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We consider a mathematical model which describes the quasistatic contact of an
elastoplastic rod with an obstacle. It is based on the Prandtl]Reuss flow law and
unilateral conditions imposed on the velocity. Two weak formulations are pre-
sented and existence and uniqueness results established. The proofs are based on
approximate problems with viscous regularization, which have merit on their own
and may be used as the basis for convergent numerical algorithms for the problem.
Q 1998 Academic Press

1. INTRODUCTION

We consider a mathematical model which describes the quasistatic
contact of an elastoplastic rod with an obstacle. It consists of a coupled
system which contains a force balance-equation for the stress field and a
variational inequality for the strain field. We establish the existence and
uniqueness of the stress field and the existence of the velocity field.

Problems of contact, dynamic or quasistatic, of beams and rods have
w x Ž .been investigated recently in 3]5, 8, 12, 13, 18 see also references there .

In these publications the rods or beams were assumed to be elastic or
viscoelastic. Initial and boundary problems for plastic materials were

w xconsidered in 11, 16, 20 , but only for the classical displacement-traction
boundary conditions. Here, we consider the quasistatic problem with
plasticity and a unilateral velocity boundary condition. The dynamic con-
tact or impact problem will be considered in the sequel.
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Plastic deformations are manifested in two or three dimensions. Our
purpose in investigating the one-dimensional problem is to obtain deeper
understanding of the mathematical structure of such problems and to gain
insight into the possible types of behavior of the solutions. The one-dimen-
sional problem can be thought of as only an approximation for compress-
ible materials. Nevertheless, it has merit of its own.

The model is constructed in Section 2. It is based on the Prandtl]Reuss
plastic flow rule and a velocity contact condition. In Section 3 we present
two variational formulations of the problem and state our existence and
uniqueness results. The first formulation is in terms of velocity and stress;
the second one is in terms of stress only. A sequence of approximate
problems with viscous regularization is described in Section 4. The exis-
tence and uniqueness of the solutions to these problems is established
using the theory of evolution equations and convex analysis. In Section 5
we establish the a priori estimates on the approximate solutions that are
needed to pass to the regularization parameter’s limit. Thus our main
results are established.

The regularized elastoviscoplastic problem can be considered as a basis
for a convergent algorithm for numerical simulations of the model. Such
solutions may be useful for testing computer codes designed for two- or
three-dimensional elastoplastic contact problems.

2. THE MODEL

In this section we construct a model for the process of contact of an
elastoplastic rod with an obstacle. The physical setting, depicted in Fig. 1,
and the process are as follows. An elastoplastic rod occupies the reference
configuration 0 F x F 1 and is clamped at its left. The right end is free to
move, but its movement is restricted by an obstacle situated at x s 1.

FIG. 1. The setting of the problem.
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Once the free end moves to the left, the obstacle follows it and prevents
any subsequent motion of the free end to the right. We may consider the
obstacle as a semi-rigid wall which moves with the end to the left, but
opposes any motion to the right. Since we deal with small displacements,
we assume that the rigid wall is permanently positioned at x s 1; in the
case of large displacements one has to take the wall’s motion into account,
which complicates the problem considerably by transforming it into a free
boundary problem.

Ž . Ž .Let u s u x, t represent the displacement field and s s s x, t repre-
sent the stress field. We assume that the process is quasistatic; then at

Ž .each time t 0 F t F T , the stress field satisfies the equilibrium equation

s q f s 0,x

Ž . Ž .where f s f x, t denotes the linear density of applied forces, and the
subscript x represents ‘‘r x.’’ To describe the elastoplastic behavior, we

Ž w xneed the elasticity set K and a flow law see, e.g., Duvaut and Lions 7 or
w x.Maugin 15 . We set the elasticity set as

� 4K s t g R : s# F t F s * , 2.1Ž .

where s# and s * are two constants representing the lower and upper
plastic thresholds, such that s# - 0 - s *. K may be described alterna-
tively as

F t F 0,Ž .

where F is the piecewise linear function

s# y s if s F 0,
F s s 2.2Ž . Ž .½ s y s * if s G 0.

The normality law, which relates the rate of strain to the rate of stress, is
assumed to be the Prandtl]Reuss flow law

s g K , u s As q l. 2.3Ž .˙ ˙x

Here and below, a dot above a variable represents the time derivative. l
represents the plastic flow rate and A is a positive constant representing
the elastic properties of the material. Furthermore, we have

l s 0

if s# - s - s *, or if s s s * and s - 0, or if s s s# and s ) 0;˙ ˙
l G 0 if s s s * and s s 0;˙
l F 0 if s s s * and s s 0.˙
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These may be written concisely as a variational inequality,

s g K , l t y s G 0 ;t g K . 2.4Ž . Ž .

Ž . Ž .Then, the constitutive law 2.3 together with 2.4 may be written as

As q c s 2 u ,Ž .˙ ˙K x

where c represents the indicator function of K and c is its subdiffer-K K
ential.

We could consider the nonhomogeneous case as well. All we need to
`Ž . Ž . Ž .assume is that A g L 0, 1 and A x G a a.e. x g 0, 1 for some a ) 0.

But, for the sake of simplicity, we consider only the homogeneous case to
avoid technical complications.

To complete the statement of the problem, we have to prescribe the
Ž . Ž .initial displacement u x , the initial stress s x , and the boundary0 0

conditions.
Let T ) 0, and set

V s x , t : 0 - x - 1, 0 - t - T .� 4Ž .T

The classical formulation of the elastoplastic quasistatic contact problem is
� 4as follows. Find a pair u, s such that

As q c s 2 u in V , 2.5Ž . Ž .˙ ˙K x T

s q f s 0 in V , 2.6Ž .x T

w xu 0, t s 0, t g 0, T , 2.7Ž . Ž .
w xu 1, t F 0, s 1, t F 0, s 1, t u 1, t s 0, t g 0, T , 2.8Ž . Ž . Ž . Ž . Ž .˙ ˙

u x , 0 s u x , s x , 0 s s x , x g 0, 1 . 2.9Ž . Ž . Ž . Ž . Ž . Ž .0 0

Ž . wHere, 2.8 are the contact conditions at x s 1, similar to those used in 7,
x Ž .10 . The condition u 1, t F 0 represents the fact that the right end of the˙

Ž .rod is restricted to move only to the left; the condition s 1, t F 0 means
that the reaction of the wall is toward the rod. Finally, the condition
Ž . Ž . Ž .s 1, t u 1, t s 0 represents a complementarity condition: Either s 1, t s 0˙

Ž .when the end x s 1 is away from the wall or u 1, t s 0 when the end is˙
still in contact, at time t.

Remark 2.1. We recall that the usual contact condition, the so-called
Signorini condition, is

u 1, t F 0, s 1, t F 0, s 1, t u 1, t s 0. 2.10Ž . Ž . Ž . Ž . Ž .



ELASTOPLASTIC ROD 583

It is stated in terms of the displacement of the rod’s end, not in terms of its
velocity. The interpretation in this case is that the rigid wall does not

Ž .move, so contact holds when u 1, t s 0, and u ) 0 is possible when thet
end is not in contact.

Remark 2.2. As mentioned in the Introduction, a one-dimensional
elastoplastic problem has mainly mathematical interest as it is well known
experimentally that plastic flow is almost always observed to preserve
volume, i.e., it is incompressible. Therefore, the elasticity set K is usually
described in terms of the deviator s D of the stress tensor s which makes
sense only in two or three dimensions. In our formulation, being one-di-
mensional, the material is necessarily compressible. Nevertheless, the
problem has merit on its own, in addition to being a step toward our
understanding of multidimensional contact problems for elastoplastic
bodies.

3. VARIATIONAL FORMULATION AND STATEMENT OF
THE MAIN RESULT

Ž . Ž .We restate problem 2.5 ] 2.9 as a variational inequality. To this end,
Ž . 2Ž . < < 2let ?,? denote the inner product on the space L 0, 1 and let ? L Ž0, 1.

denote the associated norm. We use standard notation for Sobolev spaces
Ž w x w x.see, e.g., 1 or 14 and in addition we use the notation

U s ¨ g H 1 0, 1 : ¨ 0 s 0, ¨ 1 F 0 , 3.1� 4Ž . Ž . Ž . Ž .0

S s t g H 1 0, 1 : t 1 F 0 , 3.2� 4Ž . Ž . Ž .0

which are the sets of time independent admissible test functions,

S t s t g H 1 0, 1 : t q f s 0 a.e. in 0, 1 , t 1 F 0 , 3.3Ž . Ž . Ž . Ž . Ž .� 4x

w xwhere t g 0, T , which is the set of admissible stresses and

KK s t g L2 0, 1 : t x g K a.e. x g 0, 1 . 3.4� 4Ž . Ž . Ž . Ž .

We proceed to construct variational formulations for the problem. If u
Ž . Ž .and s are sufficiently regular and satisfy 2.6 ] 2.8 , then, for each

w xt g 0, T ,

² : ² :t y s t , u t q t y s t , u t G 0 for all t g S , 3.5Ž . Ž . Ž . Ž . Ž .˙ ˙x x x 0

² :t y s t , u t G 0 for all t g S t . 3.6Ž . Ž . Ž . Ž .˙x
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Ž . Ž . w xMoreover, we deduce from 2.5 and 3.4 that for each t g 0, T

² :As t , t y s t G 0 for all t g KK. 3.7Ž . Ž . Ž .˙
Ž . Ž .Let ¨ s u. We obtain from 3.5 ] 3.7 the following two variational formu-˙

Ž . Ž .lations for problem 2.5 ] 2.9 . The first is a velocity-stress formulation:

� 4Problem P . Find ¨ , s such that1

w xs t g KK l S t , t g 0, T , 3.8Ž . Ž . Ž .
² : ² :As t , t y s t q ¨ t , t y s t G 0Ž . Ž . Ž . Ž .˙ x x

for all t g KK l S , a.e. t g 0, T , 3.9Ž . Ž .0

s 0 s s . 3.10Ž . Ž .0

The second, which is obtained by the elimination of the velocity field, is
the stress formulation:

Problem P . Find s such that2

w xs t g KK l S t , t g 0, T , s 0 s s , 3.11Ž . Ž . Ž . Ž .0

and

² :As t , t y s t G 0 for all t g KK l S , a.e. t g 0, T . 3.12Ž . Ž . Ž . Ž .˙ 0

Our main concern is the existence of solutions to Problems P and P ,1 2
which will be studied below.

Ž . Ž .Once the velocity field ¨ has been found from 3.8 ] 3.10 , the displace-
ment field u is obtained from

t
u x , t s ¨ x , s ds q u x , 3.13Ž . Ž . Ž . Ž .H 0

0

where u is the initial displacement.0
In the study of this evolution problem, we suppose that the data satisfy

f g H 1 0, T ; L2 0, 1 and s g S 0 , 3.14Ž . Ž . Ž .Ž . 0

1Ž . Ž .and that u g H 0, 1 and u 0 s 0. Moreover, we also assume the0 0
wfollowing compatibility condition which is similar to the one used in 11,

x 1, `Ž `Ž ..16, 20 . There exists a function x g W 0, T ; L 0, 1 such that

a x q f s 0, in V ,Ž . x T

w xb x 1, t F 0, x 1, t F 0, t g 0, T ,Ž . Ž . Ž .˙
c x 0 s s ,Ž . Ž . 0 3.15Ž .

w xd 'd ) 0 such that x t q t g KK, ; t g 0, T ,Ž . Ž .
` < < `t g L 0, T , t F d .Ž . L Ž0 , 1.
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Finally, for the study of the regularized problems we also need

u g U . 3.16Ž .0 0

Let

BD 0, 1 s u g L1 0, 1 : u g M 1 0, 1 , 3.17Ž . Ž . Ž . Ž .� 4x

1Ž . Ž . Žwhere M 0, 1 is the space of bounded measures on 0, 1 . We recall see,
w x. Ž . pŽ .e.g., 21, Chap. 2 that BD 0, 1 is continuously embedded in L 0, 1 , for

1 F p F ` and the embedding is compact for 1 F p - `. Next, let
2 Ž Ž ..L 0, T ; BD 0, 1 denote the space of all weak* measurable functionsw

w x Ž .h : 0, T ª BD 0, 1 such that

T 2
h t dt - q`.Ž . Ž .H BD 0, 1

0

2 w x w xFor the properties of L we refer the reader to 20 or 9, Chap. 20 .w
Our main result is the following:

Ž . Ž .THEOREM 3.1. Under the assumptions 3.14 ] 3.16 there exists a solution
� 4¨ , s of Problem P , with s unique, such that1

¨ g L2 0, T ; BD 0, 1 and s g H 1 0, T ; H 1 0, 1 .Ž . Ž .Ž . Ž .w

Moreo¨er, s is the unique solution of Problem P .2

The proof of Theorem 3.1 will be given in Section 5 using a sequence of
approximate problems, which are obtained by adding viscosity. This acts as

Ž . Ž . Ž . Ž .regularization of the problem 3.8 ] 3.10 or 3.11 and 3.12 . Neverthe-
less, these elastoviscoplastic problems have some merit on their own and
we consider them in the next section.

4. THE ELASTOVISCOPLASTIC PROBLEMS

In this section we consider a regularized version of the problem. It is
Ž w x w x.effected by introduction of viscosity see, e.g., 7 or 15 . We assume that

viscosity effects become important only once a s f K and thus we replace
Ž .2.5 with

1
As q s y P s s u , in V , 4.1Ž . Ž .˙ ˙K x T2m

where m ) 0 is the viscosity coefficient and P is the projection on K.K
Ž . Ž .Formally 2.5 may be recovered from 4.1 as m ª 0, which is the main
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ingredient of the regularization. The classical formulation of the mechani-
� 4 Ž .cal elastoviscoplastic problem is to find a pair u , s such that 4.1 ,m m

Ž . Ž .2.6 ] 2.9 hold.
We turn to variational formulation of the regularized problem. For each

m ) 0 we denote by G : R ª R the function defined bym

1¡
s y s# if s - s#,Ž .

2m
1 ~0 if s# - s - s *,G s s s y P s s 4.2Ž . Ž . Ž .m K2m 1

Us y s if s ) s *.Ž .¢2m

A mixed variational formulation for the mechanical elastoviscoplastic
� 4problem is the following: Find a pair u , s , for m ) 0, such thatm m

As q G s s u in V , 4.3Ž . Ž .˙ ˙m m m m x T

t y s t , u t G 0 ;t g S t , a.e. t g 0, T , 4.4² :Ž . Ž . Ž . Ž . Ž .˙m m x

u t g U a.e. t g 0, T , 4.5Ž . Ž . Ž .ṁ 0

w xs t g S t , t g 0, T , 4.6Ž . Ž . Ž .m

u 0 s u , s 0 s s . 4.7Ž . Ž . Ž .m 0 m 0

Ž . Ž . Ž .If we assume that problem 4.1 , 2.6 ] 2.9 has a regular solution
� 4 Ž .u , s then by performing integration by parts we obtain problem 4.3 ]m m

Ž . Ž Ž ..4.7 see also 3.6 .
We have the following existence and uniqueness result for the varia-

Ž . Ž .tional problem 4.3 ] 4.7 :

Ž . Ž . Ž .THEOREM 4.1. Let 3.14 ] 3.16 hold. For each m ) 0 problem 4.3 ]
Ž .4.7 has a unique solution such that

u g H 1 0, T ; H 1 0, 1 , s g H 1 0, T ; H 1 0, 1 .Ž . Ž .Ž . Ž .m m

The proof of the theorem will be given at the end of this section, after
reformulating it and obtaining a number of auxiliary results. We note that
Ž . Ž .4.4 and 4.6 are equivalent to the nonlinear evolution equation

u t q c s t 2 0 a.e. t g 0, T , 4.8Ž . Ž . Ž . Ž .˙ Ž .m x SŽ t . m

where c denotes the subdifferential of the indicator function c .SŽ t . SŽ t .
Ž . Ž .Since the set S t depends on time, we shall replace 4.8 by a nonlinear

evolution equation associated with a fixed convex set. To this end, we
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Ž . Ž .assume that 3.14 ] 3.16 hold true and let

� 4S s t g R : t F 0 , 4.9Ž .y

and

V s ¨ g H 1 0, 1 : ¨ 0 s 0 . 4.10� 4Ž . Ž . Ž .

² :V is a real Hilbert space endowed with the inner product u, ¨ sV
² : < < 2 ² :u , ¨ , and associated norm ¨ s ¨ , ¨ . Using the Riesz representa-Vx x x x

w x 2Ž .tion theorem, we may define s : 0, T ª L 0, 1 by˜

² : w x² :s t , ¨ s f t , ¨ ;¨ g V , t g 0, T . 4.11Ž . Ž . Ž .˜ x

Ž . Ž . w x Ž .Thus, s t q f t s 0, for all t g 0, T , and then 3.13 yieldsx̃

s g H 1 0, T ; H 1 0, 1 . 4.12Ž . Ž .˜ Ž .
Let

s s s y s and s s s y s 0 . 4.13Ž . Ž .˜ ˜m m 0 0

We have

� 4 Ž . Ž .LEMMA 4.2. The pair u , s is a solution of 4.3 ] 4.7 with u gm m m
1Ž 1Ž .. 1Ž 1Ž .. 1Ž .H 0, T ; H 0, 1 , s g H 0, T ; H 0, 1 if and only if u g H 0, T ; V ,m m

1Ž 1Ž ..s g H 0, T ; H 0, 1 andm̃

˙ ˙As q As q G s q s s u in V , 4.14Ž .˜ ˜ ˜ ˜ ˙Ž .m m m m x T

t y s t , u t G 0 ;t g S a.e. t g 0, T , 4.15² :Ž . Ž . Ž . Ž .˜ ˙m m x y

u t g U a.e. t g 0, T , 4.16Ž . Ž . Ž .ṁ 0

w xs t g S , t g 0, T , 4.17Ž . Ž .m̃ y

u 0 s u , s 0 s s . 4.18Ž . Ž . Ž .˜ ˜m 0 m 0

Ž . Ž . Ž . Ž . Ž .Proof. Using 4.11 we obtain that s t q f t s 0 on 0, 1 and s 1, t˜ ˜x
w xs 0 for t g 0, T . Thus,

w xt g S t m t y s t g S for all t g 0, T . 4.19Ž . Ž . Ž .˜ y

Ž . Ž . Ž .Lemma 4.2 follows now from 4.12 , 4.13 , and 4.19 .

Ž . Ž .To solve 4.14 ] 4.18 we shall use the fixed point method, similarly to
w x17, 19 , where it was used in the study of contact problems too. To this

2Ž .end, let h g L V and consider the following variational problem.T
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� 4Find u , s such thatmh mh

As q h s u in V , 4.20Ž .˙ ˙mh mh x T

t y s t , u t G 0 ;t g S a.e. t g 0, T , 4.21² :Ž . Ž . Ž . Ž .˙mh mh x y

u t g U a.e. t g 0, T , 4.22Ž . Ž . Ž .ṁh 0

w xs t g S , t g 0, T , 4.23Ž . Ž .mh y

u 0 s u , s 0 s s . 4.24Ž . Ž . Ž .mh 0 mh 0

We have the following result:

Ž . Ž .LEMMA 4.3. The ¨ariational problem 4.20 ] 4.24 has a unique solution
2Ž . 1Ž 1Ž ..for each h g L V . Moreo¨er, u g H 0, T ; H 0, 1 and s gT mh mh

1Ž 1Ž ..H 0, T ; H 0, 1 .

Ž . Ž . Ž .Proof. First, we note that 3.14 , 4.19 , and 4.13 imply that s g S .˜0 y
2Ž .Also, S is a closed convex subset of L 0, 1 . So, it follows from they

standard theory of evolution equations involving maximal monotone oper-
Ž w x. 1Ž 2Ž ..ators see, e.g., 6 that there exists s g H 0, T ; L 0, 1 , such thatmh

w xs t g S for all t g 0, T , 4.25Ž . Ž .mh y

² : ² :As , t y s q h , t y s G 0 ;t g S , a.e. on 0, T , 4.26Ž . Ž .ṁh mh mh y

s 0 s s . 4.27Ž . Ž .˜mh 0

Ž . 1Ž 2Ž .. 2Ž .Then 4.25 implies that s g H 0, T ; L 0, 1 . Let ¨ g L 0, T ; V bemh mh

given by

x
¨ x , t s As y , t q h y , t dy , 4.28Ž . Ž . Ž . Ž .˙Ž .Hmh mh

0

Ž . Ž . Ž .for x g 0, 1 and a.e. t g 0, T . Then, by 4.26 , we have

² :t y s , ¨ G 0 for all t g S , a.e. on 0, T . 4.29Ž . Ž .mh mh x y

Ž . Ž . w xWe claim that ¨ t g U a.e. on 0, T . To this end, let t g 0, T suchmh 0
that

t y s t , ¨ t G 0 for all t g S . 4.30² :Ž . Ž . Ž .mh mh x y
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We note that U is a closed convex subset of V and we let P be the0
Ž .projection map on U . Assume that ¨ t f U . Then0 mh 0

P¨ t y ¨ t , ¨ G P¨ t y ¨ t , P¨ t² : ² :Ž . Ž . Ž . Ž . Ž .mh mh mh mh mhV V

G P¨ t y ¨ t , ¨ t ,² :Ž . Ž . Ž .mh mh mh V

for all ¨ g U . Therefore, there exists a g R such that0

P¨ t y ¨ t , ¨ ) a ) P¨ t y ¨ t , ¨ t , 4.31² : ² :Ž . Ž . Ž . Ž . Ž . Ž .mh mh mh mh mhV V

Ž . 2Ž .for all ¨ g U . Let t t g L 0, 1 be given by˜0

t t s P¨ t y ¨ t .Ž . Ž . Ž .˜ Ž .mh mh x

Ž .We deduce from 4.31 that

² :t t , ¨ ) a ) t t , ¨ t , 4.32² :Ž . Ž . Ž . Ž .˜ ˜x mh xV V

Ž .for all ¨ g U . Now, we choose ¨ s 0 in 4.32 and obtain0

a - 0. 4.33Ž .

Suppose now that there exists ¨ g U such that0

² :t t , ¨ - 0. 4.34Ž . Ž .˜ x V

Ž .Then, using 4.32 and noting that l¨ g U for all l G 0, it follows that0

² :l t t , ¨ ) a ,Ž .˜ x V

for all l G 0, and passing to the limit l ª ` we obtain that a s y`
Ž . ² Ž . :which contradicts 4.31 . So, t t , ¨ G 0 for all ¨ g U , and thus˜ Vx 0

Ž . Ž . Ž . Ž .t t g S . Now, using 4.30 , 4.32 , and 4.33 yield˜ y

s t , ¨ t - 0. 4.35² :Ž . Ž . Ž .mh mh x V

Ž . Ž .Moreover, it follows from 4.30 that if t s 2s t thenmh

s t , ¨ t G 0. 4.36² :Ž . Ž . Ž .mh mh x V

Ž . Ž . Ž .Since 4.35 and 4.36 are incompatible we conclude that ¨ t g U .mh 0
Now, we choose

t
u t s ¨ s ds q u ,Ž . Ž .Hmh mh 0

0

w x Ž . Ž . Ž .for t g 0, T , and then Lemma 4.3 follows from 4.25 and 4.27 ] 4.29 .
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2Ž . 2Ž .Let us now consider the operator L : L V ª L V defined bym T T

˙L h s As q G s q s , 4.37Ž .˜ ˜Ž .m m mh

2Ž . � 4where, for every h g L V , u , s denotes the associated solution ofT mh mh

Ž . Ž .the variational problem 4.20 ] 4.24 . We have
2Ž .LEMMA 4.4. The operator L has a unique fixed point h g L V .m m T

2Ž . Ž . Ž .Proof. Let h , h g L V . It follows from 4.26 and 4.27 that1 2 T

t2 2
2s t y s t F C h s y h s ds, 4.38Ž . Ž . Ž . Ž . Ž .2 H Ž .L 0, 1mh mh 1 2Ž .L 0, 11 2

0

w x Ž . Ž .for all t g 0, T , where C ) 0 depends only on A. Using 4.37 and 4.2
yields

22
L h t y L h t F s t y s t , 4.39Ž . Ž . Ž . Ž . Ž .2 2m 1 m 2 mh mhŽ . Ž .L 0, 1 L 0, 11 2

w x Ž . Ž .for all t g 0, T . Then, it follows from 4.38 and 4.39 that
C t2 2

2L h t y L h t F h s y h s ds, 4.40Ž . Ž . Ž . Ž . Ž .2 H Ž .L 0, 1m 1 m 2 1 2Ž . 2L 0, 1 m 0

w x pfor all t g 0, T . This shows that a power L of L is a contractionm m
2Ž .mapping on L V .T

Now we have:
2Ž .Proof of Theorem 4.1. Let h g L V be the fixed point of L andm T m

1Ž 1Ž .. 1Ž 1Ž ..let u g H 0, T , H 0, 1 , s g H 0, T , H 0, 1 be the functions given˜m m

� 4by Lemma 4.3 for h s h . It follows that u , s is a solution of˜m m m

Ž . Ž .4.14 ] 4.18 and, using Lemma 4.2, we obtain the existence part in
Theorem 4.1.

The uniqueness part of Theorem 4.1 follows from the uniqueness of the
fixed point of the operator L .m

5. PROOF OF THE MAIN RESULT

Ž . Ž .In this section we prove Theorem 3.1. We suppose that 3.14 and 3.15
Ž .hold and that u satisfies 3.16 . For each viscosity constant m ) 0 let0

� 4 Ž . Ž .u , s denote the solution of the elastoviscoplastic problem 4.3 ] 4.7 ,m m
2Ž .let ¨ s u , and let GG : L 0, 1 ª R be the function˙m m m q

1 2
2< <GG t s t y P t . 5.1Ž . Ž .L Ž0 , 1.m K2m

In the sequel C will denote a strictly positive constant which does not
depend on m and whose value may change from place to place.



ELASTOPLASTIC ROD 591

We have:

� 4 `Ž 2Ž ..LEMMA 5.1. The sequence s is bounded in L 0, T ; L 0, 1 .m

Ž . Ž .Proof. Using 4.3 and 4.4 we obtain

As q G s , t y s G 0 ;t g S t a.e. t g 0, T , 5.2² :Ž . Ž . Ž . Ž .ṁ m m m

Ž .and from 3.15 we obtain

w xx t g KK l S t ; t g 0, T . 5.3Ž . Ž . Ž .

Ž . Ž .Let s s s y x . Using 5.2 and 5.3 yieldsm m

˙ ² :As , s q G s , s F y Ax , s a.e. on 0, T . 5.4² :Ž . Ž . Ž .˙¦ ;m m m m m m

Ž .We note that the function G , defined in 4.2 , is the derivative of them

Ž . < < 2 Ž .convex function s ª 1r2m s y P s . So, using 5.1 and the subgradientK
inequality we find

GG t y GG s G G s , t y s ;s , t g L2 0, 1 . 5.5² :Ž . Ž . Ž . Ž . Ž .m m m

Ž . Ž . w x Ž .Using 5.3 we obtain GG x s 0 for all t g 0, T . Then, 5.5 impliesm

w xG s , s G GG s , t g 0, T . 5.6² :Ž . Ž . Ž .m m m m m

Ž . Ž .It follows from 5.4 and 5.6 that

˙² : ² :As , s q GG s F y Ax , s a.e. on 0, T . 5.7Ž . Ž . Ž .˙m m m m

Ž . Ž .Ž . Ž . Ž .From 4.7 and 3.15 c we have s 0 s 0 and since GG s G 0, them m m

previous inequality yields

t2 ² :s t F C Ax , s dsŽ . ˙2 Hm mŽ .L 0, 1
0

t
2 2< < < <F C Ax s ds, 5.8Ž .˙H L Ž0 , 1. L Ž0 , 1.m

0

w x Ž .for all t g 0, T . Lemma 5.1 now follows from 5.8 and the regularity of
x .

� Ž .4 1Ž 1Ž ..LEMMA 5.2. The sequence G s is bounded in L 0, T ; L 0, 1 .m m

Ž .Proof. Using 5.4 and Lemma 5.1 yields

T
G s , s dt F C. 5.9² :Ž . Ž .H m m m

0
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`Ž . < < ` Ž .Ž . Ž .Let t g L 0, 1 such that t F d . Using 3.15 d we have x t q tL Ž0, 1.
Ž . w x Ž .g KK, which implies GG x q t s 0 for all t g 0, T . Moreover, from 5.5m

we obtain

G s , x q t y s F GG x q t y GG s F 0,² :Ž . Ž . Ž .m m m m m m

w xfor all t g 0, T . Hence,

G s , t F G s , s ,² : ² :Ž . Ž . Ž .m m m m m

w xfor all t g 0, T . Using this inequality yields

1
G s s sup G s , t F G s , s , 5.10² : ² :Ž . Ž . Ž . Ž .1m m m m m m mŽ .L 0, 1 d

w xfor all t g 0, T ; here the supremum is taken over the set

` < < `t g L 0, 1 , t F d .� 4Ž . L Ž0 , 1.

Ž . Ž .Lemma 5.2 follows now from 5.9 and 5.10 .

� 4 2Ž .LEMMA 5.3. The sequence s is bounded in L V .ṁ T

Ž . Ž .Proof. Using 3.15 and 4.16 , after integration by parts we obtain

˙² : ² :x , u G f , u a.e. on 0, T . 5.11Ž . Ž .˙ ˙ ˙m x m

Ž .Moreover, it follows from 4.15 , after some manipulations, that

˙² :s , u s 0 a.e. on 0, T ,Ž .˜ ˙m m x

Ž . Ž .and, recalling 4.13 and 4.11 , we obtain

˙² : ² :s , u s f , u a.e. on 0, T . 5.12Ž . Ž .˙ ˙ ˙m m x m

˙Ž . Ž .We now multiply 4.3 by s s s y x , integrate over on 0, 1 , and obtain˙ ˙m m

˙ ˙² : ² : ² :As , s q G s , s s m , s y x a.e. on 0, T .Ž . Ž .˙ ˙ ˙m m m m m m x m

Ž . Ž .Using 5.11 and 5.12 leads to

˙ ˙² : ² :As , s q G s , s F 0 a.e. on 0, T .Ž . Ž .ṁ m m m

This implies

˙ ˙ ˙² : ² :As , s q G s , s F G s , x y Ax , s ,² : ² :Ž . Ž .˙ ˙ ˙m m m m m m m m
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Ž . w xa.e. on 0, T . Integration on 0, T and Lemma 5.2 yield

T2
2 2˙ ˙< < < <A s q G s , s dt F C q C s . 5.13² :Ž . Ž .˙L ŽV . H L ŽV .m m m 1 2 mT T

0

Now,

T
G s , s dt s GG s T y GG s 0² :Ž . Ž . Ž .˙ Ž . Ž .H m m m m m m m

0

G yGG sŽ .m 0

s 0,

˙Ž .Ž . Ž . Ž . � 4where we used 3.15 c , d . Hence, we deduce from 5.13 that s is am
2Ž .bounded sequence in L V which proves Lemma 5.3.T

� 4 2Ž Ž ..LEMMA 5.4. The sequence ¨ is bounded in L 0, T ; BD 0, 1 .m

Ž .Proof. Using 5.4 and Lemmas 5.1 and 5.3 we deduce that the se-
2�² Ž . :4 Ž . Ž .quence G s , s is bounded in L 0, T ; R . It follows from 5.10 thatm m m

� Ž .4 2Ž 1Ž ..the sequence G s is bounded in L 0, T ; L 0, 1 . Thus, we obtainm m

Ž . � 4from 4.3 and Lemma 5.3 that ¨ is a bounded sequence inm x
2Ž 1Ž ..L 0, T ; L 0, 1 . Now, since we have a homogeneous Dirichlet boundary

condition at x s 1, the lemma follows from the result on the equivalence
w xof norms in, e.g., 21, Chap. 2 .

We now prove Theorem 3.1.

Existence. Using Lemmas 5.1 and 5.3 we deduce that there exists
1Ž 2Ž .. � 4s g H 0, T , L 0, 1 such that, for a subsequence still denoted by s , wem

have

s ª s weakU in L` 0, T , L2 0, 1 , 5.14Ž . Ž .Ž .m

s ª s weakly in L2 V , 5.15Ž . Ž .˙ ˙m T

Ž .when m F 0. We note that since BD 0, 1 is the dual of the Banach space
Ž w x. 2 Ž Ž .. 2Ž .X see, e.g., 21, Chap. 2 , then L 0, T ; BD 0, 1 is the dual of L 0, T ; X .w

2 Ž Ž ..Thus, we deduce, using Lemma 5.4, that there exists ¨ g L 0, T ; BD 0, 1w
� 4such that, for a subsequence still denoted by ¨ , we havem

¨ ª ¨ weakU in L2 0, T ; BD 0, 1 . 5.16Ž . Ž .Ž .m w

� 4 Ž . Ž .We shall prove that ¨ , s is a solution of Problem P , 3.8 ] 3.10 , and s1
Ž . Ž .is a solution of Problem P , 3.11 , and 3.12 . To this end we note that2

Ž . Ž .5.14 and 5.15 imply

2 w xs t ª s t weakly in L 0, 1 t g 0, T . 5.17Ž . Ž . Ž . Ž .m
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Ž . 2Ž . Ž . Ž .Since S t is a convex set in L 0, 1 , it follows from 4.6 and 5.17 that

w xs t g S t , t g 0, T . 5.18Ž . Ž . Ž .
Ž .Moreover, we have from 5.5

w xGG s F GG s y G s , s y s , t g 0, T ,² :Ž . Ž . Ž .m m m m m

Ž .and using 4.2 we deduce

T T T² :mGG s F m GG s dt y s y P s , s y s dt. 5.19Ž . Ž . Ž .H H Hm m m K m
0 0 0

Ž .Using 5.7 and Lemma 5.1 results in

T
GG s dt F C. 5.20Ž . Ž .H m m

0

Ž . Ž . Ž . Ž .It now follows from 5.1 , 5.14 , 5.19 , and 5.20 that

T 21 < <s y P s dt s 0,H K2
0

Ž . w x Ž .which implies that s s P s a.e. in 0, 1 for all t g 0, T . Using now 3.4K
we deduce

w xs t g KK, t g 0, T . 5.21Ž . Ž .
Ž . Ž . Ž .Thus, from 5.18 and 5.21 we obtain 3.8 . Next, we note that

² : ² :t y s , u q t y s , u G 0, ;t g S , 5.22Ž .˙ ˙m m x x m x m 0

Ž . Ž . Ž .a.e. on 0, T . Indeed, we choose t s s in 4.4 , where s is given in 4.11 ,˜ ˜
thus

² : ² :f , u G s , u ,˙ ˙m m m x

Ž . Ž . Ž .a.e. on 0, T . Using 4.5 and 4.6 yields

² : ² :f , u F s , u ,˙ ˙m m m x

Ž . ² : ² : Ž . Ž .a.e. on 0, T . Thus, f , u s s , u , a.e. on 0, T . Since u 0, t s 0,˙ ˙ ˙m m m x m

s 1, t u 1, t s 0 a.e. on 0, T . 5.23Ž . Ž . Ž . Ž .˙m m

Ž . Ž . Ž .We now obtain 5.22 by integration by parts and using 3.2 , 4.5 , and
Ž . Ž . Ž .5.23 . To establish 3.9 we use 4.3 , so

² : ² : ² :As , t y s q G s , t y s G u , t y s ;t g S ,Ž .˙ ˙m m m m m m x m 0
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Ž . Ž . Ž .a.e. on 0, T , and, then 5.5 and 5.22 imply

² : ² :As , t y s q GG t y GG s q u , t y s G 0 ;t g S ,Ž . Ž .˙ ˙m m m m m m x m x 0

Ž . 2Ž . Ž .a.e. on 0, T . Choosing t g L V , such that t g KK l S a.e. on 0, T ,T 0
in the previous inequality and noting that s s s s yf , and u s ¨ , we˙m x x m m

obtain

² : ² :As , t y s q ¨ , t y s G 0, 5.24Ž .ṁ m m x x

Ž . Ž .a.e. on 0, T . We now integrate over 0, s

s s s
² : ² : ² :As , t dt q ¨ , t y s dt G As , s dt , 5.25Ž .˙ ˙H H Hm m x x m m

0 0 0

w x Ž . Ž . Ž .for s g 0, T . Using 5.14 ] 5.16 , 5.25 , and a lower-semicontinuity argu-
ment yield

s s s
² : ² : ² : w xAs , t dt q ¨ , t y s dt G As , s dt , s g 0, T ,˙ ˙H H Hx x

0 0 0

and, after a classical use of Lebesgue points for an L1 function, we obtain
Ž .3.9 .

Ž . Ž . Ž .Let us finally remark that 3.10 is a consequence of 4.7 and 5.17 .
� 4Thus, we have established that ¨ , s is a solution to Problem P . More-1

Ž . Ž . Ž . 1Ž 1Ž ..over, it follows from 3.3 , 3.13 , and 5.18 that s g H 0, T ; H 0, 1 .
Ž . Ž . Ž .Choosing t g KK l S t in 3.9 we deduce 3.12 . Therefore, s is a

solution to Problem P .2

Uniqueness. The uniqueness of s in Theorem 3.1 follows from stan-
dard arguments of convex analysis.
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