-right minimum, while
insertingn immediately after a left-to-right minimum does not. 2

PROPOSITION3. Partitions of[n] are in one-to-one correspondence with(a--cb)-avoiding
permutations inSn. Hence|Sn(a--cb)| = Bn.

PROOF. Let π be a partition of[n]. We introduce a standard representation ofπ by requir-
ing that:

(a) The elements of a block are written in increasing order.
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(b) The blocks are written in decreasing order of their least element, and with dashes sepa-
rating theblocks.

(Note that this standard representation is different from the one given in the second proof of
Proposition2.) Definêπ to bethe permutation we obtain fromπ by writing it in standard form
and erasing the dashes. It easy to see thatπ̂ avoids(a--cb). Conversely,π can be recovered
uniquely fromπ̂ by inserting a dash in between each descent inπ̂ . 2

EXAMPLE 2. As an illustration of the map defined in the above proof, let

π = {{1,3,5},{2,6,9},{4,7},{8}}.

Its standard form is8--47--269--135. Thuŝπ = 847269135.

PORISM 2. ∑
π∈Sn(a--cb)

x1+desπ
=

∑
k≥0

S(n, k)xk.

PROOF. From the proof of Proposition3 we see thatπ hask+ 1 blocksprecisely when̂π
hask descents. 2

PROPOSITION4. Involutions inSn are in one-to-one correspondence with permutations in
Sn that avoid(a--bc) and(a--cb). Hence

|Sn(a--bc,a--cb)| = In.

PROOF. We give a combinatorial proof using a bijection that is essentially identical to the
one given in the second proof of Proposition2.

Let π ∈ Sn be aninvolution. Recall thatπ is an involution if and only if each cycle ofπ
is of length one or two. We now introduce a standard form for writingπ in cycle notation by
requiring that:

(a) Each cycle is written with its least element first.
(b) The cycles are written in decreasing order of their least element.

Defineπ̂ to bethe permutation obtained fromπ by writing it in standard form and erasing the
parentheses separating the cycles.

Observe that̂π avoids(a--bc): Assume thatai < ai+1, that is,(ai ai+1) is a cycle inπ , then
ai is a left-to-right minimum inπ . This is guaranteed by the construction ofπ̂ . Thus there is
no j < i such thata j < ai .

The permutation̂π also avoids(a--cb): assume thatai > ai+1, thenai+1 must be the
smallest element of some cycle. Whenceai+1 is a left-to-right minimum in̂π .

Conversely, if̂π := a1 . . .an is an{a--bc,a--cb}-avoiding permutation, then the involution
π is given by:(ai ai+1) is a cycle inπ if and only if ai < ai+1. 2

EXAMPLE 3. The involutionπ = 826543719written instandard form is

(9)(7)(4 5)(3 6)(2)(1 8),

and hencêπ = 974536218.
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PORISM 3. The number of permutations inSn(a--bc,a--cb) with n−k−1 descents equals
the number of involutions inSn with n− 2k fixed points.

PROOF. Under the bijectionπ 7→ π̂ in theproof of Proposition4, a cycle of length two in
π corresponds toan occurrence of(ab) in π̂ . Hence, ifπ hasn− 2k fixed points, then̂π has
n− k− 1 descents. 2

COROLLARY 1. ∑
π∈Sn(a--bc,a--cb)

x1+desπ
=

n∑
k=0

(
n

k

)(
n− k

k

)
k!

2k
xn−k.

PROOF. Let I k
n denote thenumber of involutions inSn with k fixed points. Then Proposi-

tion 3 is equivalently stated as∑
π∈Sn(a--bc,a--cb)

x1+desπ
=

∑
k≥0

I n−2k
n xn−k. (1)

The result now follows from the well-known and easily derived formula

I k
n =

(
n

k

)(
n− k

r

)
r !

2r
, where r =

n− k

2
,

for n− k even, with I k
n = 0 for n− k odd. 2

DEFINITION 1. Let π be an arbitrary partition whose non-singleton blocks{A1, . . . , Ak}

are ordered so that for alli ∈ [k − 1], minAi > min Ai+1. If max Ai > maxAi+1 for all
i ∈ [k − 1], then we callπ a monotone partition. The set of monotone partitions of[n] is
denoted byMn.

EXAMPLE 4. The partition

π =

◦ ◦−−◦−−−−−◦
◦−−−−−◦−−−−−−−−−−−−−−−−−◦

◦−−−−−−−−−−−−−−◦
◦−−◦−−−−−−−−◦−−−−−◦

1 2 3 4 5 6 7 8 9 10 11 12 13
is monotone.

PROPOSITION5. Monotone partitions of[n] are in one-to-one correspondence with per-
mutations inSn that avoid(a--bc) and(ab--c). Hence

|Sn(a--bc,ab--c)| = |Mn|.

PROOF. Givenπ inMn, let A1 --A2 -- · · · --Ak be the result of writingπ in the standard form
given in the second proof of Proposition2, and let̂π = A1A2 · · · Ak. By the construction of
π̂ the first letter in eachAi is a left-to-right minimum. Furthermore, sinceπ is monotone
the second letter in each non-singletonAi is a right-to-left maximum. Therefore, ifxy is an
(ab)-subword of̂π , thenx is a left-to-right minimum andy is a right-to-left maximum. Thus
π̂ avoids both(a--bc) and(ab--c).

Conversely, given̂π in Sn(a--bc,ab--c), let A1 --A2 -- · · · --Ak be the result of inserting a
dash inπ̂ preceding each left-to-right minimum, apart from the first letter inπ̂ . Sinceπ̂
is (ab--c)-avoiding, the second letter in each non-singletonAi is a right-to-left maximum.
The second letter inAi is the maximal element ofAi when Ai is viewed as a set. Thus
π = {A1, A2, . . . , Ak} is monotone. 2
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We now show that there is a one-to-one correspondence between monotone partitions and
non-overlapping partitions. The proof we give is strongly influenced by the paper [3], in which
Flajolet showed that the ordinary generating function of the Bessel numbers admits a nice
continued fraction expansion∑

n≥0

B∗nxn
=

1

1− 1 · x −
x2

1− 2 · x −
x2

1− 3 · x −
x2

. . .

,

and usingthat as a starting point he derived the asymptotic formula

B∗n ∼
∑
k≥0

kn+2

(k!)2
.

PROPOSITION6. Monotone partitions of[n] are in one-to-one correspondence with non-
overlapping partitions of[n]. Hence|Mn| = B∗n .

PROOF. Let π be a non-overlapping partition of[n]. Fromπ we will create a new partition
by successively inserting 1,2, . . . ,n, in this order, into this new partition. During this process
a block is labelled as eitheropenor closed. More formally, in each stepk = 1,2, . . . ,n in this
process we will have a partitionσ of [k] together with a function fromσ to the set of labels
{open,closed}. Before we start we also need a labelling of the blocks ofπ . Actually we need
n such labellings, one for eachk ∈ [n]: at stepk a blockB of π is labelled open if maxB > k
and closed otherwise. For ease of language, we say that a block is open if it is labelled open,
and closed if it is labelled closed.

(a) If k is the minimal element of a non-singleton block ofπ , then create a new block{k}
and label it open.

(b) If k is the maximal element of a non-singleton block ofπ , then insertk into the open
block with the smallest minimal element, and label it closed.

(c) If k belongs toa non-singleton blockB of π and is not the minimal or the maximal
element ofB, andB has thei th largest minimal element of the open blocks ofπ , then
insertk into the open block with thei th largest minimal element.

(d) If {k} is a block ofπ , then create a new block{k} and label it closed.

Define8(π) as the partition obtained fromπ by applying the above process. Observe that
8(π) is monotone. Indeed, the two crucial observations are: (i) in (b) we label the open
block with the smallest minimum closed, and (ii) a block labelled closed has received all its
elements.

Conversely, we give a map9 that to each monotone partitionπ of [n] gives a unique
non-overlapping partition9(π) of [n]. Define9 the same way as8 is defined, except for
case (c), where we instead of insertingk into the block labelled open with thesmallestminimal
element, insertk into the block labelled open with thelargestminimal element. It is easy to
see that8 and9 are each others inverses and hence they are bijections. 2

COROLLARY 2. The non-overlapping partitions of[n] are in one-to-one correspondence
with permutations inSn that avoid(a--bc) and(ab--c). Hence

|Sn(a--bc,ab--c)| = B∗n .
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PROOF. Follows immediately from Proposition5 together with Proposition6. 2

EXAMPLE 5. By the proof of Proposition6, the non-overlapping partition

π =

◦−−−−−◦−−◦
◦−−−−−−−−−−−−−−◦ ◦ ◦−−◦−−◦

◦−−◦−−−−−−−−◦−−−−−−−−−−−−−−−−−−−−−−−◦

1 2 3 4 5 6 7 8 9 10 11 12 13

corresponds to the monotone partition

8(π) =

◦ ◦−−◦−−−−−◦
◦−−−−−◦−−−−−−−−−−−−−−−−−◦

◦−−−−−−−−−−−−−−◦
◦−−◦−−−−−−−−◦−−−−−◦

1 2 3 4 5 6 7 8 9 10 11 12 13

that according to the proof of Proposition5 corresponds to the{a--bc,ab--c}-avoiding per-
mutation

8̂(π) = 10 13 11 9 4 12 6 3 8 1 7 5 2.

PORISM 4. Let L(π) bethe number of left-to-right minima ofπ . Then∑
π∈Sn(a--bc,ab--c)

xL(π)
=

∑
k≥0

S∗(n, k)xk.

PROOF. Under the bijectionπ 7→ π̂ in theproof of Proposition5, the number of blocks in
π determines thenumber of left-to-right minima of̂π , and vice versa. The number of blocks
is not changed by the bijection9 in the proof of Proposition6. 2

5. PERMUTATIONS AVOIDING A PATTERN OF CLASS THREE

In [4] Knuth observed that there is a one-to-one correspondence between(b--a--c)-avoiding
permutations and Dyck paths. For completeness and future reference we give this result as a
lemma, and prove it using a bijection which rests on the first return decomposition of Dyck
paths. First we need a definition. For each wordx = x1x2 · · · xn without repeated letters, we
define theprojectionof x ontoSn, which we denote proj(x), by

proj(x) = a1a2 · · ·an , where ai = |{ j ∈ [n] : x j ≤ xi }|.

Equivalently, proj(x) is the permutation inSn which is order equivalent tox. For example,
proj(265)= 132.

LEMMA 1. |Sn(b--a--c)| = Cn.

PROOF. Let π = a1a2 · · ·an be a permutation of[n] such thatak = 1. Thenπ is (b--a--c)-
avoiding if and only ifπ = σ1τ, whereσ := a1 · · ·ak−1 is a(b--a--c)-avoiding permutation
of {n,n − 1, . . . ,n − k + 1}, andτ := ak+1 · · ·an is a (b--a--c)-avoiding permutation of
{2,3, . . . ,k}.

We define recursively a mapping8 from Sn(b--a--c) onto the set of Dyck paths of length
2n. If π is the empty word, then so is the Dyck path determined byπ , that is,8(ε) = ε. If
π 6= ε, then we can use the factorizationπ = σ1τ from above, and define8(π) = u (8 ◦
proj)(σ )d (8 ◦ proj)(τ ). It is easy to see that8 may be inverted, and hence is a bijection.2



970 A. Claesson

LEMMA 2. A permutation avoids(b--ac) if and only if it avoids(b--a--c).

PROOF. The sufficiency part of the proposition is trivial. The necessity part is not difficult
either.Assume thatπ contains a(b--a--c)-subword. Then there is a segmentBm1 · · ·mr of
π , where, for somej < r , m j < B andmr > B. Now choose the largesti such thatmi < B,
thenmi+1 > B. 2

PROPOSITION7. Dyck paths of length2n are in one-to-one correspondence with(b--ac)-
avoiding permutations inSn. Hence

|Sn(b--ac)| =
1

n+ 1

(
2n

n

)
.

PROOF. Follows immediately from Lemmas1 and 2. 2

PROPOSITION8. Let L(π) bethe number of left-to-right minima ofπ . Then∑
π∈Sn(b--ac)

xL(π)
=

∑
k≥0

k

2n− k

(
2n− k

n

)
xk.

PROOF. Let R(δ) denotethe number of return steps in the Dyck pathδ. It is well known
(see [2]) that the distribution ofR over all Dyck paths of length 2nis the distribution we claim
thatL has overSn(b--ac).

Let γ be a Dyck path of length 2n, and letγ = uαdβ be its first return decomposition.
ThenR(γ ) = 1+ R(β). Letπ ∈ Sn(b--ac), and letπ = σ1τ be the decomposition given in
the proof of Lemma1. ThenL(π) = 1+ L(σ ). The result now follows by induction. 2

In addition, it is easy to deduce that left-to-right minima, left-to-right maxima, right-to-left
minima, and right-to-left maxima all share the same distribution overSn(b--ac).

PROPOSITION9. Motzkin paths of length n are in one-to-one correspondence with permu-
tations inSn thatavoid(a--bc) and(ac--b). Hence

|Sn(a--bc,ac--b)| = Mn.

PROOF. We mimic the proof of Lemma1. Letπ ∈ Sn(a--bc,ac--b). Sinceπ avoids(ac--b)
it also avoids(a--c--b) by Lemma2 via π 7→ (πc)r . Thuswe may writeπ = σnτ , where
π(k) = n, σ is an {a--bc,ac--b}-avoiding permutation of{n − 1,n − 2, . . . ,n − k + 1},
andτ is an{a--bc,ac--b}-avoiding permutation of[n − k]. If σ 6= ε thenσ = σ ′r where
r = n − k + 1, or else an(a--bc)-subword would be formed withn as the ‘c’ in (a--bc).
Define a map8 from Sn(a--bc,ac--b) to the set of Motzkin paths by8(ε) = ε and

8(π) =

{
` (8 ◦ proj)(σ ) if π = nσ,

u (8 ◦ proj)(σ )d8(τ) if π = σ rnτ andr = n− k+ 1.

It is routine to find the inverse of8. 2
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EXAMPLE 6. Let us find the Motzkin path associated with the{a--bc,ac--b}-avoiding per-
mutation76453281.

8(76453281)= u8(54231)d8(1)

= u`8(4231)d̀

= u``8(231)d̀

= u``ud8(1)d`

= u``ud`d`
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