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Abstract 

ZCmor, G. and G.D. Cohen, Application of coding theory to interconnection networks, Discrete 

Applied Mathematics 37/38 (1992) 553-562. 

We give a few examples of applications of techniques and results borrowed from error-correcting 

codes to problems in graphs and interconnection networks. The degree and diameter of Cayley 

graphs with vertex set (Z/22)’ are investigated. The asymptotic case is dealt with in Section 2. 
The robustness, or fault tolerance, of the n-cube interconnection network is studied in Section 3. 

A few words on codes and graphs 

Network theory deals with the estimation of graphs parameters such as the 
diameter, maximal degree, robustness, etc. These concepts have coding-theoretical 
counterparts in several situations: for instance, Cayley graphs can be associated with 
codes to yield the following correspondences: 

diameter +P covering radius, 

degree * length, 

robustness * dual distance. 

The aim of this paper is to show how coding theory can interpret some network- 
theoretical problems, to use the correspondence to give bounds on the parameters 
of an interconnection network, and to suggest a few constructions. 

We have tried to make this paper self-contained with respect to coding theory. 
However for general background, the interested (or distressed) reader can consult 
[i l]. 

A (binary linear) [I;, k, Ca] code C is a linear subspace of dimension k of F”, the 
n-dimensional vector spare over F = (0, 1 >. 
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F” is endowed with the Hamming metric dH( O2.) which counts the number of 
different coordinates between two vectors, and d (or d(C)> is the minimum distance 
of C, i.e., the minimum distance between any two distinct elements (codewords) 
of C. 

Labeling vertices of a graph with elements of F” for some n and drawing edges 
between pairs of vertices at d given (Hamming) distance is convenient for many pur- 
poses: it yields nataral routing algorithms (see e.g. [IS]), and good classes of graphs 
(de Bruijn, Kautz, odd graphs, etc.). For example (see [4]), Petersen and Akers 
graphs are odd graphs obtained by taking for vertices all n-tuples of weight (n + 1)/Z 
and joining two vertices by an edge if their Hamming distance is n - 1, for n = 5 anti 
bz = 7 respectively. 

Unless stated otherwise, codes are binary and linear hereafter and log is to the 
base 2. 

Two elements x = (xi) and y = (yi) in F” are orthogonal if (x, JJ) := C Xiyi = 0 
(in F). 

The dual code of C: 

&={xcF”: (x,c)=O for all c in C) 

is a linear [n, n -k] code. Its dimension r.- l - n-k is called the redundancy of C. 
The elements in a basis of c can be written as rows of an (n - k) x n matrix called 

a parity-check matrix H. Then: 

CCC iff cH’=O. (1) 

Let G be an undirected connected graph with t) vertices and 171 edges. Identify any 
subset of edges with an element of F”’ (its characteristic function). Then there are 
two classical codes associated with G (see e.g. [13]). Although they are not optimal, 
we shall give them here as an illustration. The circuit code Cl is the set of circuits 
and disjoint unions of circuits. Its minimum distance is clearly the girth “g” of G: 
CI has parameters [rn, ill- o + l,g]. Similarly, the cutset code Cz is defined as the 
set of cutsets and disjoint unions of cutsets. its dimension is v - 1. Since a cutset and 
a circuit intersect in an even number of edges, the cutset cod.e is the dual of the cir- 
cuit code. Its minimum distance is the edge-connectivity A of G. Thus Cz has 
parameters [nl, v - 1, A]. 

Example. For the famous fetersen graph, the circuit code and cutset code have 
respectively the following parameters: [ l&6, S] and [ 15,9,3]. 

There are a few general bounds in coding theory relating n, k and d. Let us simply 
mention a good general one, due to McEliece, Rodemich, Rumsey ar.d Welch (see 

[l m 
k/nsh(l/2- iv), 

where h(x) : = -x log x - (1 -x) log( 1 -x) is the entropy function. 
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1. Cayley graphs 

I. I. Introduction 

Interconnection networks should have a high degree of regularity, so it is only 
natural to look for them among Cayley graphs. Given a group G, and a generating 
subset S of G, ier us denote by (G, S) the associated Cayley graph. Recall that (G, S) 
is a graph having the elements of G for vertices and that there is an edge from g 
to g’ iff g’= g.s where s E S. If S = S-‘, then (G, S) is an undirected graph. Note that 
having chosen for S a generating subset makes (G,S) a connected graph. 

Cayley graphs can be particularly interesting because they have high symmetry - 
they are vertex-transitive - and because it is also very easy to ensure that they have 
optimum connectivity. For instance we have the following result: 

Theorem 1.1. If for any nontrivial subgroup H of G, we have: ISHI - ISI 2 1 HI and 
1 HSI - 1 SI 11 H( , then (G, S) haA optimum connectivity (i.e., equal to the degree A 
of the graph). 

For a proof of this result, see 1171. (It is also the object of a forthcoming paper 
[ 183.) For a survey on Cayley graphs an 1 networks see [7] and also [ 11. 

Remark 1.2. From the purely degree and diameter point of view, one should turn 
to Cayley graphs on noncommutative groups. This is done in [6], where record- 
breaking constructions are obtained using compute;_s and considering groups of 
matrices over finite fields. However, since less refined structures can also be useful 
(e.g. for solving problems such as routing) and since our main concern is to show 
how coding theory can be brought in, we will restrict our attention to the com- 
mutative case, and more precisely to the case when G is the group of binary vectors, 
of length r, G= F’. Note that any (G,S) is undirected in this instance. Our ap- 
proach will be the following: what can coding theory tell us about the graph- 
theoretical properties of (G, S)? 

1.2. The code associated with (G, S) 

In this section, we introduce the main tool coding theory can provide for the study 
of (G,S). Let S= {s,, . . . . s, > , 0 $ S (so there are no loops) and 1 SJ = n. 

We have the following obvious: 

Fact 1.3. The degree of the graph (G, S) is: 

A(G,S)=n= ISI. 

Taking the elements si of S as column vectors we can form an TX n matrix 
H= [sl, . . . . s,]. Next we use H as a parity-check matrix to define a code C(S). In 
ot lter words C(S) is defined as the set of words orthogonal to every row of H. 
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Note that the parity-check matrix H thus defined puts Cayley graphs over 
(Z/22)’ into one-to-one correspondence with projective codes (i.e., codes with 
distance at least 3, or equivalently with distinct columns in their parity-check matrix) 
after identifying codes which differ only by a permutation of columns of H. 

C(S) is therefore a linear code of length n and dimension n-r (since S is a 
generating subset); the purpose of defining C(S) is that its code-theoretic properties 
can tell us a great deal about the graph-theoretic properties of (G, S) 

The crucial link between the two structures lies in the following fact: 

Fact 1.4. There is a one-to-otze tori-espondence between the words of weight rn of 
C(S) and the subsets T of S such that: 

jT(=m and c s=O. 
SET 

To see this just associate any word IV of F” to its support supp(w), that is to the 
subset J of [I, n] corresponding to the nonzero coordinates of w, then apply the 
definition of C(S) to see that: 

wEC(S) iff C Si=O. (I’) 
iiz supp(w) 

Given a code C and a vector Y of F” we need to define the (Hamming) distance 
between w and C; this is: dH(w, C) = min,, c dH(w, c). 

The quantity dH(w, C) can be interpreted in terms of the set S: 

Fact 1.5. dH(W,C)=min(t: 3TCS, ITI =t and CsETs= CiESUP,.,(,,,) Si}. 

To see this, first note that: 

&(u*, C) = zi; Isupp(c+ w)l 

and that, by (1’): 

CEC iff c Si= 1 Si a 
ie supp(c + w) ie supp( H’) 

Next we introduce another parameter of a code C: we call the covering radius of 
a code C of length n, and denote it by e(C), the maximum distance beiween C and 
an arbitrary vector w of F”: 

Q(C) = max d(w, C). 
M’ E F” 

Denote by D(G,S) the diameter of the graph (G,S), i.e., 

where d( .,.) denotes here the graph distance. Since (G,S) is a Cayley graph, its 
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diameter is simply the maximum distance between 0 and an arbitrary element x of 
G, i.e., 

D(G, S) = II;~ d(0, x). 

Now d(O,x) is, by definition of (G, S), given by: 

,!!c! ri--:nfc. 3TrC 1 TI _. c *z-.4 F 
u\“,X)-miqr. -II LO, II 1-1 QllU L 5=x>. 

SET 

So, Fact 1.5 tells us that: 

(2) 

Since S generates G = F’, C. ,EsuppfwJ Si ranges over all F’, when w ranges over F”. 

Hence: 
max dH(w, C) = :E;: d(O,x). 
w E F” 

In other words, we have proved: 

Fact 1.6. The diameter of (G, S) 

D(G, S) =&C(S)). 

equals the covering radius of C(S): 

The covering radius of codes has been extensively studied; see for example [8]; 
the next sections show how this knowledge can be applied to the study of the 
diameter of (G,S). 

1.3. Networks associated with perfect codes 

Good interconnection networks should have a small diameter. For (F’, S) to 
have this property, we should turn to coding theory for linear codes with a good 
(small) covering radius. Let us look at some examples. 

Given a code C of length n, for every vector w of F’ there is a codeword c such 
that d(w, c) I Q(C). A code C is called perfect if the c verifying the above inequality 
is unique, i.e., 

VWEF”, 3! cd such that dH(w,c)<e(C). 

Obviously perfect codes have good covering properties, so do they yield in- 
teresting Cayley graphs? Unfortunately the class of perfect codes is very small: there 
are only three types of (binary linear) perfect codes. 

(1) The Ham:ming codes: they correspond to the set S = F’ \ (0). This gives US 

the rather uninteresting complete graph over 2” vertices. 
(2) The repetition codes: when r is an even integer, those correspond to a set S 

consisting of all the vectors (of length r) of weight 1, plus the all-one vector. The 
corresponding graph is the r-cube (over 2” vertices) where an edge is added between 
every pair of diametrically opposed vertices. Its diameter is r/2. 
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(3) There is just another (binary) perfect code, the Golay code: its length is 
23, its dimension 12, its minimal distance 7, and its covering radius is 3. This 
means that the associated Cayley graph is on F’ ‘, with degree A = 23 and diameter 
D=3. 

Recall the Moo’” IG bound -which upperbounds the number of vertices v of a regular 
graph of degree A and diameter 0: 

vdki(A,D):=(A(A-1)D-2)/(A-2). 

In our case M(23,3) = 11662 which leaves some space for improvement since the 
“Golay” graph is on 2048 vertices. 

0n the other hand, among “commutative” Caley graphs, the Golay does verv 
well, since we can improve the Moore bound to obtain: 

Proposition 1.7. The number of vertices v = j G 1 of a Cayley graph (G, S) on a com- 
mutative group G, with degree A = 1 SI and diameter D is upperbounded by: 

ICI 
D A-l+i 

I c ( := M”(A, D). 
i=O i 

Proof. To see this, count all vertices at distance i from the zero element and note 
that they cannot exceed (“-/+‘), i.e., the number of choices of i elements, not 
necessarily different, among A = 1 SI . q 

We have M*(23,3) = 2600, so the “Golay” graph is near optimal among com- 
mutative Cayley graphs. Its connectivity is, by the way, easily seen to be optimal, 
i.e., equal to the degree, 23. 

1.4. Diameter of ne-twmks obtained from codes 

Next we address the question: how good a diameter does an arbitrary Cayley 
g;_aph over F’ have? 

Here again coding theory gives us good bounds on D(G, S). Let us sketch the way 
this is achieved. ‘4’2 shall need to state a few more facts from coding theory: denote 
by k(n,d) the maximum dimension of a linear code of length n and Hamming 
distance d and by [ - ] the integer part. 

The following is well known: 

Proposition 1.8. k(n, 3) = n - 1 - [log n]. 

The next proposition is due to Godlewski [9]: 

Proposition 1.9. If C is an [n, k, d] code, its cove,ring radius Q satisfies: 

k + k(e, d) s k(n, d). 
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Proof. Let C be an [n, k, d] code with covering radius Q, and z be such that 
Gj(z, C) = W(Z) = Q. Assume w.1.o.g. that supp(z) = ( 1,2, . . . , Q> . Consider 
C’[Q, k(e,d),d] an optimal code built on supp(z) and (C’ IO) the [n, k(e,d),d] code 
kgbtained by appending 0 E F”-@ to all words in C’. Then for any c’ in (C’ IO), one 
clearly has d(c’, C) = d(c’, 0) 1 d and the direct sum C@(C’ IO) is an [n, k + k(e, d), d] 
code containing C. Cl 

The code C(S) assticiated with (G,S) is an [n = ISl,n -r, 31 linear code, so the 
above proposition gives us, for any connected Cayley graph (G, S) with G = F’: 

i.e., 
[logn]sr-Q+ [loge]. 

Remember that (G,s’) has degree d = [SI = n, so 

d <2’-e+~~wl+~ . 

Hence we have the following relation (between degree A, diameter D and [Cl): 

Proposition 1.10. (Cl ~A2~-‘/0. 

The latter gives a good general upperbound on D, that seems difficult to achieve 
without coding theory. 

2. Asymptotic results 

Due to information--theoretic limitations (see the famous work of Shannon), a 
substantial amount of coding theory deals with the asymptotical behavior of codes. 

Most results are unfortunately nonconstructive. We shall rephrase here a few 
classical theorems in terms of networks. We set k/n = R (the rate), d/n =6 (nor- 
malized distance), e/n = 8 (normalized covering radius). On [0,1/2], the entropy 
function h( l ) is strictly increasing and we shall consider its inverse h-‘( - ). The 
following statements are valid for n large enough and k = [nR], with R fixed (see 
Ill, Chapter 171). 

Proposition 2.1. There exist codes lying above the Varshamov-Gilbert bound, i.e., 
[n, nR, n6 ] codes satisfying 

&h-*(1 -R). 

Proposition 2.2. There exist 

8=h-‘(1-R). 

(3) 

codes [n,nR] with covering radius 8n satisfying 

(4) 
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Remarks. (1) One can sketch the proof of Proposition 2.1 in the following way: 
define a code to be maximal if it is not properly contained in a code with the same 
minimum distance. For a maximal code C, clearly QS~- 1 holds. Otherwise, pick 
a vector x at distance d from C, and construct C’:= CU (X + C}, contradicting max- 
imality. Thus the trivial covering bound: 

becomes > y( I - RI - . 

One now obtains (3) using the following approximations for the sums of binomial 
coefficients (see, [13, Appendix A]) 

i.n n z( > _ 2”‘(“, = for OS ii 5 l/2. 
i=O i 

(2) As for Proposition 2.2, the covering bound gives in the same way 
8rh-‘(I -I?). Th e reverse inequality is obtained by “constructing” the code with 
a greedy algorithm. 

(3) In fact both propositions are true for almost all codes (see [S]). Hence for 
almost all codes: 

Returning to the representation of codes with Cayley graphs (by means of the 
parity-check matrix), we obtain graphs with 

This yields fc\r example the foiiol:, i”g rcl.ations: 

N - 2”(’ - ” vertices - , 

A =n, 

LIznh-‘(l- R\. 

&(l-R)-‘/I-‘(1 -R)logfV, 

N= 23ldD/‘v 
. 

3. Robustness of the n-cube 

A large class of parallel algorithms, including sorting and routing, can be effi- 
ciently implemented with prolcessors interconnected in a network such as the n-cube, 
the shuffle-exchange, etc. Whenever processors become faulty, one wants to 
estimate the efficiency of the surviving network, i.e., the subgraph induced by 
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nonfaulty processors and links. In the case of the n-cube, the dimension of the 
largest nonfaulty subcube will be the relevant parameter for most basic algorithms. 

Following [3], we shall denote by f (n,s) the minimum sizle of a set R of vertices 
that must be removed (faulty processors) to make any (n -@-dimensional subcube 
K faulty (i.e., miss a vertex). That is a covering problem: 

Find minlR(: R n K # 0 for all (n - s)-dimensional K. 

In that setting, if at most f (n,s) - 1 processors are faulty, there exists a surviving 
cube of dimension n -s, and the “slow-down factor” (see [3]) for performing the 
algorithm will be 2S. Let us rephrase the problem in (91 p-matrix terms: RC F”, 
with ) R) = r is the set of rows of an r x n matrix M with the following property: 

For any ordered s-tuple of columns (it, iZ, . . . , i,) and any binary s-tuple: 

(et,e2, l ..) e,) E FS, there exists a row u of M (HZ,, Q, . . . , m,) s.t. muj=ej for 
j= 1,2, . . . . s. 

Forexamp1e,ifn=4,s=2,takeR={(0000),(1110),(1101),(1011),(0111)).1ndeed 
the matrix 

M= 

0000 

1110 

. I 

1101 

1011 

0111 

has the required property: any two columns (say the first and the third) contain as 
rows the four possible 2-tuples (say rows 1, 2, 3, 5 for 00, 11, 10, 01 respectively). 

Obviously any subcube with dimension n -s= 2, obtained by fixing s= 2 com- 
ponents will intersect R. 

For example, if K = ((xI,x~,xJ,xq): x1 = 0 and x2 = 1}, then K n R = (0111). 
This problem is equivalent to the one of s-surjectivity, occurring in universal 

testing of combinatorial devices (see e.g. [ 14, K]). The dual form of it, namely fixing 
r and maximizing n, has been considered in [lo] under the name “k-independent 
families”, where the authors prove the following: 

f(n,2)=logn+1/2loglogn+O(l). 

For s fixed and n large enough: 

2S-‘(s-l)lognsf(n,s)S2510g 2” n 
( ( >> 

. 
S 

The upper bound is nonconstructive. 
Some easy values are: f (n, n) = 2”, f (n. n - 1) = 2” - ‘, f (n, n -- 2) = [2”/3] (see [14]). 
Let us notice that a stronger property than s-surjectivity citn be obtained directly 

from coding: take for R the codewords of the dual C of a code C with distance ss 1. 
Then any s-tuple of columns of A4 has rar.k s (otherwise there would exist a 
codeword with weight s in C). Hence every binary s-tuple appears in exactly 2”- ‘-’ 
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rows. In that case, M is called an orthogonal array of strength s (see [I I]). Unfor- 
tunately this is too demanding, and apart for small values of II and s or n -s, con- 
structions obtained from codes are not good. Let us simply mention a construction 
due to Alon !2], based on Justesen codes, giving 

r=c,logn, . 

where c, is huge but does not depend on n. 
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