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1. Introduction

For any z=(z1,...,21), W= (W1, ..., wy) € C", the inner product is defined by (z, w) = Y }_; zxWy. Let B be the unit
ball of C", the class of all holomorphic functions on B is defined by H(B). For f € H(B), we write
af af _
Vi@ =(>-@,.....-()) and Rf@)=(Vf(@),2).
0Z1 0Zn

Let H* denote the space of all bounded holomorphic functions on the unit ball, equipped with the norm || f|o =

supzeg | f(2)].
For any 0 < & < oo, we define the generally weighted Bloch space B;’(‘)g as the space of holomorphic functions such that

o 4
Iflle = f(O)] +sup{(1 —Iz1%) logmlw(al: ze B} <00,

It is well known that the «-Bloch space B* and little c-Bloch space B are defined respectively as the space of holo-
morphic functions such that

£ 1%0en = sup{ (1 = 121%)*|Rf @)]: z€ B} <0
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and
{f € B lim (1~ 121%)%|Rf (2)| = 0]

with the same norm || fllge = [f(O)| + || f 1 5pch-

The Zygmund space Z in the unit ball consists of those functions whose first order partial derivatives are in the Bloch
space B!. It is well known that (Theorem 7.11 in [24]) f € Z if and only if Rf € B!, and Z is a Banach space with the
norm

£ = |£ O]+ IRF N ioch-

Let f(z) be a holomorphic function on the unit disc D with Taylor expansion f(z) = Z?io ajzf, the classical Cesaro
operator acting on f is defined by

%) 1 j )
Clfl@) = Z<? Zak)zf.
j=0 J k=0

Despite the simplicity of the definition of C[f](z), several problems are encountered when characterizing the bounded-
ness and compactness of Cesiaro operator between spaces of holomorphic functions. These problems require profound and
interesting analytical machinery. Moreover, the study of Cesiro operator has arguably become a major driving force in the
development of modern complex analysis. The papers listed in the bibliography are excellent sources for recent develop-
ments in the theory of Cesaro operators. It is well known that the operator C is bounded on the usual Hardy spaces HP (D)
for 0 < p < oo and Bergman space, as well as the Dirichlet space, for the interested readers, we refer to see the papers
[1,4,9-18,20-22] and so on.

But the operator C is not always bounded, in [19], Shi and Ren gave a sufficient and necessary condition for the
operator C to be bounded on mixed norm spaces in the unit disc. It is natural to ask what are the conditions for higher-
dimensional case.

A little calculation shows C[f](z) = %foz f®(log ﬁ)/dt. From this point of view, if g € H(B), it is natural to consider
the extended Cesaro operator (also called Volterra-type operator or Riemann-Stieltjes type operator) Ty on H(B) defined
by

1
d
To(f)(2) = f fe2RgE2)
0

It is easy to show that T, take H(B) into itself. In general, there is no easy way to determine when an extended Cesaro
operator is bounded or compact.

The boundedness and compactness of this operator on weighted Bergman, mixed norm, Hardy, Bloch and Dirichlet
spaces in the unit ball have been studied by Xiao [21], Hu [6-8], Zhang [23], Guo and Ren [5], Chang and Stevi¢ [2]. In this
paper, we will continue this line of research and characterize those g for which T is bounded (or compact) from generally
weighted Bloch spaces BY (0 <« < 00) to Zygmund space Z. For the proof, we need different method and some complex
calculation skills.

o
log

2. Some lemmas

In the following, we will use the symbol C to denote a finite positive number which does not depend on variable z
and f. In order to prove the main results, we will give some lemmas first.

Lemma 1. Suppose f € ng,for any z € B we have

(@) If0 <o < 1, then |f(2)] < (1+ m)”f”a;
(b) Ifa =1, then | f ()| < C(loglog #)”f”];
(©) Ifa > 1, then | f(2)| < (1 + A(1zD)|| fllo, where A(lz]) = [ —5- 34—

0 (1-u?)?log 1:11’2

Proof.

1
f@)|= ‘f(O) + f(vmz),z)dt
0
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1
|z| dt
<Umn+/ A fll
J (1= [zl log 1—{zm
|z| d
u
< +f—————————~ .
I+ | G iog 1o
0 —Uu

It is obvious for the case o > 1.
If 0 < <1, we obtain

1
|f(Z)| < flle + m“f”w

If @« =1, by Schwarz inequality and log 14Tx <2log ﬁ for x € [0, 1), it follows that

|z|
d
Uuﬂ<nﬂh+zf(——7%———|um
0

=|2loglog +1—210g10g4i|||f||1

4
1-1z]

r 4
< 2]0g(210g T |Z|2> +1-— 210g10g4]||f||1

4
< Zloglog ey +210g2+1—210glog4]||f||1

The case o =1 follows by the estimate

4
2log2 +1—2loglog4 < Cloglog4 < Cloglog W

By Lemma 1, Montel theorem and the definition of compact operator, the following lemma follows.

Lemma 2. Assume that g € H(B). Then Ty : ng — Z is compact if and only if T is bounded and for any bounded sequence ( fi)ken
in ng which converges to zero uniformly on compact subsets of B as k — oo, || Tg fill = 0 as k — oo.

Lemma 3. If (fi)ken is a bounded sequence in B
then we have limy_, », sup,cp | fk(2)| = 0.

log(O < a < 1) which converges to zero uniformly on compact subsets of B as k — oo,

Proof. It is obvious that ||f| g« < 2| fl|l¢, So the bounded sequence in ng(o <o < 1) is also bounded in B¢, and the
conclusion follows since the proposition is true for the space B%, see [23] for the details. O

Lemma 4. (See [3, Lemma 4].) Let g € H(B), then

R[Tgf1(2) = f(2)Rg(2)
forany f e H(B) and z € B.

The following lemma can be found in [24].

Lemma 5. Let f € B, then

|f (@] < Clog ||ﬂfM1

for any z € B. Furthermore, if f € B}, then

4 !
11m|f(z)|{og — |2} =0.
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Lemma 6. Let f € Z, then

4
R <Clog——
[Rf @)| < Clog T——5 111
forany z € B.

Proof. Since f € Z implies Rf € B!, by Lemma 5, and note that Rf(0) =0 we have

4 4
[RF @] < Clog 17 IRf 51 = Clog 17 IRf cy < Clog 5 ||2||f||. O

3. The boundedness and compactness for the case 0 < ¢ <1
Theorem 1. Let g € H(B), 0 < « < 1. Then the following statements are equivalent:

(@ T Blog — Z is bounded;
(b) Tg Blog — Z is compact;
(c) ge 2.

Proof. (b) = (a) is obvious.

Note that RRTg f =Rf - Rg+ f - RRg, (a) = (c) follows by taking the test function f =1, which is in B;’f)g.

Next we show (c) = (b). Assume (fi)ren iS @ sequence in ng such that supyep |l fkll« <M and that fy — 0 uniformly
on compact subsets of B as k — oo. For any given € > 0, it is clear that there exists a § € (0, 1) such that

(1—1z2)""" <,

whenever § < |z| < 1. Now let Q = {z € B: |z| <4} and note that T fi(0) =0, we can get

ITg fill = sup 1—121%)|RR(T¢ fi)(2)]

zeB
<sup(1 — |z?)(|Rfi(2) - Rg(@)| + | fu(2) - R(Rg)(2)|)
)

zeB

(

= sup(] 121°)[Rfi(2) - Rg(@) + fu(@) - R(Rg)(2)|
(
up(

1—121%)|Rg@] - [Rfk (@] + s;mg(l—|z|2)\Rg(z)\-!Rfk(z)\+||g||-su3p|fk<z)\
zZeb— ze

4 1—
<Csup(1—|z|2)!Rfk(z)|-log gl +C sup (1—12) I fulle - gl + gl - sup| ).
zeQ 1—|z| zeB—Q zeB

The last inequality follows by Lemma 6. With the uniform convergence of f, and the Cauchy estimates, then owing to
Lemmas 3 and 2, the conclusion follows by letting k — co. O

4. The boundedness and compactness for the case o =1

Theorem 2. Suppose g € H(B), « =1.Then Tg : Bl _— Z is bounded if and only if

log

4
sup(1 — |z| )loglog P |RRg(2)| < +00.

zeB
Proof. Note the condition sup,.5(1—|z|%) loglog # |[RRg(2)| < +oc implies g € Z. The sufficiency follows by the estimate

ITgfIl < sup(l —1z?)(|Rf @ - Rg@) |+ |f (@) - R(R®)(2)))

Il 2 4
<sup(1—1z1?)|Rg@)| - + Csup(1 — |z|*) loglog RR@)| -1 flh
zeB( )| ’ (1—z/?)log 17‘|‘Z|2 zeB( ) 1-— |z|2| ’
) 4
<C||f||1'||g||+su513(1—|zl )loglog1 Z |2IRRg(Z)| I fla.
zZe -

To prove the converse, suppose Ty is bounded, by taking the test function f =1, we get g=Tg1 € Z.
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Setting fw(2) = loglog 1= é Wy for any w € B, an easy calculation shows that f,, € B}
fact, for any 1 < j <n, we have
afw Wj

— @@=
9Zj (1—(z,w))log T(Zw)

log’ and M = supyep [l fwl1 <oco. In

From which it follows that

1

— 12l |1~ {z, )| - log =y

dfw

J— 2 J—
(1-1z )log1 <2(1 |z|)logl

For any ze€ Q with Q ={ze B: |1 — (z, w)| > 1}, since rlog% is increasing on (0, 1], we obtain

sup(1 — |z|2) log ] (1)

zeQ —|z|?

fw 2l < 2log4 _
0z log2

And for z € B — Q, also owing to tlog% is increasing on (0, 1], we have

|1 —(z, w)]| log

> (1—1z]) log ]

11—(z, w)] — 2|

and then

0 fw
0zj

4
sup (1— |z )log P (z)‘ <2. (2)

zeB—Q

Combining (1) and (2), we obtain

sup(1 — |z%) lo
zeBp( 2 ) g |Z|2

i ()‘

With the obvious estimate |V f(z)| < Z'}:l |%(z)|, it follows that

00 > | Tgll - | fwllt = ITg fu
= squ(l — |2*)|Rfw(2) - Rg(2) + fw(2)RRg(2)|
ze

> (1= 1wP?)[Rfuw (W) - Rg(W) + fu (W)RRg(W)].
Therefore,
4
(1 = wl*) loglog 75 [RRgW)| < (1= [WP°) [Rfuw (W) - RgW)| + I Tgll - 1 fw

lwl?

(1= W) log =

<(1—1wl?) |Rg(w)| +C

<Cllglh+¢.

Since w is arbitrary, the proof of this theorem is completed. O

Theorem 3. Suppose g € H(B), « = 1. Then T : Bl — Z is compact if and only if

log

[z| =1

4
lim (1 —|z| )loglog i |RRg(2)| = 3)

Proof. We prove the sufficiency first. Assume condition (3) holds, we get Rg € B(l). By Lemma 5 and (3), for any given € > 0,
there exists a § (0 <8 < 1), such that both

4 !
(1—121%) loglog |2 |RRg(2)| <€ and |Rg(z)|{log |Z|2} <e€

whenever § < |z| < 1. Let K ={z € B: |z| < §}, and for any sequence (fi)ken With supgcy | fkll1 < C and fy — 0 uniformly
on compact subsets of B. Notice that Tg f(0) =0, then
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ITg fill = squ(1 —121%)|Rfk(2) - Rg(2) + fu(2) - R(R)(2)|
VA
< squ(l —12%)(|Rfk(@) - Rg@)| + | fi@) - R(RE)(2)])
ze

< 5“}?(1 —1z?)|Rg@)| - |Rfk(2)| + sup (1 —1z*)|Rg@)| - |Rfk ()| +su'13(1 — |zI*)|RRg ()| - | fx (D)
€ — ze

+C sup (1 z|%)loglog — 2\RRg(z)| I fill
zeB—K |z|
4 IRg@)| )|
Csup(1—|z| )|[Rfi(@)] - log 7——5ligll + sup ||fk||1+sup|fk<z)! lgll + Ce.
—|z| zeB-K log IZ\Z

With the uniform convergence of fi and Cauchy estimates we get || Tg fi|| — 0 as k — co. Owing to Lemma 2, T is compact.
Now we turn to prove the necessity. For any given sequence (zi)ken in B with |zx| — 1 as k — oo, we set

4 -1 4 2
h (z)=<10 lo 7) (lo lo 7> .
‘ ST Tz S

An easy calculation shows that supy ||hk|l1 < oo, and hy — 0 uniformly on compact subsets of B, as in Theorem 2, we have
I Tghkll = squ(l — 121*)|Rh(2) - Rg(2) + he(2)RRE(2)|
ze

> (1— |zl?)| Rhi(zk) - Rg(zk) + hi(z) RRg (24 -

Therefore,

4
(1 =z )loglog |RRg(zi)| < (1 — |zk[?) | Rhi(zk) - Rg(zi)| + I Tghyl
|2

2|z |
o |Rg(@)| + ITghgll. (4)
1- IZM2
By Lemma 2, we just need to show
4 -1
lim |Rg(z)|{log ———= =0. (5)
k— 00 1 — |z
For this purpose, set
B 1— |z (1 — |z»)?
fk (Z) - 4 - 2 4 ’
(A —(z.z)log =75 (1 —(z.2)*108 =75
then fi(zx) =0, fi satisfy the conditions in Lemma 2, and a little calculation shows that Rfy(z;) = f;‘;ilz{log #}*].
Therefore

ITg fiel = squ(l —121%)|Rfi(2) - Rg(2) + fi(2)RRg(2)|
> (1 - |zl?)|Rfk(zx) - Rg(z) + fu(zk)RRg(zy)|
2 4 ™
= || |Rg(zk)|{10g 1= 1z } .

Letting k — oo, (5) follows. And by (4), we obtain

. 4
lim (1 — |z?) loglog e |RRg(z)| = 0.

k— o0

Since the sequence z is arbitrary, we complete the proof of the theorem. O
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5. The boundedness and compactness for the case o > 1

Theorem 4. Suppose g € H(B), « > 1. Then Tg : B"‘ — Z is bounded if and only if following conditions hold:

(a) supep(1 —|21*)'~*{log ;=27 ) ' IRg(2)| < 00;
(b) sup,cp(1 — |21*)A(z])IRRg(2)| < o0;
(c) ge Z.

Proof. Since we have

ITgfll < Sup(l—lzl (IRf (@) - Rg@)| +|f(2) - R(Rg)(2)|)

R
<sup(1—|z|2)[(1 kel ||f||a+|RRg<z)}(1+A(|z|))~||f||a]

zeB — |z|#)% log T

then the conditions (a), (b) and (c) imply T is bounded.
Now we turn to the necessity. Condition (c) follows by taking the test function f =1, which is in B;’ég.

Next we show if Ty is bounded, condition (a) must hold. In fact, for w € B with |w| < % note that g € Z, by Lemma 6,
we have

_ 4 ! _
sup (1— |w|2)] a[logm} |[Rg(w)| < C sup (1— |W|2)1 “llgll<cC

wi<} w3
For w € B with |w| > %, set
1—|w? (1—|w??
(@) = o i~ ot i
(1 —(z.wh*log =57 (1 — (z, w)*Flog 1=+
. _ _ w2
An easy calculation shows that h,, € ng, SUP; ) 1 lhwlle < o0, hw(w) =0 and Rhy,, (w) = W) log H4W‘2 . Therefore,
ITghwll = sup(1 — |z*) |RRTghw (2)|
zeB
> (1—|wP?)|Rhy (W)Rg(w)|
-1
] 1—-a 4
>—(1—|w? log——— Rg(w)|.
10 =) o] [Re(w)|
Since w is arbitrary, we obtain
1 4 !
—o
sup (1—[|wf?) {logﬁ} |Rg(w)| < C. (6)
1>|w|>1 —w|
Combining (6) and (7), condition (a) follows.
Finally we show the condition (b) holds. We also discuss it in two cases.
For |w| < 1, we have
sup (1—|w*)A(Iw])|[RRg(w)| < Clig]l. (7)

lwi<3
For 1> |w|> 1, set

() .

t
fw@ = / ——
v J (1 -nlog %

Then 2L() = Ty =i ad Rfw(@) = g

—(z,w))¥ log 1= (Z wy —(z,w)*10g =7 <z wy
A llttle calculatlon shows that f,, € BY and supweB I fwlle < o0. Since

log

ITg fwll = squ(1 —12%)|RRT fw(@)| = (1 — [w}?)|Rfw(W)Rg(W) + fuw(W)RRg(W)|,
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it follows that
lw?

(1—1wp? |RRg(W)]/T\IITgfwllJrﬁ_IWIZ)\wa(W)Rg(W)]<OO-

Note that there is a positive constant 0 < C < 1 such that

1 1

/2 2tdt C/Z dt

A a0
2 4 2 4

s (1-t5)%log 175 s (1—t)%log =

and then

lw|? wi
/ dt _ / 2tdt

4 4
0 (1 _t)O{ logm 0 (1 _tZ)Ct ]Ogm

1
2 [w]

_/2 2t dt +/ 2t dt
- 2 4 2 4
/ (1—t5)*log = ) (1—t)*log =

2

(wl

dt

2 4
) (-t )¥log =

=2C

By condition (a) and the argument above we obtain

sup (1—|wl*)|RRg(w)|A(w]) < C. (8)

1
1>|w|>5

The conclusion follows by combining (8) and (9). O

Theorem 5. Suppose g € H(B), @ > 1. Then T : B;’ég — Z is compact if and only if following conditions hold:

(a) limig1 (1~ [21%)'~*{log 1=} ) "' |Rg(@)| = 0;

(b) limyz—1(1 — [z*)A(|z])|RRg(2)| = 0;
(c) ge Z.

Proof. From (a) and (b), we have for any given € > 0, there exists a §(0 < § < 1), such that both

4 !
(1- |z|2) {log 0 lz} |Rg(z)| <€ and (1—1z1*)A(|zI)|RRg(2)| <€

whenever § < |z| < 1. Let K ={z € B: |z| < §}, and for any sequence (fy)ken With supgen || fklle < C and fix — O uniformly
on compact subsets of B,

ITg ficll <sup(1—|2*)(|Rfi(2) - Rg(2)| +|fk(@) - R(R)(2)))

zeB

<sup |Rfil(1— |z|2)log I flle
zeK

IRg(2)|
gl + sup (1—|z?
| z|? 2eB —K( )(l —|z]2)* log 1_“12‘2

+sup|fi(@)| - llgl+ sup 2(1—|z1*)|RRg@)|A(Iz]) - || f o
zeK zeB—K

The compactness of T follows by letting k — oo.
Now we turn to the necessity. For any given sequence (zy)keny in B with |zx| — 1 as k — oo, set

1- [z ~ (1— |z

(1 —(z,z2)%0g =p7y (1= (z,2)** log ;=75

hi(2) =
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It is easy to check (hy) satisfy the conditions in Lemma 2. A similar argument of Theorem 4, we can get

-1
1— 4
(1- |Zk|2) a{logm} |Rg(zi)| <4lTghl,

letting k — oo, condition (a) follows. And then set

|z | -1, (z.%) 2

oo / dr / dt
= (1-0*log % ) (1—0)%log 1%

0

which also satisfy conditions in Lemma 2, and a minor modification of Theorem 4 can show that the condition (b) holds,
we omit the details here. For the condition (c), we just take the test function f =1, so g =T,1 € Z. This completes the
proof of the theorem. 0O
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