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A number of cationic antimicrobial peptides, effectors of innate immunity, are supposed to act at the cytoplasmic 
membrane leading to permeabilization and eventually membrane disruption. Thereby, interaction of antimicro­
bial peptides with anionic membrane phospholipids is considered to be a key factor in killing of bacteria. Recently, 
evidence was provided that killing takes place only when bacterial cell membranes are completely saturated with 
peptides. This adds to an ongoing debate, which role cell wall components such as peptidoglycan, lipoteichoic 
acid and lipopolysaccharide may play in the killing event, i.e. if they rather entrap or facilitate antimicrobial pep-
tides access to the cytoplasmic membrane. Therefore, in this review we focused on the impact of Gram-positive 
cell wall components for the mode of action and activity of antimicrobial peptides as well as in innate immunity. 
This led us to conclude that interaction of antimicrobial peptides with peptidoglycan may not contribute to a 
reduction of their antimicrobial activity, whereas interaction with anionic lipoteichoic acids may reduce 
the local concentration of antimicrobial peptides on the cytoplasmic membrane necessary for sufficient destabi­
lization of the membranes and bacterial killing. Further affinity studies of antimicrobial peptides toward the dif­
ferent cell wall as well as membrane components will be needed to address this problem on a quantitative level. 
This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. 

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/). 
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1. Introduction 

Antimicrobial peptides (AMPs) are part of humoral immunity of the 
innate immune response that is an old evolutionary defense strategy of 
organisms to defend against attack by other organisms/pathogens. They 
act as antibiotics or fungicides to potentially kill bacteria and fungi, 
but some of them are also active against viruses and cancer cells. Their 
mechanism of action mostly relates to targeting the microbial 
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cytoplasmic membrane, interacting with the lipid matrix and subse­
quent permeabilization of the membrane [1–3]. Some peptides traverse 
the membrane and bind to intracellular targets [4,5] or exhibit, besides 
their antimicrobial activity, multifaceted immunomodulatory activities 
[6]. The mechanisms of membrane-active peptides [1,3,7] and the 
main characteristics of AMPs for high binding and selectivity toward mi­
crobial membranes [8] have been extensively reviewed. 

It was suggested that the amino acid composition determining 
the physicochemical properties of the peptide in respect to charge, 
amphipathicity, hydrophobicity, flexibility and  H-bonding  capacity are  
key factors for their mode of action and selectivity toward microbial 
cells [9]. Upon contact with microbial membranes AMPs often undergo 
structural changes adopting defined secondary structures or oligomerize 
into aggregates that also account considerably for the diversity of anti­
microbial mode of action [8]. Amphipathicity resulting from segregation 
of apolar and polar residues upon secondary structure formation favors 
internalization of the peptide and in turn membrane perturbation. 
Thereby, the presence of hydrophobic amino acids leads to stronger 
partitioning into membranes. Nevertheless, there is consensus that the 
positive charge of the peptide is essential for initial binding to the nega­
tively charged bacterial membrane surface, which allows discrimination 
between bacterial and host cell membrane, and its hydrophobicity is 
needed for insertion into and perturbation of the membrane [10,11]. 
 the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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However, the mode of action of AMPs is also strongly related to cellular 
envelope constituents that are different and variable through diverse 
microbial families (Fig. 1, Table 1). In contrast to higher living organism 
and mycoplasma, microbial plasma membranes are surrounded by a cell 
wall of a tight and flexible layer composed of polysaccharides, peptido­
glycan (PGN) in bacteria and glucosamine polymer chitin and ß-glucan 
in fungi. The cell wall of Gram-positive and the outer membrane in 
Gram-negative bacteria contain anionic lipid molecules, lipoteichoic 
acid (LTA) and lipopolysaccharide (LPS) that may compete with the 
plasma membrane for the interaction with AMPs. Not only the cell 
walls, but also the plasma membrane, which matrix is formed by a phos­
pholipid bilayer differing in headgroup and fatty acid composition 
contributes to mechanistic diversity of AMPs against microbial cells. 
Whereas bacterial plasma membranes are negatively charged due 
to the presence of anionic phospholipids, fungal membranes are more 
similar to neutral and rigid eukaryotic membranes because of their zwit­
terionic phospholipid constituents and ergosterol. The strong affinity 
to microbial membranes is also due to the transmembrane potential 
determined by the differences in inner and outer leaflet composition of 
microbial membranes and different charge density of phospholipids 
that promotes peptides insertion [8,12]. 

Although electrostatic interaction of AMPs with plasma membrane 
phospholipids, insertion and in turn membrane disruption is widely ac­
cepted for explaining the bacterial killing mechanism by a number of an­
timicrobial peptides, the pertinent question arising is to which extent 
antimicrobial peptides interact with microbial cell wall components 
that may affect the extent of their activity and functionality. Freire 
et al. [13] concluded that in the end the role of bacterial cell wall compo­
nents as electrostatic barriers capturing AMPs and hence preventing 
their interaction with the cytoplasmic membrane is a matter of concen­
trations of AMPs and membrane components as well as of affinities of 
AMPs toward the different membrane components. In this context, 
Roversi et al. [14] showed an extremely high coverage of both leaflets 
Fig. 1. Cell envelopes of var
of the outer and inner Escherichia coli membranes by PMAP-23, a cationic 
amphipathic helix from the cathelicidin family. Bacterial killing started at 
a molar ratio of bound peptide per lipid of about 1:30 and all bacteria 
were killed at a molar ratio of 1:4, corresponding closely to the numbers 
estimated by Castanho and co-workers [8] for other peptides, based on 
the partition constants derived from binding studies on model mem­
branes. Therefore in this review, we will discuss the role of bacterial 
cell wall components interfering with antimicrobial activity either as 
molecules that may entrap AMPs to prevent their interaction with the 
inner lipid bilayer or in case of aggregation of AMPs to facilitate mem­
brane interaction by accumulating AMPs on the surface and act via a 
“sponge like effect” to attract them onto the membrane interface. 

2. Bacterial envelopes 

Beyond the classification of bacteria according to Gram staining of 
PGN, Gram-positive bacteria distinguish in many features from Gram-
negative bacteria [15,16] (Fig. 1, Table 1). Characteristic for both classes 
is that their cytoplasmic membrane is surrounded by a cell wall. Be­
tween those two compartments is the periplasmatic space or periplasm 
containing a wide variety of ions and proteins that are needed for 
numerous functions involving cellular (electron) transport, substrate 
hydrolysis, degradation and detoxification. In Gram-negative bacteria 
the periplasm occupies the space between the plasma membrane and 
the outer membrane. The presence of the outer membrane in Gram-
negative bacteria adjacent to the periplasmatic space is the major differ­
ence between those bacterial classes as it does not exist in Gram-positive 
bacteria. This outer membrane is a lipid bilayer, where the inner leaflet is 
composed of phospholipids and the outer leaflet of lipopolysaccharides 
(LPS) [17–19]. In both lineages, the cell wall contains PGN layers that 
stabilize the cell membranes. The cell wall of Gram-positive bacteria is 
made of many PGN layers of about 40–80 nm that is drastically thicker 
than the single layered 7–8 nm thick cell wall of Gram-negative bacteria 
ious microbial families. 
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Table 1 
Major lipid species identified in plasma membranes of selected organisms.
 
Abbreviations used: CL, cardiolipin; PG, phosphatidylglycerol; ERG, ergosterol; LPC, Lysylphosphatidylcholine; LPG, lysylphosphatidylglycerol; LPE, lysylphosphatidylethanolamine;
 
PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PC, phosphatidylcholine; PS, phosphatidylserine; PI, phosphatidylinositole; SP, sphingolipid.
 

Gram−bacteria Gram+bacteria Fungi Human 

E. coli P. aeuriginosa S. aureus B. subtilis C. albicans A. nigera S. cerevisae RBC Fibroblasts 

Phospholipid (%) PG 25 21 57 70 – – – – – 
LPG 38 
PE 75 60 – 12 26 37 19.5 27.5 31.8 
LPE 31 
CL – 11 5 4 – – – – – 
(DPG) 
PS – – – – 21 – 40.4 14.8 5.9 
PI – – – – 8 6 9.6 0.6 2.5 
PC – – – – 15.5 25 15 29.2 43.7 
LPC 5.5 1.0 
SP – – – – n.a. n.a. n.a. 26.2 13.8 
PA – – – – 16.7 n.a. 2.3 n.a. 2.4 

Sterol ERG/PL – – – – 0.66 1.17 0.34–3.31 0.8 0.16 
Fatty acid – C16:0 C16:0 a-C15:0 a-C15:0 C16:0 C16:0 C16:0 C16:0 C16:0 

C16:1 C16:1 C18:0 i-C17:0 C18:1 C18:1 C18:1 C18:1 C18:1 
C18:1 C18:1 a-C17:0 C18:2 C18:2 C18:2 C18:2 C18:2 

C20:0 C20:4 C20:4 
Reference – [92,93] [94–96] [97–99] [100–102] [103,104] [105] [106–108] [109] [110] 

n.a. not available. 
a Total lipid contents of A. niger. 
[20]. Therefore, the periplasmic space between the inner and outer 
membrane in Gram-negative bacteria is much larger than the narrow 
periplasm of Gram-positive bacteria. This gives different staining inten­
sity by the Gram technique and results into classification of bacteria 
in two major groups, Gram-negative and Gram-positive bacteria. Also 
specific for Gram-positive bacteria is the occurrence of teichoic acid in 
the cell wall that can be linked via a glycolipid anchor with the plasma 
membrane. Cell wall does not exist in mycoplasma, L-form bacteria and 
some archaebacteria [21]. The plasma membrane is a phospholipid bi­
layer consisting of an inner and an outer leaflet that varies amongst 
the species not only in phospholipid composition (Fig. 2) but also 
in composition of their headgroups and fatty acid moieties. Basically, 
Gram-positive bacteria have larger fraction of negatively charged 
phosphatidylglycerol (PG) whereas Gram-negative bacteria contain 
larger proportions on zwitterionic phosphatidylethanolamine (PE) 
in addition to PG. Furthermore, the sn-1 position of Gram-negative 
phospholipids is primarily built up by saturated mostly C16:0 fatty 
acid, whereas the sn-2 position may vary by C16:1 and C18:1 substitu­
tion. In contrast, the Gram-positive bacteria contain branched fatty 
acids with major distribution of anteiso C15:0 and C17:0 chains (see 
Table 1). The influence of fatty acid composition will be discussed by 
A. Pokorny within this special issue. Here, we focus on the impact of 
the Gram-positive cell wall components, PGN and LTA, on the mode of 
action of AMPs. 

3. Peptidoglycan, a cell wall mesh 

PGN because of its rigidity determines the strength and cellular 
shape of bacteria. Without PGN as it was shown in a production of sphe­
roplast in E. coli [22] and L-form bacteria from Bacillus subtilis [23], 
cells lose their characteristic shape. PGN as a multi-gigadalton bag-like 
molecule accounts for around 90% of dry weight in Gram-positive and 
10% in Gram-negative bacteria. The molecular weight of single layered 
E. coli PGN sacculus is 3 × 109 Da, which is in the same range as a chro­
mosome (2.32 × 109 Da) of this bacteria [20]. In Gram-positive bacteria 
PGNs make up to 40–80 layers. PGN is composed of alternating units of 
disaccharide N-acetyl glucosamine – N-acetyl muramic acid (NAM – 
NAG) cross-linked by a pentapeptide side chain (stem) [22] (Fig. 3). 
The pentapeptide has usually the sequence L-alanyl-γ-D-glutamyl­
diaminopimelyl (or L-lysyl)-D-alanyl-D-alanine. In Gram-positive 
bacteria an inter-bridge structure of five amino acid residues that varies 
between the species (e.g. five glycine molecules in Staphylococcus aure­
us) links two disaccharide-pentapeptide moieties [24]. PGN synthesis 
starts on the cytosolic side of bacterial cell membrane from the common 
building block, lipid II (for graphic illustrations see review [25]) that 
consist of a polyisoprenoid anchor of C55 carbon chain (11 subunit 
long) attached to one disaccharide–pentapeptide subunit via pyro­
phosphate linkage. Lipid II monomer is translocated to the periplasmic 
(exterior) side of the bacterial cell membrane for incorporation into 
the growing PGN network. Different findings and models for organiza­
tion of the PGN murein sacculus have been proposed and it has been a 
matter of debate, if murein glycans and peptides are arranged parallel 
(layered model) or perpendicular (scaffold model) to the membrane 
[20,26,27]. Recent NMR studies revealed that the disaccharide backbone 
of Gram-positive bacteria adopts 4-fold screw helical symmetry with 
disaccharide unit periodicity of 4 nm, where each PGN stem is oriented 
90° in respect to the previous stem [24]. The lattice of cross-linked stems 
has parallel orientation. 

3.1. Peptidoglycan, a cell wall “sponge” attracting antimicrobial peptides in 
Gram-positive bacteria 

The role of PGN in respect of interaction with antimicrobial peptides is 
not well understood. The literature often reports studies performed with 
proteins, which also exhibit antimicrobial activity and use PGN as a target 
for pathogen recognition. This was reported for proteins as lectins and 
natural or semi-synthetic antibiotics like glycopeptides bearing unusual 
amino acids or modifications [28,29]. They bind to multiple sites in the 
PGN and in turn interfere with further enzymatic processes resulting in 
inhibition of PGN synthesis. Examples also include the branched tricyclic 
glycopeptide vancomycin [30] and lipoglycodepsipeptides like the mac­
rocyclic ramoplanin derived from Actinoplanes sp. [29]. Vancomycin 
was developed in the 1950s and was viewed by many as a gold standard 
for treatment of methicillin resistant S. aureus (MRSA) infections and its 
analogues [30]. 

The mode of action on glycolipids can be exemplified by oritavancin, 
a semisynthetic lipoglycopeptide analogue of vancomycin, which dis­
plays a set of sequential mechanisms ranging from inhibition of PGN 
synthesis, perturbation of the membrane integrity to bactericidal activity 
against Gram-positive organisms. Oritavancin binds to the alanine– 
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Fig. 2. Chemical structures of major phospholipids found in microbial membranes. 
alanine stem of the pentapeptide moiety of lipid II and also to the 
pentaglycyl bridging segment that inhibits PGN synthesis via inhibition 
of transglycosylation and transpeptidation [31]. In contrast to its analogue 
vancomycin, the 4′chlorobiphenyl group of oritavancin allows interaction 
with lipid II and cell membrane anchoring, which results in perturbation 
of the cell membrane integrity in S. aureus and Enterococcus faecalis 
[32]. Using the fluorescence indicator 3,3′-dipropylthiacarbocyanine 
[32,33], membrane depolarization in S. aureus following the exposure to 
oritavancin was measured showing that oritavancin is able to depolarize 
the plasma membrane. In a “live and dead” assay, staining of S. aureus 
living cells using two fluorescent dyes, membrane permeable Syto 9 
and membrane impermeable propidium iodide, showed that oritavancin 
treatment resulted in displacement of Syto9 by propidium iodide. This 
clearly indicates damage of the cell membrane by oritavancin resulting 
in increased permeability of the cell [33]. Furthermore, oritavancin 
induced rapid leakage of liposomes composed of lipids extracted from 
S. aureus [34], cardiolipin/POPE and POPG/POPE liposomes [35]. How­
ever, it is tempting to speculate if the ability of oritavancin to interact 
with glycerol backbones of phospholipids and to permeabilize those 
lipid vesicles at concentration where the oritavancin exert bactericidal 
activity toward bacteria makes the basis for its bactericidal effects. 
And, hence, to which extent the binding to PGN/inhibition of PGN 
contributes to bactericidal activity. Such multiple facets of molecular 
mechanism are often important to overcome bacterial resistance. 
Thus, high-level oritavancin resistance has not been reported neither 
in the laboratory nor in clinical studies [31,36]. 

One significant example is the antibacterial 34 amino acid long pep­
tidic lantibiotic nisin derived from Lactococcus lactus, which primarily 
inhibits PGN synthesis. In addition, it is established that the membrane 
bound PGN precursor lipid II acts as a docking moiety to attract the nisin 
to the bacterial membrane and to promote peptide insertion into mem­
brane leading to permeation [37–39]. This has been reconciled by a 
number of studies which will be discussed in detail by E. Breukink in 
this issue. Briefly, nisin binds to the pyrophosphate moiety of lipid II 
and can adopt a stable transmembrane orientation followed by pore for­
mation. The concentration required for disruption of anionic model 
membranes is much higher than the effective concentration for bacterial 
killing. However, anionic liposomes become more susceptible to nisin 
in the presence of lipid II and pore formation is more stable in mem­
branes containing lipid II [40] supporting the use of lipid II as a “docking 
moiety” to form pores and to disrupt the bacterial membrane. 

In many cases it is not clear, which role the PGN may have regarding 
the interaction with antimicrobial peptides. Although in the following 
examples, interaction of AMPs with PGN has been reported, it is not ob­
vious that the high binding affinity to PGN contributes to a determinant 
key event of bactericidal activity. A case in point is the human cationic 
polypeptide ECP (eosinophylic cationic protein), which in addition to 
its weak membrane disruptive capacity showed high binding affinity 

Image of Fig. 2
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Fig. 3. Chemical structure of peptidoglycan. 

 

Fig. 4. Effect of OP-145 on PGN adopted from Malanovic et al. [48]. A) Thermotropic 
behavior of DPPG/PGN vesicles in the presence of 2 mol% OP-145 (lower curve). The 
corresponding DSC thermograms of pure DPPG with and without PGN (upper curves) 
are shown in black/grey. B) PGN binding of OP-145 as analyzed by gel electrophoresis. 
Lysozyme was used as a positive control and BSA as a negative control. Lysozyme or 
OP-145 bound to PGN is detected in the pellet, while unbound protein remains in the 
supernatant. 
for PGN [41]. ECP is an antimicrobial RNase participating in the inflam­
matory processes mediated by eosinophiles. It is ~155 amino acids long 
containing 19 arginine residues, which results in a high PI value of 11.4 
and high cationicity [42]. This further confers high affinity to negatively 
charged surfaces, which is considered to be important for antimicrobial 
activity. However, ECP induced only weak leakage of negatively charged 
lipid vesicles composed of either POPG or POPG/POPC mixture at its bac­
tericidal concentration toward S. aureus [43,44]. Moreover, electron mi­
crographs did not show any damage of the cell wall and no detectable 
lysis processes on S. aureus cells in the presence of ECP [41]. Also
omiganan, an antimicrobial peptide derivative of the bovine cathelicidin 
indolicidin, which has been in clinical III phase studies, showed strong 
partitioning toward a PGN mesh [45]. Although fluorescence quenching 
studies for peptide internalization showed higher partitioning constants 
for anionic model membranes, the peptide failed to induce leakage 
of those lipid vesicles. As omiganan strongly incorporates into anionic 
bilayers without inducing severe membrane perturbations, it was sug­
gested as reported for indolicidin that the peptide translocates through 
the membrane and acts on an intracellular target such as DNA [46]. 
However, it is not clear, if ECP and omiganan actually have intracellular 
targets. 

We investigated for the first time the mode of action of a synthetic 
antimicrobial peptide, OP-145, developed for a screen of the human 
cathelicidin LL-37 using model membranes composed of both PGN 
and phospholipids [47]. In this study we demonstrated that OP-145 
can efficiently bind to PGN of S. aureus (Fig. 4) [47] as well as to PGN 
of other species like Streptococcus epidermis and E. coli (Malanovic, un­
published results). Thermodynamic studies performed with liposomes 

Image of &INS id=
Image of Fig. 4


941 N. Malanovic, K. Lohner / Biochimica et Biophysica Acta 1858 (2016) 936–946 
composed of DPPG and 0.1 wt% PGN showed that OP-145 interacts 
preferentially with the PGN enriched bilayer domains indicated by 
the disappearance of the characteristic shoulder in the thermogram 
(Fig. 4A). Furthermore, leakage experiments using liposomes composed 
of POPG in the presence and absence of 0.1 wt% PGN revealed that PGN 
did not affect membrane permeability of OP-145 [47]. In some other 
cases e.g. for peptides developed in a screen for OP-145 membrane per­
meability was even increased supporting the idea that PGN may assist 
in docking of the peptides on the bacterial surface and promoting 
them toward the membrane interface (unpublished, Malanovic). Thus, 
high binding affinity to PGN may serve as a general mechanism of the 
peptides entrance to the cell plasma membrane. 

All these examples show the interplay between antimicrobial pep-
tides, PGN and plasma membrane in Gram-positive bacteria and high­
light the multiple facets of AMPs that may play a role for optimal 
activity. Designating PGN as a mesh may be misleading, but it can be as­
sured that the PGN sacculus of both Gram-positive and -negative bacte­
ria is relatively porous and does not represent a permeability barrier for 
particles of approximately 2 nm and globular hydrophilic molecules 
of a maximum of 50 kDa (AMPs are between 15 and 50 amino acids, 
b5 kDa) that do not bind to PGN [48]. Further, PGN is not negatively 
charged and hence is not considered to compete significantly with the 
membrane for interaction with AMPs so that they can pass freely 
through the PGN mesh of both lineages. 

3.2. Peptidoglycan as a target for innate immune recognition not interfering 
with AMPs activity 

PGN can rather be seen as a target for innate immune recognition by 
a family of pattern recognition molecules e.g. peptidoglycan recognition 
proteins (PGRPs) [49]. These proteins are evolutionary conserved and 
recognize the microbes via direct local attack against indwelling patho­
gens and induction of the acute inflammatory response and adaptive 
component of immune system. Thus, in such cases binding to PGN 
may serve as initial event for bacterial killing. An example includes 
human bactericidal RegIII lectins of the C-type lectin family with a mo­
lecular weight of ~16 kDa. Characteristic C type lectins possess a globu­
lar structure with four functional domains: (i) carbohydrate binding 
domain, (ii) neck repeat region of tandem helical repeats with exposed 
hydrophobic residues, which allows oligomerization, (iii) transmem­
brane domain and (iv) cytosolic domain promoting internalization 
into the membrane [50]. RegIII lectins recognize the bacteria by binding 
to PGN carbohydrate via a Glu–Pro–Asn (EPN) tripeptide motif located 
in the long loop region of the protein as was demonstrated by 
NMR spectroscopic studies [28]. This  Glu–Pro–Asn motif is required 
for bacterial killing, as a point mutation of Glu (E) residue in Glu–Pro– 
Asn motif showed reduced affinity to staphylococcal PGN and a 6 
fold decrease in antimicrobial activity against Gram-positive species 
Listeria monocytogenes. However, the mechanism by which lectins kill 
bacteria is not known. Just recently it was published that RegIIIα kills 
bacteria by oligomerization on the membrane forming a membrane-
penetrating pore [51]. Interestingly, RegIIIα lectin exhibits a point 
mutation in the Glu-Pro-Asn motif and bears instead a Gln–Pro–Asn 
(QPN) motif, which prevents binding of RegIIIα to PGN [28]. But, RegIIIα 
lectin permeabilizes membranes of Listeria monocytogenes, as  shown  by  
an increased uptake of the membrane impermeable fluorescent dye 
SYTOX green. By measuring changes in intrinsic tryptophan residues 
upon contact to PC/PS liposomes as well fluorescence energy transfer 
between donor RegIIIα and dansyl-labelled PC/PS liposomes, it has 
been figured out that RegIIIα binds to negatively charged membrane 
phospholipids (PC/PS) but not to zwitterionic PC disrupting PC/PS 
membranes. In addition, electron microscopy in combination with 
crosslinking experiments demonstrated formation of a hexameric 
membrane-permeabilizing oligomeric pore with a diameter of about 
100 Å in PC/PS liposomes [51]. Although it has to be emphasized that 
PS is not a typical bacterial lipid, but shares the negative charge with 
PG, it was concluded that bacterial killing resulted from uncontrolled 
ion efflux and subsequent osmotic lysis. All these events are not found 
for Gram-negative bacteria, as LPS has been identified to inhibit RegIIIα 
membrane permeabilization and disruption of liposomes composed 
of E. coli total lipid extracts or PC/PS in the presence of LPS [51]. This 
explains the lack of ability of RegIIIα to kill Gram-negative bacteria. 

It is interesting that the ability to recognize and eliminate pathogens 
is versatile but still evolutionary conserved. Although proteins such as 
C-type lectins are bigger in size and more complex in structure than 
the small antimicrobial peptides, they often share the same mecha­
nisms like membrane disruption to combat against the pathogen. One 
may wonder if this could be through evolution a strategy of nature to 
combine building blocks of known functions in domains and design 
more complex molecules (proteins) with increased potency to over­
come the emerging resistance of microbes. 

3.3. Modifications of peptidoglycan to evade innate immunity 

An important strategy of pathogenic and commensal bacteria to 
evade innate immunity and to control autolysins involves modifica­
tions of stem peptide (amidation of D-Glu and mDAP, modification of 
L-ala by Gly and L-ornithine instead of meso-DAP) and glycan chains 
(O-acetylation of NAM, N-deacetylation of NAG and glycosylation of 
NAM) of PGN, documented and reviewed for diverse bacterial species 
elsewhere [52–54]. This widely leads to survival of the bacteria as a re­
sult of reduced recognition of the pathogen by the host receptors and 
hence decreased activation of the innate immune response. Modifica­
tion of PGN and hence, increased antimicrobial resistance is also related 
to increased virulence of bacteria [55]. 

4. Lipoteichoic acid, an anionic polymer matrix 

Most Gram-positive bacteria incorporate teichoic acid polymers into 
their cell envelopes that largely contribute to a bacterial negative sur­
face charge. The basic structure of teichoic acid encompasses a soluble 
polymer of glycerolphosphate or ribitolphosphate repeating units that 
is either attached to the cytoplasmic membrane via a glycolipid anchor 
(lipoteichoic acid, LTA) [56] or covalently linked to N-acetylmuramic 
acid of PGN (wall teichoic acid, WTA) (Fig. 5). The glycolipid anchor in 
S. aureus is diglycosyl-1,2-diacylglycerol (DGDG) with two fatty acids 
of different composition [57], mostly C14:0 and branched C15:0 at 
the sn-2 position and C16:0,C18:0 and C20:0 at the sn-1 position of 
the glycerol moiety [58]. LTA  deficient ltaS mutant of S. aureus exhibits 
aberrant cell growth and division and is synthetic lethal with tagO mu­
tant defective in WTA synthesis indicating that LTA and WTA compen­
sate for their activities and that complete loss of the anionic polymer 
matrix in bacterial envelopes affects the growth leading to inviability 
of the cells [59]. 

In the logarithmic phase of growth the concentration of LTA in 
the outer membrane layer ranges between 0.4 and 1.6% of the cell dry 
weight [60], which means that one LTA molecule contributes to every 
ninth to tenth lipid molecule [58,61]. In contrast to membrane lipids, 
LTA and not deacylated LTA does not form a stable monolayer structure 
[62], but forms a micellar supramolecular structure in aqueous disper­
sion [63]. X-ray structure of staphylococcal [63] and pneumococcal 
LTA micelles [64] was characterized with a total diameter of 22 nm. 
The core made of hydrocarbon chains of the glycolipid anchor is 5 nm, 
which is surrounded by an 8.5 nm shell of heavily hydrated hydro­
philic chains. The critical micelle concentration of LTA from several 
bacterial species in phosphate-buffered saline ranged from 28 to 
60 μg/ml [65]. Systematic thermodynamic studies on the miscibility of 
LTA with DPPG revealed stable mixtures up to LTA concentrations of 
20 mol% [62]. Increasing the LTA concentration in the DPPG matrix 
leads to an increase of the phase transition temperature indicating a 
stabilizing effect on lipid membranes within the head group region 
[58]. At higher concentrations than 20 mol% separation of both lipids 
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Fig. 5. Chemical structure of lipoteichoic acid. 

Fig. 6. Effect of LTA on membrane permeability of OP-145 adopted from Malanovic et al. 
[48]. Leakage of POPG LUVs (black bars) and POPG/LTA (white bars) at respective 
OP-145 concentration. 
occurs, accompanied by a destabilization of the lamellar aggregation of 
DPPG and segregation of LTA into the sub-phase, presumably in the 
form of micelles owing to the small cross-sectional parameter of the 
diacylglycerol moiety and the resulting conical shape of LTA [58]. 

4.1. Interaction of lipoteichoic acid with AMPs 

Gram-positive bacteria e.g. S. aureus contain on average 24 
glycerolphosphate repeating units of 6200 g/mol weight LTA of 
which 70% are substituted by D-alanine [57,66]. The length of the 
glycerolphosphate chain varies between Gram-positive species from 
15 to 50 residues. Each repeating unit of LTA contains one negative 
charge from the phosphate group, which potentially can attract posi­
tively charged AMPs [67,68]. Obviously, many bactericidal peptides 
bind with high affinity to LTA, but may in addition exhibit membrane 
disruptive properties like mellitin, cecropin [69] and LL-37 [67] contrib­
uting to their bacterium-killing activity. Thus, it has been postulated 
that binding and attraction of the AMPs to LTA may initiate bacterial kill­
ing by AMPs mediating peptide's entry into the bacteria. In other words, 
by building polyanionic ladder LTA and WTA may help polycationic 
peptides to traverse from outside to the cytoplasmic membrane. 

Koprivnjak et al. [70] suggested that the killing activity of both the 
14 kDa mammalian group II phospholipase A2 (gIIA PLA2) and the high­
ly basic 45 amino acid human ß-defensin 3 toward S. aureus depends on 
initial electrostatic interaction with WTA, as the tagO mutant lacking 
WTA was highly resistant to these antimicrobial peptides. Detailed 
analysis with highly positively charged (+12 to +17) gIIA PLA2, as  de­
duced from recovery of [1-14C]oleate radiolabeled bacterial tagO strain, 
revealed that phospholipid degradation was reduced in the presence of 
gIIA PLA2. Moreover, the peptide was able to hydrolyze phospholipids 
from cell-wall depleted protoplasts from both wild type and the tagO 
mutant and their radiolabeled lipid pattern resembled that of the intact 
bacteria. As the binding of the peptide to the surface of tagO mutant was 
not reduced, the authors concluded that the binding of the gIIA PLA2 to 
WTA is important to facilitate cell wall penetration and to gain access for 
membrane phospholipid degradation. 

Another bactericidal protein, the phospholipoglycoprotein vitello­
genin, which is a major precursor of the yolk proteins in oviparous 
organisms, kills bacteria via binding to LTA and not via membrane dis­
ruption [68]. Results from scanning electron microscopy showed that 
450 kDa vitellogenin from fish Hexagrammos otakii causes damage of 
the cell wall of S. aureus whole cells with the appearance of collapsed ar­
chitecture, but does not induce changes in the morphology of S. aureus 
protoplasts, which are depleted of cell wall and hence LTA. This was 
also confirmed in a lysis assay, where significant reduction of OD420 in­
dicated severe cell lysis in vitellogenin treated S. aureus whole cells, but 
not in cell wall depleted protoplasts. In addition, cell-wall destroying ac­
tivity of vitellogenin toward S. aureus is abolished, when vitellogenin 
was preincubated with LTA before applying to the S. aureus cells, 
which concomitantly resulted in loss of antibacterial activity of the 
peptide. These observations suggest that the binding of vitellogenin to 
LTA is lethal to S. aureus. It has also been reported that the antibacterial 
cell-permeable peptide PBP 10, LL-37 and melittin efficiently bind to 
LTA inhibiting their antimicrobial activity [67]. Although it is obvious 
that for instance the antimicrobial activity of LL-37 is maintained by 
its action on the plasma membrane [71], LTA possesses inhibitory effect 
on its bacterium-killing activity [67]. It is most likely however that some 
peptides may be entrapped by LTA through an increase of peptide ad­
sorption to the bacterial surface, which results in a decrease in local 
peptide concentration on the cytoplasmic membrane. 

Using a fluorescence assay our group showed that OP-145, a deriva­
tive of LL-37, also binds to LTA [47]. Analyzing the thermotropic be­
havior of liposomes composed of DPPG and LTA characterized by two 
overlapping phase transitions corresponding to DPPG and DPPG/LTA 
domains also indicated that OP-145 interacts preferentially with 
DPPG/LTA domains. Further, the bilayer permeability of large unilamellar 
vesicles composed of POPG and LTA at a biologically relevant molar ratio 

Image of &INS id=
Image of Fig. 6
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of 9:1 was reduced by about 25% in the presence of OP-145. This indi­
cates a slightly hindered penetration of OP-145 toward the membrane 
interface owing to the presence of LTA in the liposome (Fig. 6). Notwith­
standing, OP-145 is able to induce full leakage of DPPG/LTA vesicle 
although at higher concentrations. Thus, the molecular mechanism of 
bacterial killing by OP-145 can rather be explained by incorporation of 
the peptide into the phospholipid matrix and consequent membrane 
perturbation. To the best of our knowledge this was the first report 
using a model system composed of phospholipids and LTA to study 
the impact of both components on the interaction of AMPs. OP-145 
induces membrane permeability of POPG or POPG/LTA liposomes be­
tween 2 and 4 μM, which is in the range of the effective lethal con­
centrations for S. aureus bacteria at 1.6–3.2 μM. Referring to Roversi 
et al. [14] and Castanho and co-workers [8], who  described  bacterial  
killing via membrane disruption as an event taking place only when 
bound AMPs completely saturate the bacterial membrane, one may 
consider that in the case of OP-145, binding to LTA may in fact reduce 
the total concentration of the peptide on the membrane interface, 
but not sufficiently enough to prevent significant membrane cover­
age to kill bacteria. 

In addition, it has been demonstrated for resistant group B Strepto­
coccus bacteria, which via D-alanylation have decreased anionic charge 
of LTA and decreased susceptibility to AMPs e.g. LL-37, magainin 2, poly­
myxin B and colistin, that the resistance to AMPs may not necessarily be 
attributed to decreased amounts of bound peptide to bacteria, but it 
may alter conformation of the LTAs [72]. Consequently, this result in in­
creased cell wall density hindering AMPs to reach the plasma mem­
brane through compact heavily coiled conformation of staphylococcal 
LTA [72]. Another example includes ß-bungarotoxin B chain, an antibac­
terial cationic polypeptide from snake venom that upon binding to LTA 
undergoes conformational changes resulting in inhibition of its active 
site that abrogates its membrane-damaging activity and inhibits its 
bactericidal activity toward S. aureus [73]. ß-bungarotoxin is the main 
presynaptic phospholipase A2 neurotoxin consisting of ~14 kDa A 
chain that shows similarities to phospholipase 2 and a 7 kDa B chain 
peptide more similar to toxin I, trypsin inhibitor and dendrotoxin. The 
ß-bungarotoxin B chain exerts membrane-damaging activity as shown 
by calcein release from liposomes composed of PG and PE but also of 
mixtures of PG and cardiolipin. The B chain exerts its damaging activ­
ity without involvement of A chain and because of its abundant pos­
itively charged amino acid residues it is more likely that the B chain 
displays bactericidal action via a membrane-damaging activity [74]. 
However, the peptide was unable to inhibit growth or induce mem­
brane permeability of S. aureus. As the membrane permeability of 
propidium iodide fluorescent dye was induced in E. coli cells treated 
with ß-bungarotoxin B chain but not in S. aureus cells, it was clear 
that components of the Gram-positive cell wall may contribute to 
these negative results. Indeed, calcein release from PG/cardiolipin 
vesicles was absolutely abolished, when the peptide was preincubat­
ed with LTA. CD spectra indicated conformational changes of the 
peptide in the presence of 4.5 mg LTA suggesting that LTA efficiently 
blocks the B-chain functional site or conformation on damaging 
membrane. 

4.2. Role of lipoteichoic acid in immune response 

LTA is released spontaneously into the culture medium during 
growth of Gram-positive bacteria [75] but the release can be enhanced 
upon treatment with antibiotics like penicillin [76] or after bacteriolysis 
induced by cationic peptides from leucocytes (for review see [77]). Re­
leased LTA is believed to stimulate production of inflammatory media­
tors, immune response to infection in host organism to fight the 
invading bacteria. Given this one can consider if the high concentration 
of LTA or exposure of the hydrophilic fatty acid chains of LTA micelles 
are initializing the activation of the signaling cascade of inflammatory 
response. Interestingly, the activation of the inflammation pathway, 
among others occurs specifically via interaction of LTA with the host 
CD14 [77] and TLR2 ligand [78] most probably via insertion of the two 
fatty acids into the binding pocket of TLR2 [79,80] followed by induction 
of complement cascade to activate production of cytokines such as tumor 
necrosis factor (TNF) and interleukin 6, chemokines and various other 
genes [81,82]. As a consequence, a set of circulating problems ranging 
from beneficial pro-inflammatory responses and fever to organ failure 
may lead even to the death [83]. A number of AMPs, effectors of innate 
immunity [82] are potent in prevention of sepsis and inflammation as 
they particularly can neutralize LTA and inhibit LTA-induced cytokine re­
lease. Examples include among others human cathelicidin LL-37 and its 
derivative OP-145 [84] as well as CEME related peptides [69] derived 
from a hybrid of silk moth cecropin and bee melittin. CEME related pep-
tides inhibit LTA stimulated production of TNF and IL-6 by murine mac­
rophage cells RAW 264.7 in vitro as well as in whole blood samples of 
human volunteers [69]. However, the relative ability to bind/neutralize 
LTA did not correspond to their MICs as they exhibited only moderate ac­
tivity against Gram-positive bacteria. Thus the high binding affinity to 
LTA seems likely not to be important for their antimicrobial activity. 
This was also observed for OP-145 [47], which showed high binding 
affinity to LTA, but was able to induce significant permeabilization of 
the bacterial model membranes, vesicles composed of membrane phos­
pholipid PG and LTA but also of pure PG vesicles. It is more likely that the 
high binding affinity to LTA can be important to “mask” the binding sites 
of LTA necessary for induction of inflammation processes. Accordingly, 
OP-145 [47,84] but also its parent peptide LL-37 [84] is able to efficiently 
neutralize LTA and inhibit production of cytokines known to induce the 
inflammation. However, the interaction of LTA and antimicrobial pep-
tides (intrinsic or therapeutic) during immune response and inflamma­
tion remains largely not understood and requires further efforts. In a 
recent publication, Brandenburg and coworkers [85] disclaimed the 
role of LTA in cytokine induction. They demonstrated that lipoproteins/ 
lipopeptides which usually contaminate commercial LTA products and 
bacterial isolates are the most potent pro-inflammatory toxins of bacte­
rial cell wall not only in vitro but also when inoculated into mice. 
4.3. Modifications of lipoteichoic acid to promote antimicrobial resistance 

These complex amphiphilic molecules underlay diverse modifica­
tions of the repeating units providing diversity across the various bacte­
rial strains. One of these modifications is the decoration with a variety 
of sugars (α-galactose, NAG) and esterification with D-alanine [56]. 
The latter remain to be unstable and e.g. in S. aureus can continuously 
be re-esterified. In addition, a number of environmental factors have 
been shown to influence D-alanylation of LTA. An increase in pH [86], 
temperature [87] or NaCl [66] leads to decrease in D-alanine ester con­
tent of LTA. Esterification/re-esterification with alanine of the negative 
charge from phosphate of LTA's glycerolphosphate repeating units in­
duces zwitterionic properties of teichoic acids via the positively charged 
free amino groups of alanine. This is one of the protective mechanisms 
of bacteria in order to reduce negative charge in the cell envelope and, 
hence susceptibility to antimicrobial agents/peptides [88,89]. Accord­
ingly, dlt mutants derived from gallidermin-sensitive S. aureus are de­
void of D-alanylester from teichoic acid and have increased sensitivity 
to positively charged AMPs such as defensins, protegrins, magainin 
and diverse lantibiotics but not to neutral gramicidin B indicating re­
duced electrostatic interaction between S. aureus and cationic molecules 
[89]. This is also  reflected in a mouse model of S. aureus sepsis, where a 
dltABCD mutant was impaired in disease progression with significantly 
reduced rates of septic arthritis and mortality and reduced bacterial 
load in the kidney [90]. Similarly, it was the reason that dlt mutant in 
mouse model of Group B streptococcus (GBS) disease which is normally 
characterized by invasive infections from pneumonia to meningitis, was 
cleared from lungs too quickly to cause pneumonia and was unable to 
survive bloodstream or colonize the brain [91]. 
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Fig. 7. Schematic illustration of AMPS interactions. 
5. Concluding remarks 

So far limited quantitative data have been reported on the interac­
tion of AMPs with Gram-positive cell wall components, which may be 
partly due to the fact that their extraction from bacterial cells is prob­
lematic and are often not pure enough to test it on a single molecule 
level. Moreover, it is not possible to isolate the intact PGN wall [13] 
and in addition commercially available PGN preparations often contain 
proteolytic enzymes. Similarly, LTA can be contaminated also with 
proteins and endotoxins, which may interfere with experimental inter­
pretation. One strategy to overcome these problems is to perform 
experiments on live cells as extensively discussed by Castanho and co­
workers [8]. Nevertheless, studies on membrane–mimetic systems, 
which definitely will become more complex in future, have revealed in­
teresting insights into the interaction of AMPs with these components. 
These studies provided evidence that membrane-active cationic antimi­
crobial peptides on their way to cytoplasmic membranes are exposed to 
different interaction partners, to which they exhibit different affinities, 
which may reduce their effective concentration on the membrane sur­
face (Fig. 7). 

Taking into account that PGN is relatively porous and freely penetra­
ble for small molecules like AMPs and that permeability assays on sim­
ple membrane model systems were not impaired in the presence of 
PGN, one would assume that the role of PGN is not in entrapping 
AMPs but might rather act as sponge facilitating the penetration of 
the cell wall and in turn interaction with the phospholipid bilayer. In 
contrast, LTA as an anionic polymer has a strong potential to attract 
positively charged molecules and may act as both entrapper of AMPs 
or ladder for a route to the plasma membrane. As one resistance mech­
anism of Gram-positive bacteria is modification of LTA by incorporation 
of alanine reducing the negative net charge, it is tempting to speculate 
that rather the latter role is of importance. The same may be the 
case for Gram-negative bacteria, where LPS, besides of its immune-
orchestrating effects may have similar functions as its counterpart in 
Gram-positive bacteria, LTA (Fig. 7). To conclude, the question raised 
by Castanho [8] and other colleagues in the field, whether cell wall com­
ponents act as electrostatic barriers preventing membrane-active AMPs 
from their lethal action on the cytoplasmic membrane, can only be 
answered once we have more quantitative data on the affinity of AMPs 
and cell wall components. The current data suggest that AMPs may 
“use” these components to enrich at the membrane surface, but we 
may well end up that it is a matter of concentration [8]. 
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