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Abstract

In this paper a Fermat principle for Lorentzian manifold endowed with a timelike Killing vector field is
formulated. This principle is applied to obtain existence and multiplicity results on the number of light rays joining
an event with an integral curve of the Killing vector fietd2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and statement of the results

In this paper we study lightlike geodesics joining a point with a timelike curve in stationary Lorentzian
manifolds. In particular we shall obtain some results on the existence and the multiplicity of such
geodesics.

The problem of the number of lightlike geodesics joining a pgintvith a timelike curvey on
a Lorentzian manifold is motivated by the phenomenorgi@vitational lens In General Relativity
a space-time is modeled by a 4-dimensional Lorentzian manifold and lightlike geodesics on such a
manifold represent the trajectories of light rays. The gravitational lens effect consists in the reception by
an observer of two or more images of a light source. It is due to the bending of light rays nearby a heavy
mass. As a lens in classical optics, a particular distribution of mass might force the light rays emitted by
a source (represented by a timelike cupeat different values of its proper time, to converge to the same
event on the space—time (represented by a point

A natural approach to this problem is based on the extension to General Relativity of the classical
Fermat principle in optics:
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the trajectory of a light ray from a soureeto a targetB is a stationary curve for the travel time among
all paths joining the point& andB.

Once such extension has been formulated, several results from critical point theory can be applied tc
prove existence and multiplicity of light rays.

There is an extensive literature on this subject, where Fermat principles are formulated for different
classes of Lorentzian manifolds (see [5] for a brief historical account and for a detailed report of different
versions of Fermat principle in General Relativity with applications to gravitational lensing).

The aim of this paper is to study light rays connecting an event with a timelike curve, under intrinsic
assumptions on the Lorentzian manifold, in the same spirit of [7], where it is studied the geodesical
connectedness ofdationarylLorentzian manifold, i.e., a Lorentzian manifold equipped with a timelike
Killing vector field.

The paper is organized as follows. In this section we introduce some definitions and we state our
results. In Section 2 we develop the variational framework and then we establish the Fermat Principle
for a stationary Lorentzian manifold (Theorem 2.5). In Section 3 a number of technical lemmas are
collected, as the Palais—Smale condition for the Fermat functidnaksnd F_ (see (17)). Section 4 is
devoted to the proof of the results. In Section 5 we present some application to a certain class of stationar
Lorentzian manifold including some relevant space—times aS¢he/arzschild, Reissner—Nordstrémd
Kerr space—-times.

Let A be an-dimensional, smooth, connected manifaltlis a Lorentzian manifold if it is endowed
with a smooth(0, 2) tensor fieldg such that for eaclp € A, g(p):T,A x T,A — R is symmetric,
nondegenerate bilinear form of index 1. A tangent veetarT, A is saidspacelike, lightlikeor timelike
according tog(p)[v, v] is positive, null, or negative. This tripartition is called tbeusal characteof a
tangent vector and it is extended to a cugvg — A, I = [0, 1], if its tangent vectors(s), s € I, have
the same causal character.

A Lorentzian manifoldA is said to beime-orientedif there exists a continuous timelike vector field
on A, that is a vector field” such thatg(p)[Y (p), Y(p)] < O for everyp € A. If A is time-oriented,

a tangent vectop to A at p is said to befuture-pointingif g(p)[Y (p), v] < 0, while it is saidpast-
pointingif ¢(p)[Y (p), v] > 0. Analogously a curve iButure-pointingor past-pointingif all its tangent
vectors are, respectively, future-pointing or past-pointing.

A vector fieldY is aKilling field if Lyg = 0, whereLyg denotes the Lie derivatives of the metgic
with respect taY. EquivalentlyY is a Killing vector field if and only if, for all vector field& and Z
on A

glVxY, Z] = —glX, VzY], )

whereV is the Levi-Civita connection associated to the megridt is well known thatY is a Killing
vector field if and only if the stages of its local flows are isometrieWf g) (see, e.qg., [10]).

Definition 1.1. A Lorentzian manifold is saidtationaryif it is endowed with a timelike Killing vector
field.

Remark 1.2. Let A be a stationary Lorentzian manifold endowed with a timelike Killing vector field
SinceY never vanishes, at each point afthere exist local coordinates;, x», ..., x,_1, ) such that
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Y = 5~ on the coordinates neighborhood and the components of the metric, in such a coordinates systern
are not dependlng on the “time coordinatgsee [8]).

Remark 1.3. Let (A, g) be a product Lorentzian manifold such that= Ag x R, whereAq is a smooth
manifold andg is defined as follows: for any = (x,¢) € Ap x R and for any¢ = (§,7) e T, A =
TXAO x R

g, C1= (&, E)o+2(8(x), £)o — B()T2,

whereé and 8 are respectively a smooth vector field and a positive smooth scalar fielthoand

(-, -)o is @ Riemannian metric org. (A, g) is a stationary manifold, indeed the constant vector field
(x,1) — (0, 1) is a timelike Killing vector field. We will call such a stationary manifathndard When

the vector fields vanishes the standard stationary Lorentzian manifold is caffaddard static We

point out that a stationary Lorentzian manifold has a local structure of standard type (see for instance [7.
Appendix C]).

In this paper we assume th#tis complete, that is its flowr is defined onA x R. Moreover we
assume that the timelike curyeis an integral curve of ,i.e.,y :R — A andy(s) =Y (y(s)).

Remark 1.4. Let (A, g) be a smooth connected stationary Lorentzian manifold endowed with a timelike
Killing vector field Y. Since under a conformal transformation of the metric, a lightlike geodesic is
preserved (up to a reparameterization), we can endawith the conformal metric-, -) given by

1
V) = = Y (. Y (S Pl L

for everyu, v € T, A. Since the produgd(p)[Y (p), Y (p)]is constant along the flow lines &f, it is easy
to see that is a timelike Killing vector field also for the metrig, -). Moreover we have

(Y,Y)=—1 )

Let us consider the auxiliary metric of defined by

(u, v)R) = (u, v) +2(u, Y (p)){v, Y (p)) 3)

for everyp € A andu, v e T, A. By the wrong way Schwartz inequality (see [10]) it's easy to check that
the metric(-, -)(g) Is Riemannian. Moreover it can be proved tlias a Killing vector field for the metric
()R-

By the Nash embedding theorem there exists an isometric immersion of the mauifald-) ) in a
well defined euclidean spa@®’, N depending on the dimension of the manifeld So we shall identify
(A, (-, *)®) With a submanifold ofR".

Now let I = [0, 1] and let us consider the Sobolev spdéé?(1, R"). If p andq are points ofA,
p # g, we can define the set

232 =212(A) = {ze HY¥(I.RY) | 2(1) € A, 2(0) = p, z(D) =¢}.

It is well known thats2 2 is a smooth Hilbert manifold (see [11]); for every 27
atz to 232 is given by

b q, the tangent space

T.le {¢ e HY*(I,RY) | ¢(s) € Ty A, £(0) =0, ¢(1) =0}.
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Theaction functionalf : .Q[%f] — R,

1

1
f)= E/(Z(s),z'(s))ds
0

is well defined onQ;:g, indeed we have

(v, V)] < (v, V)R),
for everyp € A andv € T, A. Moreover f is smooth and its differential atis given by

1

@il = [ (9020
0
where V¢ is the covariant derivative of the fieldalongz, with respect to the Levi-Civita connection

associated to the metrig, -). It is well known that a curve : I — A is a critical point of f if and only if
z is a geodesic fofA, (-, -)) joining p andg, i.e.,
V2 =0,
[ z2(0) = p,
z2(D) =gq.
If the manifold is endowed with a Killing vector field, (1) and the equatigi = 0 imply that the
geodesics of A, (-, -)) satisfy the following conservation law:

(z, Y (z)) = constant (4)

Thus we can search the geodesics conneghirand ¢ among the curves im;j verifying (4) for
almost every € /. Let us denote withV, , the set
Nog={z€252]3c. eR: (2,Y(2)) =c. a.e.onl}. (5)
The following result holds (see [7]):

Proposition 1.5. Let (p,q) € A x A. The setV, , is a closedC? submanifold of2-2 and, for every
z €N, ,, the tangent spacgN,, , is defined by

TNyg=1{¢ €T.2:2 | 3c; €R: (Vi£, Y (2)) + (2, V; Y (2)) =, a.e.onl}.

Now fix p € A and consider an integral curve Bf y : R — A. Assume thap is not a point ofy (R).
Let J', t € R, be the restriction of the action functiongl {21:2([) — R to the submanifoldV,, , ).
Moreover let(J") be the sefz e NV, , ) | J'(z) < c¢}. We introduce the following definition:

Definition 1.6. Let ¢ be a real number, we say thét: N, ,, — R is c-precompactif any sequence
{zm}men C (JH)C has a subsequence converging in the compact-open topolagy of

Notice that if{z,,}..en CONVerges ta in the compact-open topology, thén, }..en converges uniformly
to z with respect to the distance otinduced by any Riemannian metric df
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Remark 1.7. In [7], the authors prove that if the restriction of the action functional\g, is
c-precompact for alk € R and for all pairsp, ¢ in A, then A is globally hyperbolic Nevertheless

the global hyperbolicity is in general not sufficient to guarantee geodesical connectedness, not even fo
stationary Lorentzian manifolds (see [7, Appendix B]).

The notion introduced in Definition 1.6 is essential to obtain our existence and multiplicity results on
the light rays joiningp andy (R). The existence is stated in the following theorem.

Theorem 1.8. Let A be a connected stationary Lorentzian manifold endowed with a complete Killing
vector fieldY, p an event o andy : R — A an integral curve ofY such thatp ¢ y (R). Assume that

for eacht e R, J': N, , ) — R is c-precompact, for alk € R. Then there exists at least one lightlike
geodesic joiningp and y (R).

It is worth to point out that the se¥/, , ) may be empty (see [7] for an example). However it can be
proved that ifA is connected and the Killing vector field is complete then for every pair of poings
g € A, the setV,, , is nonempty (see [7, Lemma 5.7]).

The result on the multiplicity of lightlike geodesics joinipgandy (R) is contained in the following
theorem.

Theorem 1.9. Under the assumptions of Theordn8 assume also thatl is noncontractible in itself.
Then there exist a sequence of future-pointing lightlike geodésj¢sand a sequence of past-pointing
lightlike geodesicg/,} joining p andy (R).

Remark 1.10. The results of Theorems 1.8 and 1.9 have been obtained for a standard Lorentzian manifold
(see [3] and [12]). There are no results for the general case.

Remark 1.11. Since any reparameterization of a geodesic is an affine transformation, we can state that
the lightlike geodesics we find in Theorem 1.9, are geometrically distinct.

Remark 1.12. We recall that thechronology conditionis said to hold onA if A contains no closed
timelike curves (see [10]). We point out that, differently from [3,12], our results cover the caseywhen
is a closed curve. So in the present paganay not satisfy the chronology condition.

2. TheFermat principle

Let (A, g) be a stationary Lorentzian manifold, [Btbe a complete timelike Killing vector field on,
let y :R — A be an integral curve of and letp € A, p ¢ y(R). In this section we prove a Fermat
principle for the lightlike geodesics connectipgandy (R).

We start with a characterization of the submanifalg,, proved in [7]. LetW be the distribution of
the vector fields parallel t8, that is¢ belongs ta/V if and only if there exist € 911,3 andu € Hol’z(l, R)
such tha; (s) = uu(s)Y (z(s)). Let W, be the subspace @t 2,2 of the vector fields inV; then

Nog={2€ 22| f(2[¢]1=0, Ve e W.}. (6)
The following variational principle is based on the above characterization of the manifg)d
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Proposition 2.1. Let J be the restriction off to V,, ,, then a curve; € .Q},g is a geodesic om if and
only ifz € NV, , andz is a critical point of J.

Proof. If z is a geodesic, theft, Y (z)) is a constant, hencee NV, ,. Moreover is a critical point for
f and forJ, too. Now, assume thate V,, , is a critical point forJ. If we prove that

1,2 _
T.QYM2 =T.N,,&W.,

by (6) we have that is also a critical point forf, hence it is a geodesic. Lete 7,212, we have to

P-4’

prove that there exisi € Hy%(1, R) and¢ € T.\,, such that

L =pY @) +¢.
The field¢ =z — uY (z) belongs tal. N, 4, if and only if the equation

(V£ Y (@) — 1 — w(VsY (2), Y (@) + (2, V:Y (@) — (2, VyY (2)) = C, (7)
is satisfied for some consta@t SinceY is a Killing vector field, we have

—(z, Vy Y (2)) = n(ViY (2), Y (2))
and

(2, VY (2)) = —(C, VY (2)).
Therefore (7) becomes

(Vi&, Y(@) =1 = (£, VsY () = C.
Thenu is given by

p(s) = / ((Vs, Y () = (£, V,Y (2)) = C) . (8)

0
Clearly u € H%?(I1,R), 1(0) = 0 and, setting
1
c= [ v -Evre)s ©)

0
we haveu(l) =0, too. O

Let us denote by : A x R — A the flow generated by the vector field Let g = y(0) andr € R.
(I;/Ic;_reo(\j/ebr, consider the point(t) and the map7' : 212 — 272 = which mapsz into the curvez’
efined by

Z'(s) =¥ (z(s), 1s). (10)

Proposition 2.2. The mapF’ is a diffeomorphism and its inverse map is givenfy. Moreover let7’
be the restriction ofF* to N, ,, then7" is a diffeomorphism frow,, , to NV, ., ().
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Proof. Let us denote by the identity map of the interval. Then the map’ is given by
2> (3, t)) > Yoz, tj) =17,

henceZ" is a smooth map fron222 to 2% | (see [11, p. 323, Theorem (4)]). Clead§ has inverse

map given byF ', hence itis a dlﬁeomorphlsm.

Let us denote by d¥ (xq, up) the differential ofr with respect to the variable € A, evaluated at the
point (xo, ug), and by g¥ (xq, ug) the differential of¥ with respect to the variable € R, evaluated at
the point(xo, ug). SinceV is the flow ofY, it results

d, ¥ (xo0, ug)[1] =Y (¥ (xo, uo)) (11)

and

do ¥ (2(s), 5)[Y (2(9)) ] = Y (¥ (2(5). 15)). (12)
Differentiating Eq. (10), since, @ is an isometry, Egs. (11) and (12) give

(Y () =(d LY (")) + (APl Y ()= Y@) +1{Y(2), Y (@) = (2. Y (@) —t.  (13)

By (13) we deduce that € NV, , if and only if 7'(z) € N, (). Therefore (N, ;) = N, , ). So
J'=F',, is actually a diffeomorphism fromV/,, , to NV}, (). O

By using (2), (11), (12) and the conservation of scalar product, b, the action functional o2
evaluated at’ = F'(z) can be written in the following form:

1

P V(t)

1
) =3 /<dxl1/(z, t9)[2] 4 A, ¥ (2, 19)[t], & W (2, 19)[2] + A, ¥ (2, 1) [¢]) dis

0
1 1

1
=§</<z,z>ds+2/t<z,Y(z)>ds—t2>. (14)
0 0
Let H': .Q[%f] — R be the smooth functional defined as

1 1

H'(2) =%f<i,i> ds+t/<z, Y (z)) ds — %:2.
0 0

Clearly, by (14), it results” o 7' = H'. Moreover the chain rule applied to the m#po F* implies that

(f) ()¢ = (H) @I¢1, (15)
for everyz e .Qp 2" '=F(2), ¢ €T, .Q and; =dF"(z)[¢]. Now consider the restrictiot’ of H'
toNV, ,; G' is given by
‘ 1l : 1,
G ()= §/<Z’ z)ds +1(z,Y(2)) — Et , (16)
0

for all z € V,, ,. The following proposition on the critical points of the functior&l is a consequence of
(15).
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Proposition 2.3. Letz € V, ,. Thenz is a critical point of G if and only ifz = F'(z) is a critical point
of J*.

Proof. The mapG’ is equal toJ’ o 7' and, since7" is a diffeomorphism froraV, , to \V,, ,, (), the chain
rule yields the thesis. O

The equatiorG’(z) = 0 defines the following functionalB,. and F_ on the manifoldV, ,:

Fi(@=(5Y@)+ [(&Y@)*+ [(z2)ds

O\H

1
—(2,Y(@) R + /Z DR ds — (2. Y (@) &) (17)
0

1
F_(2)=(z,Y(@)— |(Y() 2+/
0

1
(Z Y(Z) (R) — / Z Z R ds — Z Y(Z))%R). (18)
0

Proposition 2.4. The functionalF, is well defined ooV, ,, it is smooth and for everye \V, ,
FL@E1= (V58 Y () + (2, Ve Y (2))
L EYOIYE Y @)+ (& VY @) [ (& Vie)ds

: (19)
JEY @12+ [z 20 ds
forall { e ., ,.
Proof. The non obvious part of the proposition is to prove that
1
(z,Y(2)) 2+/ z,z)ds _/ Z,2)r ds — (2, Y(z))fR) >0,
0
for everyz e NV, ,. From the Schwartz inequality we deduce
1 1
/ LR s — (2, Y ()R = / ((z. ) ® — (2. Y (2))ig)) ds =0, (20)
0 0

forall z € NV, 4. Thus we have only to prove that

(& Y(@)r = (2, 2)m €. 0, (21)
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never holds. By contrary assume that (21) holds, then a trivial computation shows; that,
(2,Y(@)®Y (). Leta = (z,Y(2))rR), a € R, then we can writg = aY (z), almost everywhere of.

Since Y (z) is a continuous vector field along we have that is continuous, too. Thereforg(7) is
contained in the support of the flow lireof Y passing throughy. Butz(1) = ¢ € y (R) andy is a flow

line of Y. This means that(R) andy (R) intersect, hence by the theorem about the uniqueness for the
integral curves of a smooth field through a fixed point, they coincide. This is in contradiction with the
assumptiorp ¢ y(R). O

An analogous proposition holds for the functiorfal.

Theorem 2.5 (Fermat principle)The curvel : I — A is a lightlike geodesic joining and y (R) if and
only if there exists a couple, r) € N/, , x R such that = F..(z) (respectively; = F_(z)), z is a critical
point of F. (respectivelyF_) andl = F'(z).

Proof. Define the functiona§ : V, , x R — R, by setting

G(z,t) =G'(2).

Let! be a lightlike geodesic joining andy (R) and letr € R be such that(1) = y (¢). Letz = F'(I),
whereF " is the inverse ofF". Sincel € N/,, ), z is a curve inV,, , andl = F'(z); moreoverJ'(l) =0
impliesG'(z) =0, thatist = F,(z) ort = F_(z). Lett = F,(2), then it results

G(z, Fi(z)) =0. (22)
Differentiating Eq. (22) we get, foralle NV,, ,,
G.(z, F1(2)) + Gi(z, F4+(2)) F} (2) =0, (23)

where G, (z, F.(2)) and G,(z, F(z) denote, respectively, the differential of with respect to the
variablez € NV, , and to the variable € R, evaluated at the poirt, F(z)). Since(J')'(/) = 0 and
G.(z, F1.(2)) = (GF9)(z), Proposition 2.3 implies

gz(z, F+(Z)) = O.
Thus from (23), we geg, (z, F(z)) F\ (z) = 0. Now if
0= gz(Z, F+(Z)),

then, since
1
Q,(z, F+(z)) =(,Y)—t={(,Y)—F (2)=— |{z,Y(2)2+ /(i,i) ds,
0
it would be

1
(2. Y)?+ / (z,2)ds =0, (24)
0
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but we have shown in the proof of Proposition 2.4 that (24) never holds. Conversely)i€ N, , x R
is such thatr = F,(z) and z is a critical point of F,, then G(z, F,(z)) = 0 and consequently
JF+@(zF+@) = 0. Moreover by (23) it follows thag.(z, F,(z)) = 0, hence(G+®)'(z) = 0 and by
Proposition 2.3(J+@)/(z+@) = 0. Thereford = z+® = 75+ (z) is a lightlike geodesic joining
andy(R). O

Remark 2.6. If z € NV, , andr = F, (z), then substituting the value ofin (13) shows thatz’, Y (z")) is

a negative constant. Thus we have that the critical point&,oare mapped by/ into future-pointing
lightlike geodesics. Analogously the critical pointsff correspond to past-pointing lightlike geodesics,
joining p andy (R).

Remark 2.7. Whenever the Lorentzian manifold is not stationary, different version of Fermat principles
have been formulated (see [1,4-6]).

3. ThePalais-Smale condition for F,

In this section we shall prove some technical lemmas which are needed to prove the results of this
paper. We shall direct our attention only &h. Indeed the same arguments hold far.
We first recall a basic lemma contained in [7]. We report its proof for the convenience of the reader.

Lemma3.1. Letr € R and consider the functional’ : NV, , ;) — R. If J" is c-precompact for alt € R,
then for anyc € R there exists a positive constabt(c) such that

sup [(z, Y ()| < D(o).
ZE(JI)(S

Proof. Let{z,}.cn be a sequence contained(iff)¢ such that

| Y (zm))| = SUP |(2, Y (2))].

lim
m—0Q zé(./t)c

We have to prove that the sequen¢€,,, Y (z.,))|}nen IS bounded. By the-precompactness, passing
to a subsequence, we can assume ghatonverges uniformly to a curve: I — A. Therefore{z,, },en

is definitively contained in a compact neighborhoddof z([0, 1]). The local structure of a stationary
manifold (see Remark 1.3) allows us to choose a finite number of local charts of the manifold

(Uk, x,%, ... ,XZ_l, lk)

such that

1<k<r?

e {Uili<k<r is @ covering ofV and, for every € {1,...,r},
Ur = Ao x |—ex, &l
where Ag is a submanifold o/, ande; a positive real number;
o foreveryke{l,...,r}, Y|y = (j’Tk and, settings, = (xkl, . ..,x,f‘l), the Lorentzian metri¢-, -) on
U, is given by

(0, 1), (U, D = 8ok (X[, V] 4+ gox (X ) [8x (Xe), v]T — T2, (25)
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wherego , denotes the Riemannian metric induced(hy) on Aq; andé; is a smooth vector field
on Aogy;

e max, SRy, v/&o.x(Xe)[8k (i), 8 (X)] = Do < +00;

e there exists a finite sequence=0ip < a1 < - - - < a, = 1 such that definitively,, (Jax—1, ax]) C Us,
foreveryk e {1,...,r}.

We set
A= sup |t(p1) — tx(p2)l,
P1,p2€Ux
and
A= mkaxAk.

Notice that, by the compactness Wf we can assume; < +oo for all k, hence alsa\ < +o00. Let us
denotego ; with (-, -)ox. Form large enough and € [a;_1, ax] we havez,,(s) = (Xi.m (5), t.m (s)) and
Y (zn) = (0, 1). Then fors € [ax_1, ax] we have

{2y Y @) = AR frm)s (0, 1)) = (8 Xem)s Ko dok — fim- (26)

Integrating (26) ovefa;_1, a;] gives

ag
) 1 )
(Zms Y (zZm)) = 7( / (85 XKiem ) Xie,m )0, S — tim (i) + tk,m(ak—1)>- (27)
ag — Q1
ag—1

Since(z,,, Y (z,)) is a constant, for every=1,2, ..., r, we have

A — di—-1

ag
1 :
|<Zma Y(Zm)>| < 7<D0 / vV (Xk,ma Xk,m)O,k dS + A)

ak—1

Thus the lemma is proved if we show that the sequence of real numbers

meN

[ / vV (Xk,ms Xk,m)O,k ds} (28)

is bounded for at least one valueiofFrom (25) and (26) we obtain

ay dag
/ (im’ Zm) dS = / ((Xk,ma Xk,m)O,k + 2<5k(xk,m)a Xk,m)O,kik,m - ikz,m) dS
ai—1 ag—1
ag
= / ((Xk,ma Xk,m)O,k + <8k(xk,m)a Xk,m)(z),k - <Zma Y(Zm)>2) ds. (29)

ag-1
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Substituting (27) in (29), we get

ay ag ag
/ (im’ Zm) ds = / <Xk,m’ Xk,m)O,k ds + / <5k(xk,m)’ Xk,m)(z),k ds
ag-1 a1 k-1
ag 2
1 .
- —< /<5k(xk,m)s X, m )0,k dS)
ag — k-1
ag—1
2 @ 2
tem —lem — . Tem — tiem -
. (e, m(ax) — tim(ar—1)) (5 O ), Kook O — (te,m(ax) — tim(ar-1)) .
ay — ag—1 dp —ag—1
ag—1
By the Holder’s inequality we have
i i 2t () — temlar-1) [
. . . . t m\a — 1 m\Adg— .
/ (Zms Zm) s > / (Xie.m» Xic.m o,k Ols + fom 7~ m 2k {8k Kiem)» Xe.m Yo,k ds
ap — Ag-1
ag—1 ag—1 k-1
Tem — lem — 2
_ em(ar) — tim(ax-1)) ‘ (30)
ap —ag-1
Summing (30) ovek we obtain
1
262/ Zms Zm dS>Z / X > Xkc.m )0,k Os —ZADOZ / V Kiems Xic.m o,k ds
a,—a
, k k— 1
— A? (31)
Z 7 Ak — Qk— 1

By (31) it follows that the sequences (28) are bounded fat,althich proves the lemma. O

Now we pass to prove the following lemma that we will use in the proof of the Palais—Smale condition
for F,.

Lemma 3.2. Assume that for evenye R the functional/’ is c-precompact for alk € R. Let{z,,},nen C
N, , andC > 0 such that

|Fi(zn) < C. (32)
Then

SUP[(Zm, ¥ (zm))| < +o00.
Proof. By contradiction, if sup [(z,, Y (zx))| = +o00 then (17) and (32) implies the existence of a
subsequence, which will be denoted again$)y}..cn, such that

”!i_[noo(Zm’ Y(Zm)> =—= mlinoo _<Zma Y(Zm)>(R)- (33)
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Moreover (17) and (32) yields

1
/ Zms Zm) @ A5 = (s Y @) Gy < (G Y @)y + €2+ 2C (G, Y (2)) Ry (34)
0

From (3), (16) and (34) we get
1

1 1 . 1,
5/ i 5 Efzm,zm 0 85 = (e, ¥ )y = o, Y Gy = 5

0 0

1

1
262 + Clm Y @) R) = tms Y @) R) — E’

Thus fixt > C. From (33) it follows
lim J'(z},) = —oo0,

and there exist€’; € R such that for everyn € N, J'(z!,) < C1. Hence, by Lemma 3.1,
sul(z). ¥ (<3,)] < +oe. (35)
On the other hand (13) and (33) imply that gug’,, Y (z},))| = +o0, in contradiction with (35). O

Now we can pass to the proof of the Palais—Smale condition for the functianalVe recall that a
smooth functionalf defined on a Hilbert manifoldM, g) satisfies the Palais—Smale condition if every
sequencéz,, }men, such that £ (z,,)}men is bounded and ligp, o || f'(z) |l = O (here|| f/(z,,)|| denotes
the norm of the operatof’(z,,) in the Hilbert spacd’, M), contains a converging subsequence.

Theorem 3.3. Assume that for anye R the functional/? is c-precompact for alt € R. ThenF, satisfies
the Palais—Smale condition.

Proof. Let{z,}n.n be a sequence of curves containedvip, andC > 0 such that

|Fi(zm) < C, (36)
IFL (zw)| = O. (37)
We have
1
|F+(Zm)|—‘ (Zm, Y (zm))® + /stzm R A5 = (Zn, Y (@n))ig) | < C
0

thus by Lemma 3.2 there exists a const@pnt- 0 such that

1

/(im, Zm)(R) ds < C1. (38)

0
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By (38) we deduce thdt,, }.cy is bounded inH?(1, RY) hence, passing to a subsequence, there exists
z € HY?(I,R") such that,, — z weakly in H+2(1, R"). By the definition of(-, )&, and (38) it follows
that

sup/ (Zms Zm) ds < 400. (39)

Then, by thec-precompactness, we can extract another subsequence converging uniformly to a curve
in A. Thenz € £22(A). Let us denote byi(z) the functional

1 1

A(Z)=/(2,Z.>(R) ds —/(i, Y(Z))%R)ds

0 0
Consider now the functionaf, : 2:2(A) - R

1

Fi(z)=— /(2, Y (2)) R ds + VA(2).
0

Arguing as in the proof of Proposition 2.4 (now the vector flglgT is continuous over the subset of

the points in/ where(z, Y (2))r, does not vanlsh;F+ is smooth onQ;j(A) and its restriction toV, , is
equal toF, . For everyz € 21:2(A) and for any; € T.212(A), the differential ofF, in z at? is given
by

1

1
FL@It / (VRZ,Y(2)) g d / (2, VY (2)) . d
0

Jo VL 2w ds = [z Y @) RUVRE Y @)@ + (2, VY (@)1 ds
VAG) ’

whereV® denotes that Levi-Civita connection with respect to the Riemannian nietrig,. Sincez,,

converges ta weakly in H?(1, RY), there exist two Sequences, }mey and {vy }men in HY2(1, RY),
such thatz,, € szQ“(A) Zm — 2= Cm + Vmy Tm — O weakly in H2(1, RY), v,, — 0 strongly in

HY2(I,R") (see [9, Proposition 2.9.6]). Moreover, as in the proof of Proposmon 2 1, we can define
two sequences$,, }meny and {i, Jmen Such that for everyn eN, ¢, €T, N,y thm € H 2(1,RY) and

T = Cm + mY . Since{ly}men is bounded mT.QP pp also{¢u}men is bounded inT NV, ,. Indeed from

the equalityz,, = Z,, — un Y, it is sufficient to show that the sequenge, Y },.ex is bounded iriTQ[%f].
The fieldY satisfies

Y@, Y@)w =1 (41)
thus

(40)

1 1
/(/LmY(Zm)v MmY(Zm»(R) ds = / /1';2;, ds. (42)
0 0
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Furthermore

1 1

1
/ 2 /
/ (Vb ¥ (), Vi sn ¥ (2m)) g, Os = / (1)) ds +2 / PtV (), VAUV (20)) g A
0 0 0

1
+ / W (VY @n)s VDY (2)) g, G-
0

By (41) we obtain{V:X'¥ (z,,), ¥ (zx))®) = O, for almost every € 1, thus we get
1 1 1
/ (Vs ¥ (), V2 sn ¥ (2m)) g, G5 = / ()7 ds + / PE(VEDY (2n), VY (2)) ) ds.  (43)
0 0 0

Let us denote by - || and || - ||, respectively, the.? and theL> norm. If the sequence||i’, |12} men
is bounded then als@l| i, |2} meny @and {|lm lloo}men are bounded. By (38), the curves have images
contained in a compact set df and, sincel” is smooth,

1

[ / HAVEVY (2), VAR (2)) g, O } :

0 meN

is bounded. Therefore, from (43)4,,Y (zm)}men is bounded iril' 22 if {11, |l2}men is bounded. Since
(z,Y(2)) = —(z, Y (2))(r), the manifoldV, , is equivalently deflned as

Nog={z€2;2]3c. eR: (2, Y(2))r =c. a.e.onl}.
By such a definition, for alt € N,, ¢» We have that
TN, ={¢ e T.2;%|3c; eR: (V¢ Y(@)g +{E ’Vs(R)Y(Z))m)

As in the proof of Proposition 2.1, we can writg, by means of (8) and define the constafits as in
(9), where novW.(R) and(-, -)r) take, respectively, the roles 8f and(-, -). Then it follows:

=c; a.e}.

1ol [ VEV T |+ 12l | VY (2| (a4
and
1
/ (14,)°ds <3| VNG, |2+ 31Zull% | VY (@) |5 + 3C2. (45)
0

By (38), (44) and (45), it follows thaff|| i/, |2} men IS bounded and consequently, }..cn is bounded in
TN, ,. Therefore, (37) implies that

SinceY is a Killing field we have(z, Vi (1)) = — (VY (2), Y (2))® and (VRY (2), 2} = 0.
Moreover (41) impliegsVR Y (z), Y (z))® = 0. So recalling thatz,,, ¥ (z..)) ) is a constant-a.e., from
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(40), we easily obtain

F (z)mY1=0, (47)

for everym € N. Since it results

F_/;_(Zm)[gm] = F_/;_(Zm)[;m + unYl,
from (46) and (47), we get

FL(zn)[&n] = O,
that is

1

1
. m Cmv Zm (R) dS
Fi (zn)[En] = / (V0% ¥ (zm)) g d f (zm,V§§)Y(zm>)(R)ds+f° ‘
0

) VA,
N —(ams Y @) Jo (Vi Gy Y @) ) + (s ViRY (2)) ) O o u8)
VAGw) '
Since¢,, converges weakly and uniformly to 8, uniformly to z and (38) holds, we deduce that
1 1
/(V(z%);m, Y (2n)) g, ds /(zm, Vg)Y(Zm))m) ds — 0. (49)
0 0

Recalling that the sequencgs,,, Y (z.))® } and{A(z,,)} are bounded and multiplying both hand sides
of (48) by /A(z,,), from (49), we obtain

<V$)Zm, Zm>(R) ds — 0.

O\b—‘

Thus, since;,, — z = £, — v, We have

1

1
/ (RN) dS—/(Zm _Za Em +f)m>(]RN) dS
0

1

0
1
= /(Z - Z Vz(s)gm>(R) ds —+ /(Zm — Z, ﬁm)(RN) ds — 0,
0 0

where (-, -)gv denotes the euclidean product®?, ¢, andv,, the derivatives of the vector fields,
andv,, in RY. Thereforez,, — z strongly inH%2(1, R"). Hence there exists a subsequenc&nf,.cx
which converges almost everywhereztaConsequentlyz, Y (z)) ) is a constant almost everywhere on
landzeN,,. O
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4, Proof of Theorems1.8and 1.9

In this section we will prove the Theorems 1.8 and 1.9. In the next lemma we shof.tibounded
from below.

Lemma4.1. Under the assumptions of Theordn8, F, is bounded from below.

Proof. Let{z,} be a minimizing sequence faét, and assume by contradiction that
lim F,(z,) = —oc. (50)
m—0oQ

Then, for anym large enough,

1

/ o i) 85 < 20, ¥ (2)) 2 (51)
0
Moreover from (50) we deduce that

rr!inoo _<Zm’ Y(Zm)>(R) = —0oQ. (52)

Now, lett € R, t > 0. By (3), (16) and (51) we get

1 1
1 1 1,
> (2ps 2y ds = =3 (G Zn) R AS = (2 Y (@) r) — 142ms Y @) Ry — §t
0 0

) 1,
< —HZm, Y (@m))R) — §t .
Therefore it results
lim J'(z},) = —oo0,

m—0o0

and there exists a constant R such that for anyn e N J'(z),) <c. By Lemma 3.1, itis
Sup2,. ¥ (24 )| < +oo.

Then (13) implies that
Srl;p| (Zm> Y (zm)) )| < 400,

in contradiction with (52). O

Proof of Theorem 1.8. By Lemma 4.1, the functionaF, is bounded from below. Moreover, by
Theorem 3.3, it satisfies the Palais—Smale condition. Finally the sublevéls afe complete metric
spaces. Indeed {&,,}.cn iS @ Cauchy sequence {iF, )¢, then it converges to a curves H2(1, R").
SinceF, is bounded from below, the assumptions of Lemma 3.2 are verified, hence it is

Sup| <Zm’ Y(Zm)>| < +o00.
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Arguing as in the proof of Theorem 3.3, we get (39). By ¢hgrecompactness, we have that the sequence
{z.}men has a subsequence converging uniformly to a curva.ibuch a curve must coincide with
hencez € NV, ,. Thus the sublevels of, are complete metric spaces. By a well known theorem in
Critical Point Theory (see, e.g., [9]), these propertieg'ofimply that it attains its infimum at a point
on\, ,. By Theorem 2.5 such a minimum point provides a lightlike geode&ic¢? = 7+ (z), joining
pandy(Fi(z)). O

The proof of Theorem 1.9 is based on the Ljusternik—Schnirelmann category. We recallXhataf
topological space and is a subspace aX, the Ljusternik—Schnirelmann category 4fin X, denoted
by caty A, is the minimum number of closed, contractible subset® ofoveringA. If A is not covered
by a finite number of closed, contractible subsetXofve set cat A = +oc0. Moreover we will denote
by catX the category o in X.

Proof of Theorem 1.9. SinceA is not contractible in itself, a well known result by Fadell and Husseini
(see [2]) says that cm;:fl = +o00. By the completeness df, it can be proved that also céf, , = +oo

(see [7, p. 186]). Moreoved,, , is an Hilbert manifold and, is bounded from below, satisfies the
Palais—Smale condition and has sublevels which are complete metric spaces. Therefore, by a standa
argument in Critical Point Theory, has infinitely many critical points and it diverges on the set of

its critical points. Thus there exists a sequefig,,.cn Of critical points of . which, by Theorem 2.5,
provides a sequendé! },,cy of lightlike geodesic ofA, such that, for eveny: € N, I = 75+Gn)(z,) and

I+ joins p andy (F4(z,,)). Moreover, by Remark 2.6, we can conclude that the sequghteonsists of
future-pointing lightlike geodesics. O

Remark 4.2. The result on the existence and multiplicity of light rays connectingnd y (R) and
pointing into the past can be obtained using the functidghainstead ofF, .

5. Application to standard stationary L orentzian manifolds

In Remark 1.3 we recalled the definition of standard stationary Lorentzian manifolds. Cfpzksly
a timelike Killing vector field for such manifolds. Its integral curves are the vertical linesR —
(x0,7) € A, for all xg € Ag.

In this subsection the coefficiefitwill be assumed constant and equal to 1 (see Remark 1.4). Moreover
we require the metrig to satisfy the following assumptions:

¢ the Riemannian manifoldiy is complete;
e the vector field is bounded, that is there exists a positive consiznt R such that

Sup v/ (8(x), 8(x))o < Do.

xeMp

Let p=(x,7) € A = My x R and consider the vertical ling through the pointy = (xo, 0), X # xo. Fix
r € R and setA =r — 1. In this setting the manifoldd/,, , (., are given by

Npyr={z=(x.1) € 2,2 |3c. eR: (8(x).1)o—F=c a.e. onl}. (53)
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The constant, in (53) can be easily computed, namely integration dvprovides
1

€= /(5(16), X)o— A, (54)
0
soc, depends solely om and it will be denoted by, .
We are going to see that the functiondls'}, g are c-precompact for every € R. Let {z,,}nen,
Zm = (xm, 1n), @ S€QUence of curves contained in the subley®l c NV, , (), ¢ € R. Taking into account
the definition of\, , (., (cf. (53)), the action functional evaluated on such a sequence is

1 1
5/ ZmaZm dS—_
0

1
~2

1 1

. 1.
().Cm,).Cm>0dS +/<8(xm)axm>0tm ds — E/t’i ds
0 0
1 7 1
-xm’ -xm odS + 5 /(8(-xm)axm>(2)ds - _Cz

2 2
0

o\u—‘ \b—‘

Since f01<2m, Zm) ds < ¢, from (54) we obtain
1 1 1
/(xm,xm Yods < 2¢ — / (8(Xm)s Xm)o )2 ds +c§m <2 — ZA/ (8(Xpm), Xm)ods + A2

0 0 0

<2c+ 2AD0/\/ (s Xm)ods + A2,
0

This last inequality implies that s;,;gfol(icm,fcm)o ds < 400, so by the Ascoli-Arzeld Theorem there
exists a subsequence {af,, },,cy converging uniformly to a curve org. From (54) and the equality

1 1

/i,ﬁ ds :/((8(xm),fcm)o—cxm)2ds

0 0

we deduce that sqpfolt',ﬁ ds < +o00; so the sequencér, ).y admits a subsequence uniformly
converging to a curve:/ — R. As a consequence, from the sequengg},.yx We can extract a
subsequence converging uniformly to the cutver).

If we takeqg = (x1, 0), a simple calculation shows that functiondls and F_ are independent on the
t component of the curve= (x, r) and are defined in the following way:

1
FM@E&@P%+/®@J%¢+
0 \
1
F(Q=F_(x)=ty+ /(5()6), X)ods —
0 \

1

wm&%m+/wwm&

0

o\n—‘

1

(8(x), * 2ds+/()'c,5c)ods.
0

o\n—‘
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Now we pass to study some physically relevant space-times. We shall prove that the results obtained i
this paper can be applied to such space—times.

5.1. Schwarzschild space—time

The Schwarzschild space—time is the solution of Einstein equations, representing the spherically
symmetric empty space—time outside a spherically symmetric massive body (see [8]). It is defined as
follows: letm be a positive constant (the mass of the body) and

Aoz{xeRs‘ | x| >2m}
(] - | is the Euclidean norm iiR3), the Schwarzschild space-time is the manifale= Aq x R endowed
with the metric
1
B
where(r, 6, ¢) are the polar coordinate &° andg(r) =1 — % HenceA is a static standard stationary
Lorentz manifold and;’—t is a timelike Killing vector field. It is well known thatt, endowed with the

conformal metric®? is complete. So ifp = (x,7) andg = (xo, 0) are two points onA andy is the
vertical line throughy, then for eachr € R, the functional(J")¢ is c-precompact for alt € R. Therefore
Theorem 1.9 holds in the Schwarzschild space—time.

ds?

dr? + r?(do? + sirf 6 dg?) — B(r) d?, (55)

5.2. Reissner—Nordstrém space—time

The Reissner—Nordstrom space-time describes the space—time outside a spherically symmetri
massive body carrying an electric charge (see [8]). There exist coordinates in which the metric has the
form (55) with

62

pr=1-2"4 (56)
r m

wherem is the mass anelthe charge of the body. As in the Schwarzschild, whenever the electric charge
satisfies the conditioe® < m?, Theorem 1.9 holds outside the first event horizon, that is on the manifold
{x eR3: |x| > m 4+ +/m? — €2} x R endowed with the static metric (55), withgiven by (56).

5.3. Kerr space-time

Finally we give an outline of the Kerr space—time outside stetionary limit surface It is the
stationary gravitational field outside a rotating massive object which cover the so-called stationary limit
surface. In mathematical terms,sf is the mass of the bodyya is its angular moment as measured
from infinity, (r, 6, ¢) are the usual polar coordinate k¥ andm? > a2, the Kerr space—time outside the
stationary limit surface is the Lorentzian manifdlde R3: |x| > m + vm2 — a?2co$6 } x R endowed
with the stationary metric

2
ds? = pZ(% + d92> + (r* + a?) sirf 0 dp? — dr® + %(a sin? 6 dg — dr)’,
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wherep? = p?(r, 6) = r’+a?cos 6 andD = D(r) = r®—2mr +a?. If we suppose that the surface of the
rotating body is very close to the stationary limit surface; m + vm? — a?cog 6, and the coefficient

a is small, an analogue of Theorem 1.9 can be proved, provided that the notion of manifold with smooth
light-convex boundaris introduced. In this case, we should assume that the timelike Killing vector field

is tangent to the boundary at each of its points and we should replace the fundtiohgl a family

of perturbed functionals satisfying theprecompactess condition (see [3] or [9] for the notion of light-
convex boundary and for the analogue of Theorem 1.9 in the context of standard stationary Lorentzian
manifolds).
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