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a b s t r a c t

Let G = (V , E) be a simple, connected and undirected graph with vertex set V (G) and edge
set E(G). Also letD(G) be the distancematrix of a graphG (Janežič et al., 2007) [13]. Herewe
obtain Nordhaus–Gaddum-type result for the spectral radius of distance matrix of a graph.

A sharp upper bound on themaximal entry in the principal eigenvector of an adjacency
matrix and signless Laplacian matrix of a simple, connected and undirected graph are
investigated in Das (2009) [4] and Papendieck and Recht (2000) [15]. Generally, an upper
bound on the maximal entry in the principal eigenvector of a symmetric nonnegative
matrix with zero diagonal entries and without zero diagonal entries are investigated in
Zhao and Hong (2002) [21] and Das (2009) [4], respectively. In this paper, we obtain an
upper bound on minimal entry in the principal eigenvector for the distance matrix of
a graph and characterize extremal graphs. Moreover, we present the lower and upper
bounds on maximal entry in the principal eigenvector for the distance matrix of a graph
and characterize extremal graphs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Since the distancematrix and relatedmatrices, based on graph-theoretical distances [13], are rich sources of many graph
invariants (topological indices) that have found use in structure-property-activity modeling [7,14,17], it is of interest to
study spectra and polynomials of these matrices [9,19].

Let G = (V , E) be a simple connected graph with vertex set V (G) = {1, 2, . . . , n} and edge set E(G), where |V (G)| = n
and |E(G)| = m. For i ∈ V , di is the degree of the i-th vertex of G, i = 1, 2, . . . , n. The minimum vertex degree is denoted
by δ and the maximum by ∆. The diameter of a connected graph G, d, is the maximum distance between two vertices of G.
The distance matrix D(G) of G is an n× nmatrix (di,j) such that di,j is just the distance (i.e., the number of edges of a shortest
path) between the vertices i and j in G [14]. A set S of vertices in a graph G is called independent if no two vertices in S are
connected by an edge. The maximum cardinality of such a set is called the independence number of G and denoted by α.

Let A = (ai,j) be a symmetric nonnegative irreducible square matrix of order n. The smallest diagonal entry of A is
denoted by m and the largest by M . Also let µ(A) be the spectral radius of matrix A. It is well known that the p-norm of a
vector X = (x1, x2, . . . , xn)T is defined as follows:

‖X‖p =

|x1|p + |x2|p + · · · + |xn|p

1/p if 1 ≤ p < ∞. (1)

Clearly, D(G) is a real symmetric nonnegative irreducible matrix and hence all its eigenvalues are real. The distance
eigenvalue of largest magnitude is the distance spectral radius, denoted by µ; it corresponds, by the Perron–Frobenius
theorem [8], to a positive distance eigenvector. Balaban et al. [3] proposed the use of µ as a structure-descriptor, and it
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was successfully used to make inferences about the extent of branching and boiling points of alkanes [3,10]. In [5,11,22],
some lower and upper bounds on the spectral radius of the distance matrix of a graph are presented. Balasubramanian [2]
computed the spectrum of its distance matrix using the Givens–Householder method. In [1], the distance polynomials (that
is, the characteristic polynomials of the distance matrices) were computed for several graphs. There exists a vast amount
of literature that studies the spectral radius of the distance matrix. We refer the reader to [12,22,20] for surveys and more
information. Let Y = (y1, y2, . . . , yn)T be the positive eigenvector corresponding to the spectral radius µ = µ(D(G)). We
may choose Y so that ‖Y‖p = 1 (1 ≤ p < ∞) and the unique positive vector Y is called the principal eigenvector of D(G).
The principal eigenvector is of interest since it is often used in applications (see [18] for an overview). Let ymaxp and yminp be
the maximal and the minimal entry of the principal eigenvector of D(G). The path, star and complete graph of order n are
denoted by Pn, K1,n−1 and Kn, respectively.

Papendieck and Recht [15] obtained an upper bound on themaximal entry ymaxp of the principal eigenvector of adjacency
matrix of a simple, connected and undirected graph:

ymaxp ≤


ρp−2

1 + ρp−2

1/p

, (2)

where ρ is the spectral radius of adjacency matrix. Moreover, the equality holds if and only if G ∼= K1,n−1.
In [4], we obtained an upper bound on the maximal entry ymaxp of the principal eigenvector of signless Laplacian matrix

Q (G) of a simple, connected and undirected graph:

ymaxp ≤


(q − δ)p−1

q − ∆ + (q − δ)p−1

1/p

p ≥ 1, (3)

where q is the spectral radius of Q (G), and ∆, δ are the maximum and minimum degrees of G, respectively. Moreover, the
equality holds in (3) if and only if G is isomorphic to a super graph of star K1,n−1 for p = 1 or G ∼= K1,n−1 for p > 1.

In [4], we obtained a sharp upper bound on the maximal entry in the principal eigenvector of symmetric nonnegative
irreducible matrix in terms of its order (n), the largest (M) and the smallest (m) diagonal entries of that matrix. The result is
as follows:

ymaxp ≤


(n − 1)(p−2)/2(µ − m)p/2

(n − 1)(p−2)/2(µ − m)p/2 + (µ − M)p/2

1/p

(p ≥ 2), (4)

and equality can be attained. Moreover, the upper bound of Zhao and Hong [21] for the maximal entry ymaxp follows as a
special case.

The paper is organized as follows. In Section 2, we give a list of lemmas. In Section 3, we obtain Nordhaus–Gaddum-type
result for the spectral radius of distance matrix of a graph. In Section 4, we present the upper bound on the minimal entry
in the principal eigenvector of the distance matrix of a graph and characterize the graphs which achieve the upper bound.
In Section 5, we give the lower and upper bounds on the maximal entry in the principal eigenvector of the distance matrix
of a graph and characterize extremal graphs.

2. Bounds on the spectral radius of distance matrix of a graph

In this section we give the lower and upper bounds on the spectral radius of the distance matrix of a graph.

Lemma 2.1 ([11]). Let G be a simple connected graph with Wiener index W. Then

µ ≥
2W
n

with equality holding if and only if D1 = D2 = · · · = Dn, where Di =
∑n

j=1 di,j, W =
1
2

∑n
i=1 Di.

Corollary 2.2. Let G be a simple connected graph of order n. Then

µ ≥ n − 1 (5)

with equality holding in (5) if and only if G ∼= Kn.

Proof. For each i,

Di ≥ n − 1.

Since 2W =
∑n

i=1 Di, by Lemma 2.1, we get the required result. �

The following upper bound on the spectral radius of the distance matrix of a graph, is obtained in [22]. This result will be
needed in Sections 4 and 5.
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Lemma 2.3 ([22]). Let D(G) be the distance matrix with spectral radius µ. Then

µ ≤


n − 1
n

S, (6)

where S = 2
∑

1≤i<j≤n d
2
i,j = Tr(D2(G)). Moreover, the equality holds if and only if G ∼= Kn.

3. Nordhaus–Gaddum-type results for the spectral radius of the distance matrix of a graph

Let Γ be the class of graphs H = (V , E) such that H is connected graph of diameter d (3 ≤ d ≤ 4) with |V (H)| ≥ d + 2,
having the following property. Let Pd+1 be the (d + 1)-vertex path contained in H . Then for any vertex i ∈ V (H) \ V (Pd+1)
and for any vertex j ∈ V (H), j ≠ i, it should be either d(i, j) = 1 or d(i, j) = 2. In [6], two examples of H in Γ are depicted
in Fig. 1. The following lower bound forW (G) + W (G) in [6]:

Lemma 3.1 ([6]). Let G be a connected graph on n ≥ 4 vertices, diameter d, and with a connected complement G. Then

W (G) + W (G) ≥
3
2
n(n − 1) +

1
6
(d − 2)(d − 1)d (7)

with equality holding in (7) if and only if G is a graph of diameter 2 or G ∼= Pn or G ∈ Γ and G is a graph of diameter 2.

Now we give the lower bound for µ(G) + µ(G).

Theorem 3.2. Let G be a connected graph on n ≥ 4 vertices, diameter d, and with a connected complement G. Then

µ(G) + µ(G) ≥ 3(n − 1) +
1
3n

(d − 2)(d − 1)d (8)

with equality holding in (8) if and only if G and G are both regular graphs of diameter 2.

Proof. Using Lemmas 2.1 and 3.1, we get the required result (8). Moreover, one can see easily that the equality holds in (8)
if and only if G and G are both regular graphs of diameter 2. �

Corollary 3.3. Let G be a connected graph on n ≥ 4 vertices with a connected complement G. Then

µ(G) + µ(G) ≥ 3(n − 1) (9)

with equality holding in (9) if and only if G and G are both regular graphs of diameter 2.

Proof. The proof follows directly from Theorem 3.2. �

4. Upper bound on the minimal entry in the principal eigenvector of the distance matrix of a graph

Denote by CI(n, α) = Kn−α∇Kα (1 ≤ α ≤ n − 1), the join of Kn−α with Kα . One can see easily that the spectral radius of
the distance matrix of CI(n, α) is given by

µ =
1
2


n + α − 3 +


(n − α + 1)2 + 4α(α − 1)


corresponding eigenvector Y = (a, . . . , a  

α

; b, . . . , b  
n−α

)T such that ‖Y‖p = 1 (1 ≤ p < ∞), where

a =

[
(µ − n + α + 1)p

(n − α)αp + α (µ − n + α + 1)p

]1/p

(10)

and

b =

[
(µ − 2α + 2)p

(n − α) (µ − 2α + 2)p + α(n − α)p

]1/p

. (11)

By the Perron–Frobenius theorem, the distance spectral radius µ has a positive eigenvector Y. Ruzieh et al. [16] studied
that how the entries in this eigenvector are related. Now we obtain the following upper bound on the minimal entry in the
principal eigenvector of the distance matrix of a graph and characterize extremal graphs.
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Theorem 4.1. Let G be a simple, connected and undirected graph. Also let Y = (y1, y2, . . . , yn)T be the p-norm normalized
principal eigenvector corresponding to spectral radius µ of D(G) and y1 ≥ y2 ≥ · · · ≥ yn. If p ≥ 1, then

yminp = yn

≤ min

[
(µ − n + α + 1)p

(n − α)αp + α (µ − n + α + 1)p

]1/p

,

[
(µ − 2α + 2)p

(n − α) (µ − 2α + 2)p + α(n − α)p

]1/p


, (12)

where α is the independence number of G. Moreover, the equality holds in (12) if and only if G ∼= CI(n, α).

Proof. Since G is a simple connected graph on n vertices with independence number α, we can assume that V (G) = A ∪ B,
where A = {1, 2, . . . , α} and B = {α + 1, α + 2, . . . , n} such that no two vertices are adjacent in the set A. Since
Y = (y1, y2, . . . , yn)T is an eigenvector of D(G) corresponding to the spectral radius µ, we have D(G)Y = µY. We can
assume that yi = mink∈A yk, and yj = mink∈B yk. For i ∈ A,

µyi =

α−
k=1,k≠i

di,kyk +

n−
k=α+1

di,kyk

≥ 2(α − 1)yi + (n − α)yj,

that is,

yi ≥
(n − α)

[µ − 2(α − 1)]
yj. (13)

For j ∈ B,

µyj =

α−
k=1

dj,kyk +

n−
k=α+1,k≠j

dj,kyk

≥ αyi + (n − α − 1)yj,

that is,

yj ≥
α

[µ − (n − α − 1)]
yi. (14)

It follows from normalization that

αypi + (n − α)ypj ≤ 1. (15)

From (13) and (15), we get

α

[
(n − α)yj

µ − 2(α − 1)

]p

+ (n − α)ypj ≤ 1,

i.e., yj ≤

[
(µ − 2α + 2)p

(n − α) (µ − 2α + 2)p + α(n − α)p

]1/p

. (16)

From (14) and (15), we get

αypi + (n − α)

[
αyi

µ − (n − α − 1)

]p

≤ 1,

i.e., yi ≤

[
(µ − n + α + 1)p

(n − α)αp + α (µ − n + α + 1)p

]1/p

. (17)

Thus, we complete the first part of the proof.
Now suppose that equality holds in (12). Then all inequalities in the above argument must be equalities. From equality

in (13), we get

yk = yj, ik ∈ E(G), for all k ∈ B

and yk = yi, for all k ∈ A. (18)

From equality in (14), we get

yk = yj, for all k ∈ B

and yk = yi, jk ∈ E(G), for all k ∈ A. (19)
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Thus each vertex in A is adjacent to all the vertices on the other set B and each vertex in B is adjacent to all the remaining
vertices in V (G). Hence G is isomorphic to CI(n, α).

Conversely, one can see easily that (12) holds for CI(n, α). �

From Theorem 4.1, we get the following upper bound on yminp .

Theorem 4.2. Let G be a simple, connected and undirected graph. Also let Y = (y1, y2, . . . , yn)T be the p-norm normalized
principal eigenvector corresponding to spectral radius µ of D(G) and y1 ≥ y2 ≥ · · · ≥ yn. If p ≥ 1, then

yminp = yn ≤ min





n−1
n S − n + α + 1

p

(n − α)αp + α


n−1
n S − n + α + 1

p


1/p

,




n−1
n S − 2α + 2

p

(n − α)


n−1
n S − 2α + 2

p
+ α(n − α)p


1/p , (20)

where S = 2
∑

1≤i<j≤n d
2
i,j = Tr(D2(G)) and α is the independence number of G. Moreover, the equality holds in (20) if and only

if G ∼= Kn.

Proof. Since p ≥ 1, by (6), we have

α +
(n − α)αp

(µ − n + α + 1)p
≥ α +

(n − α)αp
n−1
n S − n + α + 1

p

and

n − α +
α(n − α)p

(µ − 2α + 2)p
≥ n − α +

α(n − α)p
n−1
n S − 2α + 2

p .

Using above results in Theorem 4.1, we obtain the result in (20). Moreover, the equality holds in (20) if and only if G ∼= Kn,
by Lemma 2.3 and Theorem 4.1. This completes the proof of this theorem. �

5. Lower and upper bounds on the maximal entry in the principal eigenvector of the distance matrix of a graph

In this section we obtain the lower and upper bounds on the maximal entry in the principal eigenvector of the distance
matrix of a simple connected graph, and characterize the extremal graphs.

Theorem 5.1. Let G be a simple, connected and undirected graph. Also let Y = (y1, y2, . . . , yn)T be the p-norm normalized
principal eigenvector corresponding to spectral radius µ of D(G) and y1 ≥ y2 ≥ · · · ≥ yn. If p ≥ 2, then[

µp−2

µp−2 + ((n − 1)d − (d − 1)δ)p−1

]1/p

≤ ymaxp = y1 ≤

[
d(µ − n + 2)p−1

µ + d(µ − n + 2)p−1

]1/p

, (21)

where d, δ are the diameter and the minimum degree of G, respectively. Moreover, both sides of the equality hold in (21) if and
only if G ∼= Kn. If p = 1, then

1
µ + 1

≤ ymaxp = y1 ≤
d

µ + d
(22)

with equality holding (both sides) in (22) if and only if G ∼= Kn.

Proof. First we give the proof for the lower bound. It follows from normalization that

n−
k=2

ypk = 1 − yp1. (23)

We have

D(G)Y = µY. (24)
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From the first equation of (24),

µy1 =

n−
k=2

d1,kyk ≥

n−
k=2

yk as d1,k ≥ 1. (25)

For p = 1, we get

y1 ≥
1

µ + 1
as

n−
i=1

yi = 1.

Otherwise, p > 1. Multiplying both sides in (25) by yp−1
2 , we get

µy1y
p−1
2 ≥

n−
k=2

yp−1
2 yk ≥

n−
k=2

ypk as y2 ≥ y3 ≥ · · · ≥ yn. (26)

Using (23) in (26), we get

yp−1
2 ≥

1 − yp1
µy1

,

that is,

y2 ≥


1 − yp1
µy1

1/(p−1)

. (27)

From second equation of (24) we have

µy2 =

n−
k=1,k≠2

d2,kyk.

Since d2 is the degree of the vertex v2 and d is the diameter of G, the above equation becomes

µy2 ≤ d2y1 + (n − d2 − 1)dy1,
i.e., µy2 ≤ [(n − 1)d − (d − 1)δ] y1 as d2 ≥ δ. (28)

From (27) and (28), we get

µ


1 − yp1
µy1

 1
p−1

≤ [(n − 1)d − (d − 1)δ] y1,

i.e., µp−2
≤


µp−2

+ ((n − 1)d − (d − 1)δ)p−1 yp1,
which gives the lower bound in (21).

Now suppose that equality holds in (21). Then all inequalities in the above argument must be equalities. First we assume
that p = 1. From equality (25), we get

d1,k = 1, k = 2, 3, . . . , n and hence ∆ = n − 1.

Also we have
n−

i=2

yi = µy1 ≥ µyi =

n−
k=1,k≠i

di,kyk, for any i, i ≠ 1,

that is, we must have

di,k = 1, k = 1, 2, . . . , n; k ≠ i, for any i, i ≠ 1.

Hence G is isomorphic to complete graph Kn.
Next we assume that p > 1. From equality in (25) and (26), we get

1 = d1,2 = d1,3 = · · · = d1,n and y2 = y3 = · · · = yn.

From equality in (28), we get

y1 = y3 = y4 = · · · = yn, d ≤ 2 and d2 = δ.

From above results, we have

y1 = y2 = · · · = yn and hence µ = n − 1.

Thus G ∼= Kn, by Corollary 2.2.
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Conversely, letG be a complete graphKn. ForG = Kn, µ = n−1, d = 1, δ = n−1 and y =

 1
n

1/p
,
 1
n

1/p
, . . . ,

 1
n

1/pT
.

The upper bound is obtained step-by-step analogous to the proof of Theorem 3.1 from [4]. This completes the proof of
this theorem. �

From Theorem 5.1, we get the following lower and upper bounds on ymaxp .

Theorem 5.2. Let G be a simple, connected and undirected graph. Also let Y = (y1, y2, . . . , yn)T be the p-norm normalized
principal eigenvector corresponding to spectral radius µ of D(G) and y1 ≥ y2 ≥ · · · ≥ yn. If p ≥ 2, then


(n − 1)p−2

(n − 1)p−2 + ((n − 1)d − (d − 1)δ)p−1

1/p

≤ ymaxp = y1 ≤

 d


n−1
n S − n + 2

p−1

d


n−1
n S − n + 2

p−1
+


n−1
n S


1/p

, (29)

where S = 2
∑

1≤i<j≤n d
2
i,j = Tr(D2(G)). Moreover, the equality holds (both sides) in (29) if and only if G ∼= Kn. For p = 1,

1
n−1
n S + 1

≤ ymaxp = y1 ≤
d

n − 1 + d

with equality holding (both sides) if and only if G ∼= Kn.

Proof. First, suppose that p = 1. From (22), we have

ymaxp = y1 ≥
1

µ + 1

≥
1

n−1
n S + 1

by (6). (30)

Moreover, the equality holds in (30) if and only if G ∼= Kn, by Lemma 2.3 and Theorem 5.1.
Again from (22), we have

ymaxp = y1 ≤
d

µ + d

≤
d

n − 1 + d
by (5). (31)

Moreover, the equality holds in (31) if and only if G ∼= Kn, by Corollary 2.2 and Theorem 5.1.
Next suppose that p ≥ 2. Let us consider a function

f (x) =
((n − 1)d − (d − 1)δ)p−1

xp−2
, x ≥ n − 1.

One can see easily that f (x) is a decreasing function on [n − 1, ∞). By Corollary 2.2, we have µ ≥ n − 1. Thus we have

((n − 1)d − (d − 1)δ)p−1

µp−2
= f (µ) ≤

((n − 1)d − (d − 1)δ)p−1

(n − 1)p−2
.

By Theorem 5.1, we get the lower bound in (29). Moreover, the left hand side equality holds in (29) if and only if G ∼= Kn,
by Corollary 2.2 and Theorem 5.1.

Again, let us consider a function

g(x) =
x

d(x − n + 2)p−1
, x ≥ n − 1.

We have

g ′(x) = −
(p − 2)x + n − 2

(x − n + 2)p
< 0 for x ≥ n − 1.

Thus g(x) is a decreasing function on [n − 1, ∞). By Lemma 2.3, we have µ ≤


n−1
n S, where S = 2

∑
1≤i<j≤n d

2
i,j =

Tr(D2(G)). Hence

µ

d(µ − n + 2)p−1
= g(µ) ≥


n−1
n S

d


n−1
n S − n + 2

p−1 .
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By Theorem 5.1, we get the upper bound in (29). Moreover, the right hand side equality holds in (29) if and only if G ∼= Kn,
by Lemma 2.3 and Theorem 5.1. This completes the proof of this theorem. �
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