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Abstract

We have investigated the present renormalization prescriptions of Cabibbo–Kobayashi–Maskawa (CKM) matrix, an
there is still not an integrated prescription to all loop levels in the on-shell renormalization scheme. In this Letter we
proposing a new prescription designed for all loop levels in the present perturbative theory. This new prescription will
unitarity of the CKM matrix and make the amplitude of an arbitrary physical process involving quark mixing converge
gauge independent.
 2003 Published by Elsevier B.V.
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As an important part of standard model (SM) [1
the renormalization of Cabibbo–Kobayashi–Maska
(CKM) quark mixing matrix is a matter of great a
count in theory. At present, along with the dev
opment of exact determination of CKM matrix el
ments [2], the importance of renormalization of CK
matrix becomes more and more apparent. This wa
alized for the Cabibbo angle with two fermion gen
ations by Marciano and Sirlin [3] and for the CKM
matrix of the three-generation SM by Denner a
Sack [4] more than a decade ago. Though Denner
Sack’s prescription is very delicate and simple, it
duces the physical amplitude involving quark mixi
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gauge dependent [5]. Recently many authors have
cussed this problem [5,6], but because of its comp
ity all of them are limited to one-loop level and an i
tegrated prescription beyond one-loop level in the
shell renormalization scheme has been not obtai
So we want to propose a new prescription to solve
problem.

As we know a CKM matrix renormalization pre
scription must satisfy the three conditions [6]:

(1) In order to keep the transition amplitude of a
physical process involving quark mixing ultr
violet finite, the CKM counterterm must canc
out the ultraviolet divergence left in the loo
corrected amplitude.

(2) It must guarantee such transition amplitude ga
parameter independent [7].
se.
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(3) SM requires the bare CKM matrixV 0 is unitary,

(1)
∑
k

V 0
ikV

0∗
jk = δij ,

with i, j , k the generation index andδij the
unit matrix element. If we split the bare CKM
matrix element into the renormalized one and
counterterm

(2)V 0
ij = Vij + δVij

and keep the unitarity of the renormalized CK
matrix, Eq. (1) requires

(3)
∑
k

(
δVikV

∗
jk + VikδV

∗
jk + δVikδV

∗
jk

)= 0.

In order to satisfy these conditions we will renorm
ize the CKM matrix through two steps. First we intr
duce a CKM counterterm which makes the physi
amplitude ofW+ → uid̄j convergent and gauge in
dependent below certain loop levels. Next we me
it to satisfy the unitary condition of Eq. (3) below th
loop levels, and simultaneously keep the divergent
gauge-dependent (if it has) part of it unchanged. T
by recursion we construct the CKM counterterms
infinite loop levels.

In order to elaborate our idea clearly we firs
introduce then-loop (n � 1) decay amplitude o
W+ → uid̄j as follows (here all of the contribution
of the counterterms lower thann-loop level have been
included in the formfactors):

Tnij =AL

[
FLnij + Vij

(
δgn

g
+ 1

2
δZWn

)

+ 1

2
δZ̄uL

nikVkj + 1

2
VikδZ

dL
nkj + δVnij

]
(4)+ARFRnij +BLGLnij +BRGRnij ,

with g and δg the SU(2) coupling constant an
its counterterm,δZW the W boson wave-function
renormalization constant (WRC),δZ̄uL andδZdL the
left-handed up-type and down-type quark’s WRC [
The added denotationn represents then-loop result,
and

AL = g√
2
ūi(p1)/εγLνj (q −p1),

(5)BL = g√
2
ūi(p1)

ε · p1

MW

γLνj (q − p1),
with εµ theW boson polarization vector,γL andγR
the left-handed and right-handed chiral operators,
MW theW boson mass. Similarly, replacingγL with
γR in Eq. (5) we getAR andBR , respectively.FL,R
andGL,R are four formfactors. Here we will only car
about the coefficient ofAL which contains then-loop
CKM counterterm. The simplest method to make
amplitudeTn convergent and gauge independent is
make the coefficient ofAL equal to zero, i.e.,

δVnij = −FLnij − Vij

(
δgn

g
+ 1

2
δZWn

)

(6)− 1

2
δZ̄uL

nikVkj − 1

2
VikδZ

dL
nkj .

Obviously such CKM counterterm cannot be gu
anteed to satisfy the unitary condition of Eq. (
so needs to be mended. Here we introduce a
set of denotation:δV̄n, to denote the amended CKM
counterterm which satisfies the unitary condition. O
method is to constructδV̄n throughδVn, δV̄n−1, . . . ,

δV̄1. Here we state thatδVn is obtained by using
δV̄n−1, . . . , δV̄1 as the lower-loop CKM counterterm
in Eq. (6). Now the unitary condition of Eq. (3) b
comes

δV̄1V
† + V δV̄

†
1 = 0,

δV̄2V
† + V δV̄

†
2 = −δV̄1δV̄

†
1 ,

δV̄3V
† + V δV̄

†
3 = −δV̄1δV̄

†
2 − δV̄2δV̄

†
1 ,

...

δV̄nV
† + V δV̄ †

n = −δV̄1δV̄
†
n−1 − δV̄2δV̄

†
n−2 · · ·

− δV̄n−2δV̄
†
2 − δV̄n−1δV̄

†
1 ,

(7)
...

In order to solve these equations, we introduce a se
symbolsBn

B1 = 0,

(8)Bn =
n−1∑
i=1

−δV̄iδV̄ †
n−i .

ObviouslyBn satisfies

(9)Bn = B†
n.

Assuming the CKM countertermsδV̄1, δV̄2, . . . , δV̄n−1
and δVn have been obtained, then-loop amended
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CKM countertermδV̄n can be determined as follows

(10)δV̄n = 1

2

(
δVn − V δV †

n V +BnV
)
.

This method takes example by Diener and Knieh
prescription [6]. It is easy to check that such CK
counterterm satisfies Eqs. (7) atn-loop level. Since the
countertermsδg andδZW are both real in the on-she
renormalization scheme, we can obtain the follow
result from Eq. (10) and Eq. (6)

δV̄nij = 1

2

(∑
kl

VikF
∗
LnlkVlj − FLnij

)

+ 1

4

∑
k

(
δZ̄uL∗

nki − δZ̄uL
nik

)
Vkj

+ 1

4

∑
k

Vik
(
δZdL∗

njk − δZdL
nkj

)

(11)+ 1

2

∑
k

BnikVkj .

The remaining problem is to test whether t
amended CKM countertermδV̄n has the same diver
gent and gauge-dependent part asδVn, which is the re-
quirement of making the physical amplitude involvi
quark mixing finite and gauge independent. Based
the renormalizability and predictability of SM, we ca
predict that the divergent and gauge-dependent pa
δVn (if it has) must satisfy the unitary condition o
Eq. (3) atn-loop level

(12)δV DG
n V † + V δV DG†

n = BDG
n ,

where the superscript DG denotes the divergen
gauge-dependent part of the quantity. This is beca
if not so the unitary condition of Eq. (3) will requir
the divergent or gauge-dependent part of the r
CKM counterterm different fromδVn, thus will reduce
the physical amplitude ofW+ → ui d̄j divergent or
gauge dependent (see Eq. (4)). In fact Eq. (12
satisfied at one-loop level [4,6]. From Eqs. (10) a
(12), it is easy to obtain(
δV̄ DG

n − δV DG
n

)
V †

(13)= 1

2

(
BDG
n − δV DG

n V † − V δV DG†
n

)= 0.

Times CKM matrixV at the right-hand side of Eq
(13), we have

(14)δV̄ DG
n = δV DG

n .
Now we have obtained the proper CKM counte
erm at n-loop level. We can construct CKM coun
terterms till infinite loop levels by recursion, whic
will satisfy the unitary condition of Eq. (3) and mak
the physical amplitude involving quark mixing co
vergent and gauge independent. Since the renor
ization of CKM matrix is a very complex problem
(one can see it from the fact that at present an
tegrated prescription applicable to all loop levels h
not been obtained in the on-shell renormalizat
scheme), our solution is quite simple and pract
(see Eq. (11)). On the other hand, we suppose
prescription will not break the present symmetries
SM, e.g., Ward–Takahashi identity, because it o
changes the values of CKM matrix elements fromV 0

ij

to Vij + δV̄ij .
Lastly we want to point out that the proble

of infrared divergence is unclear in our renorm
ization prescription. As we know, the correction
Eq. (4) to the amplitude ofW+ → uid̄j has the
infrared divergence coming from the Feynman
agrams including photons. This divergence sho
be cancelled in the inclusive decay widthW+ →
(ui d̄j , ui d̄j γ , ui d̄jγ γ, . . .) by the corresponding di
vergence of the real photon emission processes. H
ever, there are no a priori reasons for the cancella
of this divergence in the proposed CKM matrix cou
terterm, Eqs. (10), (11). Since this problem looks v
difficult to be solved, we want to leave it for the ne
work.
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Appendix A

In this appendix we give the explicit result ofδV̄1.
From Eqs. (11) and (8), we obtain
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00)

75)

6)

02)
δV̄1ij = 1

2

(∑
kl

VikF
∗
L1lkVlj − FL1ij

)

+ 1

4

∑
k

(
δZ̄uL∗

1ki − δZ̄uL
1ik

)
Vkj

(A.1)+ 1

4

∑
k

Vik
(
δZdL∗

1jk − δZdL
1kj

)
,

which is gauge independent sinceδV1ij is gauge
independent in Eq. (6) [5] and Eq. (10). Eq. (A.
is similar as Eq. (12) of Ref. [6]. The ultraviole
divergence ofδV̄1ij is

δV̄1ij
∣∣
UV

= 3α∆

64πM2
Ws

2
W

×
[
−2

∑
k,l 
=j md,jm

2
u,kVilV

∗
klVkj

md,l −md,j

+ 2
∑

k,l md,jm
2
u,kVilV

∗
klVkj

md,l +md,j

− 2
∑

k 
=i,l mu,im
2
d,lVilV

∗
klVkj

mu,k −mu,i

+ 2
∑

k,l mu,im
2
d,lVilV

∗
klVkj

mu,k +mu,i

+ Vij

(∑
k

VikV
∗
ikm

2
d,k

(A.2)

+
∑
k

VkjV
∗
kjm

2
u,k − 2m2

d,j − 2m2
u,i

)]
,

with α the fine structure constant,sW the sine of
the weak mixing angleθW , and∆ = 2/(D − 4) +
γE − ln(4π) + ln(M2

W/µ
2) (D is the space–time

dimensionality,γE is the Euler’s constant, andµ is an
arbitrary energy scale).mu,i andmd,j , etc. are up-type
and down-type quark’s masses. TheRξ -gauge and the
dimensional regularization have been used. This re
agrees with the results of Refs. [4,5] and [6].
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