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GeneralizedPattern Avoidance

ANDERSCLAESSON

Recently, Babson and Steifigisson hee introduced generalized permutation patterns that allow
the requirement that two adjacent letters in a pattern must be adjacent in the permutation. We will
consider pattern avoidance for such patterns, and give a complete solution for the number of per-
mutations avoiding any single pattern of length three with exactly one adjacent pair of letters. For
eight of these 12 patterns the answer is given by the Bell numbers. For the remaining four the an-
swer is given by the Catalan numbers. We also give some results for the number of permutations
avoiding two different patterns. These results relate the permutations in question to Motzkin paths,
involutions and non-overlapping partitions. Furthermore, we define a new class of set partitions,
called monotone partitions, and show that these partitions are in one-to-one correspondence with
non-overlapping partitions.

(© 2001 Academic Press

1. INTRODUCTION

In the last decade a wealth of articles has been written on the subject of pattern avoidance,
also known as the study of ‘restricted permutations’ and ‘permutations with forbidden subse-
qguences'. Classically, a pattern is a permutation Sk, and a permutation € S, avoidso if
there is no subsequencerirwhose letters are in the same relative order as the letterskdr
example;r € S, avoids 132 ifthereisnokXi < j <k <nsuchthatr(i) < n(k) < 7(j).

In [4] Knuth established that for att € Ss, the number of permutations i§, avoidingo

equals thenth Catalan numbef€;,, = Fln(zn”) Onemay also consider permutations that are
required to avoid several patterns. In [5] Simion and Schmidt gave a complete solution for
permutationswiding any set of patterns of length three. Even patterns of length greater than
three have been considered. For instance, West showed in [8] that permutations avoiding both
3142 an2413 are enumerated by the Sather numbersS, = >, (2’}")Cn_i.

In [1] Babson and Steingnsson introducedeneralized permutation patterns that allow
the requirement that two adjacent letters in a pattern must be adjacent in the permutation.
The motivation for Babson and Steifgisson in introducing these patterns was the study
of Mahonian statistics, and they showed that essentially all Mahonian permutation statistics
in the literature can be written as linear combinations of such patterns. An example of a
generalized pattern i&@-cb). An (a-cb)-subword of a permutationr = ajayx---a, is a
subworda;jajaj;+1, (i < j), such thatgy < aj11 < aj. More generally, a patterp is a
word over the alphabet < b < ¢ < d-.- where two adjacent letters may or may not be
separated by a dash. The absence of a dash between two adjacent letteiadicates that
the corresponding letters in@subword of a permutation must be adjacent. In addition, the
ordering of the letters in the-subword must match the ordering of the letters in the pattern.
This definition, as well as any other definition in this Introduction, will be stated rigorously in
Section2. All classical patterns are generalized patterns where each pair of adjacent letters is
separated bg dash. For example, the generalized pattern equivalent to 182dsb).

We extend the notion of pattern avoidance by defining that a permutation avoids a (gener-
alized) patterrp if it does not contain any-subwords. We show that this is a fruitful exten-
sion, by establishing connections to other well known combinatorial structures, not previously
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shown to be related to pattern avoidance. The main results are given below.

P |Sn(P)| | Description

a-bc Bn Partitions of{n]

a-cb Bn Partitions offn]

b-ac Ch Dyck paths of length 2n

a-bc, ab-c | B} Non-overlapping partitions df]
a-bc, a-cb | I, Involutions inS,

a-bc, ac-b | My, Motzkin paths of lengtim

Here,Sn(P) = {r € Sy : w avoidsp for all p € P}, and[n] = {1, 2, ...,n}. When proving

that |Sn(a-bc, ab-c)| = By, (the nth Bessel number), we first prove that there is a one-to-
one correspondence betwefgr+-bc, ab-c}-avoiding permutations anghionotone partitions.

A partition is monotone if its non-singleton blocks can be written in increasing order of their
least element and increasing order of their greatest element, simultaneously. This new class of
partitions is then shown to be in one-to-one correspondence with non-overlapping partitions.

2. PRELIMINARIES

By analphabet Xwe mean a non-empty set. An elemenois called detter. Aword over
X is a finite sequence of letters froi. We also consider thempty word, that is, the word
with no letters; it is denoted by. Let x = x1x2 - - - Xn be a word ovelX. We call|X| := n the
lengthof x. A subwordof x is a wordv = Xi, Xi, - - - Xi,, where 1< iy <iz <--- <ix <n.

A segmenbf x is awordv = XX +1-- - X +k. If X andY are two linearly ordered alphabets,
then two wordsx = X1X2--- X, andy = y1Y2--- ¥y over X andY, respectively, are said to
beorder equivalentf x; < x; precisely whery; < y;j.

Let X = AU {-}whereA s a linearly ordered alphabet. For each wrigt X be the word
obtained fronx by deleting all dashes ix. A word p over X is called gpatternif it contains
no two consecutive dashes apas no repeated letters. By slight abuse of terminology we
refer to thelength of a pattern s the length of. If the ith letter inp is a dash precisely
when the th letter inq is a dash, ang andq are order equivalent, thgmandq areequivalent.

In what follows all patterns will be over the alphaldet b, c,d, ...} U {-} wherea < b <
c<d<---

Let [n] := {1,2,...,n} (so[0] = @). A permutationof [n] is a bijection from[n] to
[n]. Let Sp be the set of permutations ¢f]. We shall usually think of a permutation
as the wordr (1)7(2)- - - 7(n) over the alphabefn]. In particular,So = {€}, since there
is only one bijection fron¥ to ¢, the empty map. We say that a subwaerdf = is a p-
subwordif by replacing (possibly empty) segmentsmofvith dashes we can obtain a pattern
g equivalent top such thatq = o. However, all patterns that we will consider will have
a dash at the beginning and one at the end. For convenience, we therefore leave them out.
For example(a-bc) is a pattern, and the permutation 491273865 contains ttarelc)-
subwords, namely 127, 138, and 238. A permutation is said tp-beoidingif it does not
contain anyp-subwords. DefingS,(p) to be the set op-avoiding permutations i, and,
more generallySy(A) = ﬂpeASn(p).

We may think of a patterrp as a permutation statistic, that is, defiper as the num-
ber of p-subwords inz, thus regarding as a function fromSy, to N. For example(a-bc)
491273865= 3. In particular,z is p-avoiding if and only ifpz = 0. We say that two
permutation statistics stat and $@ateequidistributedover A C S, if

Z Xstatn — Z Xstatn.

TeA TeA
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In particular, this definition applies to patterns.

Letr = ajap---an € Sp. Ani such thatg; > a1 is called adescenin 7. We denote
by dest the number of descents in. Observe that des can be defined as the pattzay
that is, desr = (ba)w. A left-to-right minimunof r is an elemeng; such thalgy < a; for
everyj < i. The number of left-to-right minima is a permutation statistic. Analogously we
also defindeft-to-right maximumeight-to-left minimum, andight-to-left maximum

In this paper we will relate permutations avoiding a given set of patterns to other better
known combinatorial structures. Here follows a brief description of these structures. Two
excellent references on combinatorial structures are [6] and [7].

Set partitions. A partition of a setSis a family,7 = {A1, A2, ..., Ax}, of pairwise disjoint

non-empty subsets @& such thatS = U; A;. We call A; ablock of 7. The total number of
partitions of[n] is called aBell numberand is denoted,. For reference, the first few Bell
numbers are

1,1,2,5,15,52,203,877,4140,21147,1159756785704213597.
Let S(n, k) be the number of partitions dh] into k blocks; these numbers are called the
Stirling numbers of the second kind.
Non-overlapping partitions.Two blocks A andB of a partitionst overlapif
min A < min B < maxA < maxB.
A partition isnon-overlappindf no pairs of blocks overlap. Thus
7 ={{1,2,5,13},{3,8},{4,6, 7}, {9}, {10,11,12}}

is non-overlapping. A pictorial representationofs

O——O0—°0

o—— 0 0 o0—0—o0
T = oo

o
1 2 3 456 7 8 9 101112 13

Let B be the number of non-overlapping partitiongmf, this number is called theth Bessel
number[3, p. 423]. The first few Bessel numbers are

1,1,2,5,14,43,143,509,1922,7651,31965,139685,636712.

We denote byS*(n, k) the number of non-overlapping partitions[of into k blocks.

Involutions. An involutionis a permutation which is its own inverse. We denotel hyhe
number of involutions iS,. The sequencfin}g® starts with

1,1,2,4,10,26,76,232,764,2620,9496,35696,140152.

Dyck paths. A Dyck pathof length 2nis a lattice path frong0, 0) to (2n, 0) with steps(1, 1)
and (1, —1) that never goes below theaxis. Lettingu andd represent the stegg, 1) and
(1, —1), respectively, we code such a path with a word dued}. For example, the path
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is coded byuuduuddd A return stepin a Dyck paths is ad such thas = augdy, for some
Dyck pathsa, 8, andy. A useful observation is that every non-empty Dyck pattan be
uniquely decomposed ds= uxdg, wherex andg are Dyck paths. This is the so-callécst
return decompositionf §.

Thenth Catalan number ¢ = Wll(zn”) counts thenumber of Dyck paths of length 2iihe
sequence of Catalan numbers starts with

1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012.

Motzkin paths. A Motzkin pathof lengthn is a lattice path from(0, 0) to (n, 0) with steps
(1,0), (1,1), and(1, —1) that never goes below theaxis. Letting¢, u, andd represent the
steps(1, 0), (1, 1), and(1, —1), respectively, we code such a path with a word d¥eu, d}.

For example, the path

is coded byuteudede. If § is a non-empty Motzkin path, théncan be decomposed &s= ¢y
or§ = uadB, wherew, 8 andy are Motzkin paths.

The nth Motzkin number M is the number of Motzkin paths of length The first few
Motzkin numbers are

1,1,2,4,9,21,51,127,323,835,2188,5798,15511.

3. THREE CLASSES OFPATTERNS

Letm = ajap---ap € Sp. Define thereverseof = asn' := a, - - - azaz, and define the
complementf = by 7¢(i) =n+1— n (i), wherei € [n].

PropPoOSITION1. With respect to being equidistributed, the 12 pattern statistics of
length thee with one dash fall into the following three classes.

(i) a-bc, c-ba, ab-c, cb-a.

(i) a-cb, c-ab, ba-c, bc-a.

(i) b-ac, b-ca, ac-b, ca-b.

PrRoOFR The bijectionst — =", 7 — =€, andn — (z")° give the equidistribution part
of the result. Calculations show that these three distributions differ pairwisg.on O

4. PERMUTATIONS AVOIDING A PATTERN OF CLASS ONE ORTWO

PROPOSITION2. Partitions of[n] arein one-to-one correspondence witdr-bc)-avoiding
permutations inS,. Hence|Sh(a-bc)| = Bi,.

FIRST PROOF Recall that the Bell numbers satisBy = 1, and

n
n
Bri1 = (k) By

k=0

We show that{Sp(a-bc)| satisfy the same recursion. Cleatg(a-bc) = {¢}. Forn > 0,
letM = {2,3,...,n+ 1}, and letS be ak element subset d¥1. For each(a-bc)-avoiding
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permutationo of Swe constructs unique(a-bc)-avoiding permutatiomr of [n + 1]. Lett
be the word obtained by writing the elementd\f\, Sin decreasing order. Define:= o 17.

Conversely, ift = o1t is a given(a-bc)-avoiding permutation ofn + 1], wherejo | = k,
then the letters of are in decreasing order, ands an(a-bc)-avoiding permutation of thk
elementsef2,3,...,n+ 1} \ {i :i is aletterinc}. O

SECOND PROOF Given a partitionz of [n], we introduce a standard representationrof
by requiring that:

(a) Each block is written with its least element first, and the rest of the elements of that
block arewritten in decreasing order.

(b) The blocks are written in decreasing order of their least element, and with dashes sepa-
rating theblocks.

Define7 to be the permutation we obtain framby writing it in standard form and erasing
the dashes. We now argue that:= ajay - - - a avoids(a-bc). If a < a1, thenag and
a ;1 are the first and the second element of some block. By the constructionapfis a
left-to-right minimum, hence there is rjoe [i — 1] such thag; < &.

Converselyyr can be recovered uniquely from by inserting a dash ift preceding each
left-to-right minimum, apart from the first letter . Indeed, it easy to see that the partition,
7, obtained in this way is written in standard form. Thus> 7 gives the desired bijection.

ExamMpPLE 1. As an illustration of the map defined in the above proof, let
7 ={{1,3,5},{2,6,9},{4,7},{8}}.

Its standard form i8-47-296-153. Thus = 847296153.

Porism 1. Let L(r) bethe number of left-to-right minima af. Then

Z XL = Z S(n, kyxk.

meSnh(a=he) k>0

PROOFE This result follows readily from the second proof of ProposittoWe give here a
differentproof, which is based on the fact that the Stirling numbers of the second kind satisfy

Sin,k)=Sn—1,k—1)+kSh - 1,k).

Let T(n, k) be the number of permutations &,(a-bc) with k left-to-right minima. We
show that theT (n, k) satisfy the same recursion as t&@, k).

Let 7 be an(a-bc)-avoiding permutation ofn — 1]. To insertn in 7, preserving
(a-bc)-avoidance, we can put in front of 7 or we can inserh immediately after each
left-to-right minimum. Puttingn in front of = creates a new left-to-right minimum, while
insertingn immediately after a left-to-right minimum does not. o

PrROPOSITION3. Partitions of[n] arein one-to-one correspondence witr-chb)-avoiding
permutations inS,. Hence|Sp(a-cb)| = B,,.

PROOF Letn be a partition ofn]. We introduce a standard representation dfy requir-
ing that:

(a) The elements of a block are written in increasing order.
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(b) The blocks are written in decreasing order of their least element, and with dashes sepa-
rating theblocks.

(Note that this standard representation is different from the one given in the second proof of
Propositior2.) Definer to bethe permutation we obtain from by writing it in standard form

and erasing the dashes. It easy to seefhavoids(a-ch). Conversely;r can be recovered
uniquely from7 by inserting a dash in between each descemt.in O

ExaMPLE 2. As an illustration of the map defined in the above proof, let
m ={{1,3,5},{2,6,9},{4,7},{8}}.

Its standard form i8-47-269-135. Thug = 847269135.

PORISM 2.

Z X1+de31 — Z S(n, k)Xk.

meSn(a—ch) k>0

ProOFR From the proof of PropositioB we see thatr hask + 1 blocksprecisely wherit
hask descents. O

PROPOSITION4. Involutions inS, arein one-to-one correspondence with permutations in
Sh that avoid(a-bc) and (a-cb). Hence

|Sn(a-bc, a-ch)| = Iy.

PrROOF We give a combinatorial proof using a bijection that is essentially identical to the
one given in the second proof of Propositi@n

Letr € Sy be aninvolution. Recall thatr is an involution if and only if each cycle of
is of length one or two. We now introduce a standard form for writinigp cycle notation by
requiring that:

(a) Each cycle is written with its least element first.
(b) The cycles are written in decreasing order of their least element.

Definew to bethe permutation obtained fromby writing it in standard form and erasing the
parentheses separating the cycles.

Observe that avoids(a-bc): Assume thaf < a 11, thatis,(a & +1) is a cycle inr, then
g is a left-to-right minimum inz. This is guaranteed by the constructiorofThus there is
noj <isuchthalh; < a.

The permutationt also avoids(a-ch): assume thag > a1, thenaj; must be the
smallest element of some cycle. Wherge; is a left-to-right minimum inz.

Conversely, ift := a; ... ap is an{a-bc, a-ch}-avoiding permutation, then the involution
7 is given by:(g; aj1+1) is a cycle inr if and only ifa < &j41. O

EXAMPLE 3. The involutionr = 826543719written instandard form is
(9)(7)(45)(36)(2)(18),

and hencér = 974536218.
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Porism 3. The number of permutations &y (a-bc, a-cb) with n—k — 1 descents equals
the number of involutions i§,, with n — 2k fixed points.

ProoFR Under the bijectionr — 7 in the proof of Propositior4, a cycle of length two in
7 corresponds tan occurrence ofab) in 7. Hence, ifr hasn — 2k fixed points, therr has
n —k — 1 descents. a

COROLLARY 1.

Z ylt+dest _ i n n-k Exn—k
k k )2k '

7eSn(a—bc,a=ch) k=0

PROOF. Let | X denote thenumber of involutions irS, with k fixed points. Then Proposi-
tion 3is equivalently stated as

Z Xl+deS7T — Z |rr11—2kxn—k_ (1)
meSn(a—=bc,a-ch) k>0
The result now follows from the well-known and easily derived formula

—ky\r! —k
Ir'f = <E> (n ; );—r where r = nT
for n — k even, with | X = 0 for n — k odd. O

DEFINITION 1. Letw be an arbitrary partition whose non-singleton blo¢Rs, ..., A}
are ordered so that for alle [k — 1], minA; > min Aj11. If maxA; > maxA; ;1 for all
i € [k — 1], then we callz a monotone partition. The set of monotone partitiongrof is
denoted byM,,.

EXAMPLE 4. The partition

1 2 3 456 7 8 9 101112 13
is monotone.

PrRoOPOSITIONS. Monotone partitions ofn] are in one-to-one correspondence with per-
mutations inSy, that avoid(a-bc) and (ab-c). Hence

|Sn(a-bc, ab-c)| = [ M.

PROOFE Givensw in Mp, let Aj-Ag- - - - - A¢ be the result of writingr in the standard form
given in the second proof of Propositi@nand lett = A1 Az - - - A¢. By the construction of
7 the first letter in each; is a left-to-right minimum. Furthermore, sineeis monotone
the second letter in each non-singletdnis a right-to-left maximum. Therefore, ¥y is an
(ab)-subword ofr, thenx is a left-to-right minimum ang is a right-to-left maximum. Thus
7 avoids both(a-bc) and(ab-c).

Conversely, giverrr in Sp(a-bc, ab-c), let Aj-Ay---- - A¢ be the result of inserting a
dash in7 preceding each left-to-right minimum, apart from the first lettefrinSincew
is (ab-c)-avoiding, the second letter in each non-singlefgnis a right-to-left maximum.
The second letter iA; is the maximal element of; when A; is viewed as a set. Thus
7 = {A1, Ao, ..., A¢} is monotone. O
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We now show that there is a one-to-one correspondence between monotone partitions and
non-oerlapping partitions. The proof we give is strongly influenced by the paper [3], in which
Flajolet shaved that the ordinary generating function of the Bessel numbers admits a nice
continued fraction expansion

n X2

n=0 1-1.-x-—

1-2-x—
1-3.x— ——

and usinghat as a starting point he derived the asymptotic formula

kn+2
(k2

Bi ~

k>0

PrROPOSITION6. Monotone partitions ofn] are in one-to-one correspondence with non-
overlapping partitions ofn]. HencelMp| = B;.

PrROOF Letn be a non-overlapping partition @f]. Fromsz we will create a new partition
by successively inserting 2, ..., n, in this order, into this new partition. During this process
a block is labelled as eithepenor closed. More formally, in each stép= 1,2, ..., nin this
process we will have a partition of [k] together with a function frora to the set of labels
{open.closed}. Before we start we also need a labelling of the blocks éfctually we need
n such labellings, one for eaghe [n]: at stegk a blockB of x is labelled open if maB > k
and closed otherwise. For ease of language, we say that a block is open if it is labelled open,
and closed if it is labelled closed.

(a) If kis the minimal element of a non-singleton blockmfthen create a new blodk}
and label it open.

(b) If k is the maximal element of a non-singleton blockmfthen inserk into the open
block with the smallest minimal element, and label it closed.

(c) If k belongs toa non-singleton blockB of = and is not the minimal or the maximal
element ofB, andB has thd th largest minimal element of the open blockswfthen
insertk into the open block with theth largest minimal element.

(d) If {k} is a block ofr, then create a new blodk} and label it closed.

Define® (;r) as the partition obtained from by applying the above process. Observe that
®(7r) is monotone. Indeed, the two crucial observations are: (i) in (b) we label the open
block with the smallest minimum closed, and (ii) a block labelled closed has received all its
elements.

Conversely, we give a may that to each monotone partition of [n] gives a unique
non-overlapping partition (;r) of [n]. DefineWw the same way a® is defined, except for
case (c), where we instead of insertkigito the block labelled open with tlenallesminimal
element, inserk into the block labelled open with tHargestminimal element. It is easy to
see thatb andW are each others inverses and hence they are bijections. O

COROLLARY 2. The non-overlapping partitions ¢h] are in one-to-one correspondence
with permutations ir5, that avoid(a-bc) and (ab-c). Hence

|Sn(a-bc, ab-c)| = By
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PrRoOOF Follows immediately from Propositiohtogether with Propositiof. O

EXAMPLE 5. By the proof of PropositioB, the non-overlapping partition

O——O0—=O
o————0 (] OoO—0——o0
Oo—=O O

12 3 45 6 7 8 9 10111213

T =

corresponds to the monotone partition

®(r) = — T °

o—O0————O0——0
12 3 45 6 7 8 9 10111213

that according to the proof of Propositidhcorresponds to th¢a-bc, ab-c}-avoiding per-
mutation

d(7)=10131194126381752.

PoRrism 4. Let L(r) bethe number of left-to-right minima af. Then

> xH =3 " s (n, K)xK.

meSnh(a=bc,ab-c) k>0

PrROOF Under the bijectionr — 7 in the proof of Propositiorb, the number of blocks in
7 determines thaumber of left-to-right minima ofr, and vice versa. The number of blocks
is not changed by the bijectiob in the proof of Propositios. a

5. PERMUTATIONS AVOIDING A PATTERN OF CLASS THREE

In [4] Knuth observed that there is a one-to-one correspondence betlegnc)-avoiding
permutations and Dyck paths. For completeness and future reference we give this result as a
lemma, and prove it using a bijection which rests on the first return decomposition of Dyck
paths. First we need a definition. For each wirg x1x5 - - - X, without repeated letters, we
define theprojectionof x onto S,, which we denote proy), by

proj(x) = ayaz- - - an, where a =|[{j €[n]:Xx; < X}|.

Equivalently, projk) is the permutation iS5y, which is order equivalent ta. For example,
proj(265)= 132.

LEMMA 1. |Sp(b-a-c)| = C,.

PROOF Letn = ajaz---aph be a permutation di] such that, = 1. Thenr is (b-a-c)-
avoiding if and only ift = 017, whereo := a; - - - a1 is a(b-a-c)-avoiding permutation
of {n,n—1,...,n—k+ 1}, andr := a41---a, is a (b-a-c)-avoiding permutation of
{2,3,...,k}.

We define recursively a mappinp from Sy (b-a-c) onto the set of Dyck paths of length
2n. If 7 is the empty word, then so is the Dyck path determinec bthat is,®(¢) = e. If
7 # €, then we can use the factorizatian= o1t from above, and defin®(x) = u(® o
proj)(o)d (® o proj)(r). It is easy to see tha@ may be inverted, and hence is a bijectidn.
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LEMMA 2. A permutation avoidgb-ac) if and only if it avoids(b-a-c).
PrRoOF The sufficiency part of the proposition is trivial. The necessity part is not difficult
either.Assume thatr contains ab-a-c)-subword. Then there is a segmeéditn - - - m; of

m, where, forsomg < r, mj < Bandm, > B. Now choose the largessuch tham; < B,
thenm; 1 > B. O

PROPOSITION7. Dyck paths of lengtn are in one-to-one correspondence wijti+ac)-
avoiding permutations i,. Hence

1 /2n
|Sn(b-ac)| = m( n)-

PrRoOOFE Follows immediately from Lemmakand 2. O

PrROPOSITIONS. Let L(;r) bethe number of left-to-right minima af. Then

k (2n—k
Z XI_(71):2:2n—k< n )Xk'

71eSnh(b—ac) k>0

PROOF Let R(§) denotethe number of return steps in the Dyck pdtht is well known
(see [2]) that the distribution dR® over all Dyck paths of length 2is the distribution we claim
thatL has overS,(b-ac).

Let y be a Dyck path of length 2rand lety = uadg be its first return decomposition.
ThenR(y) = 1+ R(B). Letr € Sp(b-ac), and letr = o1t be the decomposition given in
the proof of Lemmad.. ThenL () = 1+ L (o). The result now follows by induction. O

In addition, it is easy to deduce that left-to-right minima, left-to-right maxima, right-to-left
minima, and right-to-left maxima all share the same distribution Syéb-ac).

PrROPOSITION9. Motzkin paths of length n are in one-to-one correspondence with permu-
tations inS, thatavoid (a-bc) and (ac-b). Hence

|Sh(a-bc, ac-b)| = M.

PrROOFE We mimic the proof of Lemma. Letnr € Sp(a-bc, ac-b). Sincer avoids(ac-b)
it also avoids(a-c-b) by Lemma2 via 7 — (7%'. Thuswe may writer = onz, where
7(K) = n, o is an{a-bc, ac-b}-avoiding permutation ofn — 1,n — 2,...,n — k + 1},
andt is an{a-bc, ac-b}-avoiding permutation ofn — Kk]. If o # € theno = o’'r where
r =n-—k+ 1, or else ana-bc)-subword would be formed with as the ‘¢ in (a-bc).
Define a mapb from Sp(a-bc, ac-b) to the set of Motzkin paths b (¢) = € and

€@ oproj(o) if 7 = no,

O() = . .
U(@oproj)(oc)dd(r) ifr =ornrandr =n—k-+1.

It is routine to find the inverse ab. O
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ExAMPLE 6. Let us find the Motzkin path associated with thebc, ac-b}-avoiding per-
mutation76453281.

®(76453281)= ud(54231)dd (1)
=ued (4231
= uLd(231)adk
= ulludd (1)de
= uffudede
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