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In the present work, inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles have been incorporat-
ed into polytetrafluoroethylene films using aerosol-assisted deposition process. The hydrophobic behavior of
the nanocomposite film has been investigated and the result shows that the hydrophobicity of PTFE films can
significantly be improved with the incorporation of IF-WS2 nanoparticles. An oblate spheroid model which
takes into the consideration of surface roughness effect has been proposed, to simulate the hydrophobic be-
havior, based on the surface roughness and peak density of the nanocomposite films. This hydrophobic model
can provide a useful guideline to describe and predict the hydrophobicity of nanocomposite films, from the
input of parameters such as surface energy, roughness and liquid properties.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Polytetrafluoroethylene (PTFE) consisting of carbon and fluorine,
is an excellent hydrophobic material for various applications [1]. The
study of the hydrophobicity of PTFE and its related materials has
been a popular topic within the last decade [2–5]. However, PTFE
exhibits poorwear and abrasion resistance, which could lead to failure
and leakage problems in its applications [6]. The incorporation of
nanoparticles into PTFE-based matrices has been considered an effec-
tive way to increase the wear resistance and abrasion properties of
PTFE for engineering applications. Various nanoparticles, such as
nanodiamond [6], Zinc oxide (ZnO) [7], and alumina [8–10], have
been incorporated into PTFE to form nanocomposites, especially in
the forms of coatings or films, to increase the wear resistance and
anti-abrasion properties. It is shown [10] that nanoparticles could be
effective in reducing the wear, and preserving the low friction coeffi-
cient of PTFE. It is also reported that the incorporation of nanoparticles
in PTFE matrix could improve the thermal stability and mechanical
properties of the nanocomposites [6,11]. However, there is a lack of
study on the hydrophobicity of the PTFE-based nanocomposites incor-
porating nanoparticles.

The incorporation of nanoparticles into PTFE matrix would signifi-
cantly alter the surface morphology and chemical composition of the
materials. The hydrophobic behavior of a solid surface is closely related
to its micro/nanostructures as the hydrophobicity is governed by both
the chemical composition and geometrical structure of the surface
.
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[12]. Currently, there are some modeling practices for water droplet,
assuming the droplet is spherical [13,14], which does not take into ac-
count the gravity of droplet. Whyman et al. [15] proposed an oblate
spheroid model and reported a more accurate description on droplet
with the consideration of gravity. But the model mainly concentrated
on the contact angle and base area, and the roughness effect of the sur-
face was ignored.

In the present work, inorganic fullerene-like tungsten disulfide
(IF-WS2) nanoparticles have been incorporated into PTFE films using
aerosol-assisted deposition process. IF-WS2 nanoparticles have onion-
like hollowed structure, which are suitable to be used as solid lubricants
[16]. They have been incorporated in various nanocomposite films or
coatings [17–19]. The main focus here is to investigate the hydrophobic
behavior of the IF-WS2/PTFE nanocomposite film. An oblate spheroid
model which takes into the consideration of surface roughness effect
has also been proposed, to simulate the hydrophobicity of the nano-
composite films.

2. Experimental details

Stainless steel plates (length=25 mm, width=15 mm) were se-
lected as substrates. Prior to deposition, all substrates were degreased
and cleaned in an ultrasonic bath with ethanol. IF-WS2 nanoparticles
ranging from 80 to 220 nm were supplied by NanoMaterials Ltd. The
chemical solution was prepared by mixing IF-WS2 nanoparticles
with PTFE particles (200 nm, GBR Technology) in aqueous solution.
The solid content of the dispersion was controlled at 0.01–2 wt.%.

The dispersions were then atomized to generate fine aerosol drop-
lets with nitrogen as carrier gas. The droplets were subsequently di-
rected towards a heated substrate where the deposition occurred.
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Fig. 1. Phase and surface composition of the deposited films: (a) XRD patterns of pure
PTFE and IF-WS2/PTFE films; (b) XPS spectrum of PTFE nanocomposite film with
10 wt.% IF-WS2.
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The deposition temperature was set at 300 °C. Post-heat treatment
was carried out to obtain uniform solid film and enhance the interface
strength between the film and substrate. The post treatment was per-
formed in nitrogen gas, at 380 °C for 10 min. The film thickness was
controlled at around 4 μm via adjusting deposition time.

The nanocomposite films were characterized using a combination
of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS),
scanning electron microscopy (SEM) and atomic force microscopy
(AFM). A Siemens D500 X-ray diffractometer with Cu-Kα radiation
was employed to detect the phase and crystallinity of the films. The
measurement was operated in a step scan mode with a step of 0.01,
in the range of 2θ=10–80°, using 40 kV voltage and 25 mA current.
The film surface was characterized by an X-ray photoelectron spec-
troscopy (VG Scientific ESCALAB Mark II), with non-monochromatic
Al Kα X-ray at anode potential of 12 kV and filament emission current
of 20 mA. A Philips XL30 scanning electron microscope was used to
observe the surface morphology and cross-section of the films. The
SEM operating voltage was 20 kV and the samples were pre-coated
with gold layer to ensure good surface conductivity. Veeco CP-
Research Scanning Probe Microscope was used under contact mode
to measure the surface roughness of the films. The surface hydropho-
bicity of thefilmswas determined by a FTÅ200Dynamic Contact Angle
System. Contact angles were calculated by fitting a mathematical ex-
pression to the shape of the water droplet and then calculating the
slope of the tangent to the droplet at the liquid–solid–vapor interface.

3. Results and discussion

3.1. Microstructure of IF-WS2/PTFE films

Fig. 1 shows phase and surface composition of the deposited films
characterized by XRD and XPS. The content of IF-WS2 nanoparticles is
10 wt.% in the nanocomposite film. In Fig. 1(a), both diffractions have
a sharp (100) peak at 2θ of 18.1°, indicating that the molecular chains
of PTFE are predominately parallel to the substrate surface [20]. There
is a small peak at 2θ of 14.3° in the diffraction of the nanocomposite
film, which is attributed to the (002) plane of IF-WS2. It means that
IF-WS2 nanoparticles remain unchanged after the aerosol deposition
and the post-heat treatment, and the incorporation of IF-WS2 nano-
particles does not alter the crystallization of the PTFE matrix.
Fig. 1(b) is XPS spectrum of PTFE nanocomposite film with 10 wt.%
IF-WS2. F and C are the major elements in the film, and small amount
oxygen could also be detected, which is resulted from the surface ad-
sorption of O2 and CO2. No obvious tungsten band peak can be
detected, indicating that all IF-WS2 are fully covered by PTFE matrix
and there is no naked nanoparticle on the surface. Similar results
are also observed from the nanocomposite films with higher loading
of IF-WS2. In additional, no nitrogen is found on the film surface
from XPS analysis, confirming that nitrogen is not involved in the sur-
face reaction during the heat treatment.

Fig. 2 shows SEM images of the nanocomposite film with 10 wt.%
IF-WS2. IF-WS2 nanoparticles can be clearly observed from both the
surface and the cross-section of the film. As compared to ceramic ma-
trix based (Cr2O3) nanocomposite coatings [18], IF-WS2 nanoparticles
are less agglomerated and more evenly distributed inside the PTFE
matrix. The results confirm that IF-WS2/PTFE nanocomposite films
have been produced.

The surface characteristic of the deposited films are also deter-
mined by AFM, as shown in Fig. 3. Root mean square (RMS) roughness
of the films could be obtained from the AFM analysis. The RMS rough-
ness of pure PTFE films is 112 nm, while the value increases to 192 nm
on the surface of PTFE nanocomposite films with 10 wt.% IF-WS2. The
surface roughness of the films has increased significantly with the in-
corporation of IF-WS2 nanoparticles, as seen in Fig. 4(a). The increase
of roughness could be attributed to the possible agglomeration of
nanoparticles and the higher viscosity of the nanocomposite film
during the heat treatment. AFM data provides roughness statistics
from both films, so that it would be used as a measure for the hydro-
phobic state.

3.2. Hydrophobicity of the nanocomposite films

The hydrophobicity of the deposited films is determined by water
contact angle measurement, as shown in Fig. 4. The obtained contact
angle is the average value from 5 testing, with error normally within
±2°. The experimental results would aid the understanding of the
thermodynamic behavior of nanocomposite films in contact with a
liquid droplet. The pure PTFE film shows a water contact angle of
108°, which is similar to the reported value [2]. After the incorporation
of IF-WS2 nanoparticles, hydrophobic behavior of the PTFE film can be
significantly improved, increasing the likelihood of a super hydropho-
bic state. With the increase of the IF-WS2 content, the contact angle of
the film increases, as shown in Fig. 4(a). As the AFM images show that
the nanoparticle incorporation would drastically affect the roughness
of the surface, a rougher surface structure is one of the key factors to
lead to more hydrophobic behavior.

3.3. Modeling of hydrophobicity of the nanocomposite films

This study has focused on the mathematical modeling of a hydro-
phobic surface in contact with a liquid. It attempts to relate the chem-
ical composition, surface roughness and contact angle for materials



Fig. 2. SEM images of the IF-WS2/PTFE films. (a) Surface morphology and (b) cross-
section.

Fig. 3. AFM images of pure PTFE film (a) and PTFE nanocomposite film with 10 wt.%
IF-WS2 nanoparticles (b).
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and water. In order to predict the probable contact angle of a water
droplet on material surface, firstly, the geometry of the droplet
needs to be established. The effects of both hydrophobicity and liquid
characteristics have been initially taken as factors, thus allowing the
model to be more flexible. An oblate spheroid is considered here,
and its cross-section would give an ellipse (Fig. 5) with the character-
istic Eq. (1).

x−hð Þ2
a2

þ y−kð Þ2
b2

¼ 1 ð1Þ

where a is themajor radius, b is theminor radius, h and k are offsets. The
equation considers two offsets, h and k. The x axis is considered to be the
material surface, and the displacement k is related to the z factor which
would be directly linked to the surface energy and roughness, as dis-
cussed later in this section. After replacing kwith the Z value (ameasure
of hydrophobicity) as calculated later and re-arranging for x, we could
obtain Eq. (2):

x ¼
ffiffiffiffiffi
a2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 y−bþ zð Þ2

b2

s
ð2Þ

The model relies on the “Z” function. This function contains infor-
mation relating to both the hydrophobic state of the surface-liquid in-
terface, and information on the surface chemistry itself in the form of
surface energy. Using the geometry of the droplet, the surface topog-
raphy and the surface chemistry of the material, it is possible to pre-
dict the interaction behavior of water repelling surface. The relation
between the surface energy and “Z” factor can be described as follows:
firstly, a droplet's aspect ratio and volume is characterized; then the Z
value can be estimated based on empirical data for the surface energy.
This estimation is then used to calculate the corresponding surface
energy; iteration is then preformed to yield a more precise surface
energy.

When determining the hydrophobic behavior of a solid liquid inter-
face, there are three well defined hydrophobic states [21]: (a) Cassie
state, where the deflection of the droplet is minimal as compared to
the height of the surface roughness, forming an air pocket; (b) Wenzel
state, where the surface peaks are well within the droplet, and no air
pocket is formed; (c) Transitional state, which is between Cassie and
Wenzel state. These three states determine the level of thermodynamic
involvement of anymaterial at the interface. The effect of surface rough-
ness on the wetting behavior of surfaces is well described in theory.
However, very little of this theory has been applied in realistic environ-
ments. In order to incorporate the engineering roughness as a measure
for this hydrophobic state, it has been non-dimensionalized by
calculating the maximum deflection of a liquid surface under the
pressure of an average surface peak. The schematic diagram of droplet
deflection and the importance of peak density are shown in Fig. 6,
based on the calculation of the maximum deflection of a liquid droplet
surface supported by average surface peaks. Where Mg is the weight
of the droplet, n is the estimated number of peaks supporting the
droplet, T is the surface tension of the droplet, D is the defection of the
droplet, and H is the average height of the surface peaks. The ratio of
this deflection versus the engineering roughness provides a good
estimation for hydrophobic state. A high ratio suggests a Wenzel state
and a very low ratio effectively suggests a Cassie state, with that in be-
tween suggesting a transitional state. Ultimately these states reduce
the effective contact area. A reduced contact area can easily be approx-
imated as a proportional reduction in surface energy.

image of Fig.�2
image of Fig.�3


Fig. 4. Water contact angle and surface roughness of the deposited films: (a) water
contact angle and surface roughness versus content of IF-WS2 in the nanocomposite
films; (b) water droplet on pure PTFE film, contact angle θ=108.0°; (c) water droplet
on IF-WS2/PTFE nanocomposite film (65 wt.% IF-WS2), contact angle θ=142.7°.

Fig. 6. Schematic diagram of droplet deflection on surface peaks. (a) Droplet deflection
on a surface peak; (b) importance of peak density when considering drop deflection.

4919X. Hou et al. / Thin Solid Films 520 (2012) 4916–4920
By analyzing the surface profile it is possible to estimate the num-
ber of peaks for a given surface area. Subsequently, with this mechan-
ics it is possible to compute the 2-D deflection under a load at the
surface. For this particular pair of surface and droplet, it is then possi-
ble to determine the hydrophobic state. If the deflection is greater
than the roughness there will be zero reduction in area and Wenzel
state should be considered. If the deflection is considerably smaller
than the roughness, Cassie state is true. Finally, for comparable rough-
ness and deflection a transitional state needs be considered.
Fig. 5. Ellipse model of water droplet on material surface.
The flow chart of themodeling is shown in Fig. 7. In order to realize
the numeral modeling, the following assumptions have been made:

(i) The surface tension of a water droplet is considered constant,
and the water droplet of constant volume can be approximated
as an oblate spheroid of aspect ratio 0.9, which is estimated
from the experimental work.

(ii) The surface is treated as series of n uniformly distributed peaks
with a height equal to the roughness of the surface.

(iii) The contact area between droplet and surface is considered
proportional to the droplet deflection/peak height.

The initial input data requires the liquid surface tension and sur-
face energy for the equivalent smooth surface. The system calculates
“Z” factor for the interaction, which leads to an iterative loop. At this
point, information is required on the surface topography and rough-
ness, specifically the number of peaks for a known sample area and
the surface roughness. This information, along with the Z factor, is
then entered into an iterative loop; initially the Z factor is used to
Fig. 7. Flow chart of the modeling program.
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Fig. 8. Superimposed calculated profiles of water droplet on PTFE films: (a) Pure PTFE
film with 0 wt.% IF-WS2, calculated contact angle 104°; (b) nanocomposite film with
33 wt.% IF-WS2, calculated contact angle 126.4°; and (c) nanocomposite film with
65 wt.% IF-WS2, calculated contact angle 146.2°.
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calculate the base area. This information is then used to determine the
hydrophobic state. If Wenzel state is true, the contact angle for the as-
sociated specific Z factor is the output contact angle for the system. If
the state is Cassie or transitional, the original surface energy is
replaced with an effective surface energy, and a new Z function is cal-
culated corresponding to the newbase area and the iteration is contin-
ued. The loop is broken when the deviation of effective surface energy
falls within 1% of the previous iteration. At this point both the contact
angle and Z function are outputs, the program then calculates the
droplet profile.

Examples of the modeling results are shown in Fig. 8. The black
droplets are the real experimental photos on different surfaces and
the circular profiles consisting of small squares are the calculated re-
sults. Both the droplets and modeling profiles are described in meter-
scale (m) in Fig. 8. The experimentally measured contact angles of
PTFE nanocomposite films with 0, 33 wt.% and 65 wt.% IF-WS2 are
108.0°, 126.6°, and 142.7°, respectively. While the calculated contact
angles are 104° for pure PTFE film, 126.4° for film with 33 wt.% IF-
WS2, and 146.2° for film with 65 wt.% IF-WS2, respectively. The result
shows that the model could give good description on surface hydro-
phobic contact. It demonstrates a useful attempt to quantitatively
link the surface hydrophobic contact with materials properties and
surface roughness.

4. Conclusions

It has been demonstrated that the incorporation of IF-WS2 nanopar-
ticles can improve the hydrophobic behavior of the PTFE film signifi-
cantly, increasing the likelihood of a super hydrophobic state. With
the increase of the IF-WS2 content, the contact angle of the films also in-
creases. Since the roughness of PTFE films increases significantly with
the incorporation of IF-WS2 nanoparticles, it is believed that the rougher
surface structure would lead to more hydrophobic behavior.

An oblate spheroid droplet model based on the surface roughness
and peak density has been proposed to study the hydrophobic behav-
ior of IF-WS2/PTFE nanocomposite films, with the consideration of dif-
ferent hydrophobic states. The model relies on the “Z” function, which
contains information relating to the hydrophobic state of the surface–
liquid interface, and information on the surface chemistry itself in the
form of surface energy. It demonstrates a useful attempt to quantita-
tively link the surface hydrophobic contact with materials properties
and surface roughness.
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