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Let f1, . . . , fd be an orthogonal basis for the space of cusp forms
of even weight 2k on Γ0(N). Let L( f i, s) and L( f i,χ, s) denote
the L-function of f i and its twist by a Dirichlet character χ ,
respectively. In this note, we obtain a “trace formula” for the
values L( f i,χ,m)L( f i,n) at integers m and n with 0 < m,n < 2k
and proper parity. In the case N = 1 or N = 2, the formula gives
us a convenient way to evaluate precisely the value of the ratio
L( f ,χ,m)/L( f ,n) for a Hecke eigenform f .

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and statements of results

Let f (z) = ∑∞
n=1 a f (n)e2π inz be a Hecke eigenform of even weight 2k on Γ0(N) and fχ (z) =∑∞

n=1 a f (n)χ(n)e2π inz be its twist by a Dirichlet character χ . The L-function, defined by L( f , s) =∑∞
n=1 a f (n)n−s and extended analytically to the whole complex plane, and its twist L( f ,χ, s) =∑∞
n=1 a f (n)χ(n)n−s are very important number theoretical objects. For instance, when f (z) is the

weight 2 newform associated to a rational elliptic curve E , the Birch and Swinnerton–Dyer conjecture
asserts that the rank of the group of rational points E(Q) on E is equal to the order of L( f , s) at
s = 1.
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In this article, we are concerned with the values of L( f , s) and L( f ,χ, s) at integers inside the
critical strip 0 < Re s < 2k. In [14], Manin showed that for a normalized Hecke eigenform f (z) of
weight 2k on SL(2,Z), there are two real numbers ω+

f and ω−
f , depending only on f , such that

π−2n L( f ,2n)/ω+
f , π−(2n−1)L( f ,2n − 1)/ω−

f

are contained in the (totally real) field Q(a f (2),a f (3), . . .) for all integers n with 0 < 2n,2n − 1 < 2k.
This result was later generalized to newforms on Γ0(N) by Razar [16, Theorem 1]. More generally,
it is known that the twisted Hecke L-value L( f ,χ,n) is equal to an algebraic number times either
πnω+

f or πnω−
f , depending on the parities of n and χ .

The values of L( f , s) and L( f ,χ, s) at the center point s = k are particularly interesting. Assume
that the level N is odd and g(z) = ∑∞

n=1 bg(n)e2π inz is the modular form of weight k + 1/2 lying in
Kohnen’s plus-space corresponds to f (z) in the sense of Shimura. In [19], Waldspurger proved that
bg(n)2 is essentially proportional to the value of L( f ,χ(−1)kn, s) at s = k, where χD = ( D

· ). Later on,
Kohnen and Zagier [11] made this result more explicitly by proving

bg(n)2

〈g, g〉 = nk−1/2Γ (k)

πk

L( f ,χ(−1)kn,k)

〈 f , f 〉
for a normalized Hecke eigenform f (z) on the full modular group SL(2,Z) and positive integers n
such that (−1)kn is a fundamental discriminant, where 〈 f , f 〉 and 〈g, g〉 denote the Petersson norms
of f (z) and g(z), respectively. This result was generalized by [3] and [15] to Hecke eigenforms
on Γ0(N).

In this article, we will derive a “trace formula”

s∑
i=1

1

〈 f i, f i〉 L( f i,χ,m)L( f i,n)

for a Dirichlet character χ and integers m and n with proper parity, where { f1, . . . , f s} is any or-
thogonal basis for S2k(Γ0(N)). In some cases, such as N = 1 and N = 2, this formula enables us to
compute the exact value of the ratio L( f ,χ,m)/L( f ,m) for a Hecke eigenform f .

To achieve our goal, we first express the values of a Hecke L-function L( f , s) as periods

rn( f ) :=
i∞∫
0

f (z)zn dz = n!
(−2π i)n+1

L( f ,n + 1)

of a cusp form f . The periods are studied extensively in [4–6,8,9,12–14,18,21,22]. In particular, for the
case of SL(2,Z), Kohnen and Zagier [12] showed that there is a rational structure associated to the
periods that is different from the usual rational structure coming from the Fourier coefficients of cusp
forms. The idea is to consider the cusp form characterized by the property

rn( f ) = 〈 f , Rn〉
for all f ∈ S2k(Γ0(N)), where 〈·,·〉 denote the Petersson inner product. Then in [8,12] it is shown
that the values of rm(Rn) can be expressed in terms of the Bernoulli numbers for integers m and n
with opposite parity satisfying 0 � m � 2k − 2 and 1 � n � 2k − 3. In [7], by considering the natural
correspondence of S2k(SL(2,Z)), its dual, and the space of Dedekind symbols, the first author of the
present article found bases for S2k(SL(2,Z)) in terms of Rn , which in turn give explicit expression for
Hecke operators in terms of Bernoulli numbers and sum-of-divisor functions. For the case Γ0(2), this
is done in [8] with a different approach.
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Now if { f1, . . . , f s} is an orthogonal basis for S2k(Γ0(N)), then we have

Rn =
s∑

i=1

〈Rn, f i〉
〈 f i, f i〉 f i,

from which we deduce that

rm(Rn) = Cm,n

s∑
i=1

1

〈 f i, f i〉 L( f i,m + 1)L( f i,n + 1)

for some complex number Cm,n depending only on m and n. In other words, the “trace” of
L( f i,m + 1)L( f i,n + 1)/〈 f i, f i〉 is essentially rm(Rn). More generally, if we define the twisted period
of a cusp form f by

rm,χ ( f ) :=
i∞∫
0

fχ (z)zm dz,

where fχ denotes the twist of f by χ , then the trace of L( f i,χ,m + 1)L( f i,n + 1) is essen-
tially rm,χ (Rn).

It turns out that formulas for rm,χ (Rn) can be more elegantly stated if we write them collectively
as twisted period polynomials

rχ ( f )(X) :=
i∞∫
0

fχ (z)(X − z)2k−2 dz

of a cusp form f . Before we state our formula for rχ ( f )(X), let us first fix some notations.

Notation 1.1. Throughout the notes, the letter N will always denote the level of the congruence sub-
group Γ0(N), and χ will represent a primitive Dirichlet character modulo D with D > 1.

For convenience, we shall write the weight of the space of cusp forms S2k(Γ0(N)) under consider-
ation as 2k = w + 2. For integers m and n, we set

m̃ = w − m, ñ = w − n.

We now recall some definitions related to a Dirichlet character χ .

Definition 1.2. For a non-negative integer k, the kth Bernoulli polynomial Bk(x) is defined by the
power series expansion

text

et − 1
=

∞∑
k=0

Bk(x)

k! tk.

Naturally, Bk(x) is the zero polynomial if k is a negative integer. For a Dirichlet character χ modulo D ,
we also define generalized Bernoulli polynomial Bk,χ (x) by
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D−1∑
h=0

χ(h)
tet(h+x)

eDt − 1
=

∞∑
k=0

Bk,χ (x)

k! tk,

that is,

Bk,χ (x) = Dk−1
D−1∑
h=0

χ(h)Bk
(
(h + x)/D

) =
k∑

j=0

(
k

j

)
B j,χ xk− j,

where B j,χ := B j,χ (0) is the usual generalized Bernoulli number.
For positive integers a, c,k, � satisfying ka +�c = D and (a, c) = 1, we choose integers b and d such

that ad − bc = 1 and set

χ(a, c,k, �) = χ(kb + �d).

(It is easy to see that the definition does not depend on the choice of b and d.)
Finally, we let

τ (χ) :=
D−1∑
h=0

χ(h)e2π ih/D

denote the Gaussian sum associated to χ .

Now we can describe our first main result.

Theorem 1. Let Rn, 0 < n < w, be the unique cusp form of weight w + 2 on Γ0(N) characterized by rn( f ) =
〈 f , Rn〉. Let χ be a primitive Dirichlet character modulo D with D > 1. Then we have

rχ (Rn)(X) + (−1)n−1χ(−1)rχ (Rn)(−X)

= (2i)w+1

τ (χ)

(
ε1(−D)−ñ Bñ+1,χ (D X)

ñ + 1
− D−n Bn+1,χ (D X)

n + 1

+ ε2(−1)n−1χ(−N)Nñ Dn X w Bñ+1,χ (−1/DN X)

ñ + 1
+ ε3χ(−1)Dñ X w Bn+1,χ (−1/D X)

n + 1

+ Gn(X) + (−1)n−1χ(−1)Gn(−X)

)
,

where

ε1 =
{

1, if N = 1,

0, if N > 1,
ε2 =

{
1, if (N, D) = 1,

0, if (N, D) > 1,
ε3 =

{
1, if N|D,

0, if N � D,

and

Gn(X) =
∑

a,c,k,�>0,(a,c)=1
N|c,ka+�c=D

χ(a, c,k, �)(aX + �/D)n(−c X + k/D)ñ.
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In terms of L-values, Theorem 1 can be rephrased as follows. Here for a cusp form f in
S w+2(Γ0(N)), we set

Λ( f , s) =
(

2π√
N

)−s

Γ (s)L( f , s), Λ( f ,χ, s) =
(

2π

D
√

N

)−s

Γ (s)L( f ,χ, s).

Note that when (N, D) = 1, the function Λ( f ,χ, s) satisfies a functional equation

Λ( f ,χ, s) = εΛ( f ,χ, w + 2 − s)

for some root of unity ε . When (N, D) > 1, we need to modify the definition of Λ (replacing D
√

N in
the denominator by other number) in order to get a functional equation of the same symmetry. Here
we stick to our definition of Λ to keep the statement of the result simple.

Theorem 2. Let { f1, . . . , f s} be an orthogonal basis for S w+2(Γ0(N)), and let χ be a primitive Dirich-
let character modulo D with D > 1. Let m and n be integers satisfying 0 � m � w, 0 < n < w, and
(−1)m+n+1χ(−1) = 1. Then we have

s∑
i=1

1

〈 f i, f i〉Λ( f i,χ,m + 1)Λ( f i,n + 1)

= (−D)m+1(i
√

N)m+n+2rm,χ (Rn)

= (2i)w+1im+n+2 DN(n+1)/2

2
(w

m

)
τ (χ)

×
(
ε1(−1)n+1

(
ñ

m̃

)
Dn Bñ−m̃+1,χ

ñ − m̃ + 1

+
(

n

m̃

)
Dñ Bn−m̃+1,χ

n − m̃ + 1
+ ε2(−1)n+m

(
ñ

m

)
χ(−N)Nñ−m Dn Bñ−m+1,χ

ñ − m + 1

+ ε3(−1)m+1
(

n

m

)
χ(−1)Dñ Bn−m+1,χ

n − m + 1
+ 2(−1)m+1

∑
a,c,k,�>0,(a,c)=1

N|c,D=ka+�c

χ(a, c,k, �)

×
m̃∑

r=0

(−1)r
(

n

r

)(
ñ

m̃ − r

)
arcm̃−r�n−rkñ−m̃+r

)
,

where ε1 , ε2 , and ε3 are given as in Theorem 1.

2. Examples

2.1. Example 1

Let N = 1, D = 3, w + 2 = 12, and χ = (−3
· ). Since S12(SL(2,Z)) is one-dimensional, we expect

that for odd n with 1 � n � 9, the polynomials gn(X) = rχ (Rn)(X) + (−1)nrχ (Rn)(−X) should be
scalar multiples of each other. Indeed, we have Bk,χ = 0 for even k, and

B1,χ = −1

3
, B3,χ = 2

3
, B5,χ = −10

3
, B7,χ = 98

3
, B9,χ = −1618

3
,

which give
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B2,χ (x) = −2

3
x, B4,χ (x) = −4

3
x3 + 8

3
x, B6,χ (x) = −2x5 + 40

3
x3 − 20x,

B8,χ (x) = −8

3
x7 + 112

3
x5 − 560

3
x3 + 784

3
x,

B10,χ (x) = −10

3
x9 + 80x7 − 840x5 + 3920x3 − 1618

3
x.

The tuples (a, c,k, �) contributing to Gn(x) are

(1,1,1,2), (1,1,2,1), (1,2,1,1), (2,1,1,1)

with χ(a, c,k, �) being −1,1,1,−1, respectively. We find that

g1 = −2048√
3

(
−1536X9 + 128X7 − 128

81
X3 + 512

2187
X

)
,

g3 = g7 = −25

48
g1, g5 = 5

12
g1, g9 = g1.

This gives us

Λ(
,χ,2)Λ(
,2)

‖
‖2
= −21832

5

√
3 = −Λ(
,χ,10)Λ(
,2)

‖
‖2
,

Λ(
,χ,4)Λ(
,2)

‖
‖2
= −21432

5

√
3 = −Λ(
,χ,8)Λ(
,2)

‖
‖2

and Λ(
,χ,6) = 0. (Note that the sign for the functional equation of Λ(
,χ, s) is −1, so that it
vanishes at s = 6.)

The result can be verified numerically as follows. The L-values can be approximated by the stan-
dard method. We have

Λ(
,2) ≈ 0.003707710464948,

Λ(
,χ,2) ≈ −228.22304046813742,

Λ(
,χ,4) ≈ −14.263940029258589.

To get an approximation for the inner product 〈
,
〉, we consider the Poincaré series

Pk(z) = 1

2

∑
c,d∈Z,(c,d)=1

e2π ik(az+b)/(cz+d)

(cz + d)12
,

where in the summand a and b are any integers satisfying ad − bc = 1. The Poincaré series is charac-
terized by the property that if f (z) = ∑∞

k=1 ak( f )e2π ikz , then

〈 f , Pk〉 = Γ (11)

(4πk)11
a f (k).
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From this we can easily deduce that

Pk(z) = 2πΓ (11)
τ (k)

(2k)11


(z)

‖
‖2

and

〈Pk, Pm〉 = 4π2Γ (11)2 τ (k)τ (m)

(4km)11‖
‖2
,

where τ (k) is the kth Fourier coefficient of 
(z). Now there is a well-known formula for the inner
product 〈Pk, Pm〉 in terms of the Kloosterman sums and the Bessel functions. (See [10, Corollary 3.4].)
For instance, evaluating 〈P1, P1〉, we get

1

‖
‖2
≈ 965845.709168185. (1)

Then

Λ(
,χ,2)Λ(
,2)

‖
‖2
≈ −817284.10841880 ≈ −21832

5

√
3.

Note that the approximation (1) can also be obtained using the formula

∞∑
m=1

τ (m)2

m20
= 2

245

420π29

20!
ζ(9)

ζ(18)
‖
‖2

given in [20, p. 2].

2.2. Example 2

Let N = 1 and w + 2 = 24. The normalized Hecke eigenforms are

E4(z)3
(z) + (−156 ± 12
√

144169 )
(z)2.

Let f1 and f2 denote these two functions. In this example we will work out the ratio Λ( f i,χ,m)/

Λ( f i,12) for χ = ( 5
· ) and even m. We first express f i in terms of Rn .

Let rm( f ) denote
∫ i∞

0 f (z)zm dz. By computing the determinant of the matrix

(
r1(R2) r3(R2)

r1(R4) r3(R4)

)

using the formula in Theorem 1 of [12], we easily see that R2 and R4 form a basis for S24(SL(2,Z)).
Let T2 denote the second Hecke operator on S24(SL(2,Z)). We can determine the numbers a,b, c,d
such that

(
T2 R2

T2 R4

)
=

(
a b
c d

)(
R2
R4

)

by considering the relation
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(
a b
c d

)
=

(
r1(T2 R2) r3(T2 R2)

r1(T2 R4) r3(T2 R4)

)(
r1(R2) r3(R2)

r1(R4) r3(R4)

)−1

,

which, using the formulas in Theorem 2.8 of [7], is shown to be

( −716424 −6894720

1416492/19 717504

)
.

From this we deduce that

118041R2 + (1135193 ± 19
√

144169 )R4

are (unnormalized) Hecke eigenforms, i.e., scalar multiples of f1 and f2, respectively. Now we have

Λ( f ,χ,m + 1) = (−5i)m+1rm,χ ( f ), Λ( f ,m + 1) = (−i)m+1rm( f )

for any cusp form f of weight 24. Thus, using the formulas from Theorem 1 of [12] and our Theo-
rem 1, we find that

Λ( f i,χ,2)

Λ( f i,12)
= 454494815973561283200 ∓ 495053625411273600

√
144169

11
√

5
,

Λ( f i,χ,4)

Λ( f i,12)
= 1710371411434851840 ∓ 1874940923128320

√
144169

11
√

5
,

Λ( f i,χ,6)

Λ( f i,12)
= 7923984224047200 ∓ 8900924205600

√
144169

11
√

5
,

Λ( f i,χ,8)

Λ( f i,12)
= 46543863219840 ∓ 56895592320

√
144169

11
√

5
,

Λ( f i,χ,10)

Λ( f i,12)
= 359949679200 ∓ 545421600

√
144169

11
√

5
,

Λ( f i,χ,12)

Λ( f i,12)
= 469261440 ∓ 789120

√
144169√

5
.

Now recall that Theorem 1 of [11] implies that the ratio Λ( f i,χ,12)/
√

5Λ( f i,12) is a square in the
ring of integers of Q(

√
144169 ). Indeed, we find that

Λ( f i,χ,12)√
5Λ( f i,12)

= (3288 ∓ 24
√

144169 )2.

2.3. Hecke eigenforms on SL(2,Z)

For the convenience of the reader, here we tabulate the (unnormalized) Hecke eigenforms in terms
of Rn for the case dim Sk(SL(2,Z)) = 2. For each weight k, we give two bases, one with even n and
the other with odd n.
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weight bases

24 133705R1 + (1421844 ± 12
√

144169 )R3 or
118041R2 + (1135193 ± 19

√
144169 )R4

28 357271915R1 + (5430899304 ± 26568
√

18209 )R3 or
166985R2 + (2335719 ± 23

√
18209 )R4

30 339215569R1 + (6031600980 ± 6360
√

51349 )R3 or
39282705R2 + (646717136 ± 1352

√
51349 )R4

32 18559684975R1 + (381717886692 ± 12876
√

18295489 )R3 or
20837993R2 + (398996469 ± 27

√
18295489 )R4

34 17696951272R1 + (416907865575 ± 20925
√

2356201 )R3 or
8056833785R2 + (177566376094 ± 17806

√
2356201 )R4

38 67449635297R1 + (2033146500360 ± √
63737521 )R3 or

1231612816525R2 + (35003462442636 ± 146676
√

63737521 )R4

2.4. Example 3

Let N = 2. To obtain exact values of ratios between twisted L-values of newforms, we can follow
the following procedure.

Theorem 1.4 of [8] asserts that if we let dw denote the dimension of S w+2(Γ0(2)), then each of
the sets

{R2i: i = 1, . . . ,dw}, {R2i−1: i = 1, . . . ,dw}
is a basis for S w+2(Γ0(2)). Using Theorems 1.1 and 1.3 of [8], we can find the matrices for the Hecke
operators with respect to the above bases. Diagonalizing the matrices, we obtain expressions of new-
forms in terms of Rn . Then an application of Theorem 1 gives us the values of ratios between twisted
L-values of newforms.

Let us consider the case w + 2 = 16. The space S16(Γ0(2)) has dimension 3 and is spanned by

f1 = 
(z)E4(z), f2 = 
(2z)E4(2z), f3 = η(z)16η(2z)16.

By a direct computation, we find that the unique normalized newform is

f = f1 + 256 f2 − 600 f3 = q − 128q2 + 6252q3 + · · ·
whose eigenvalue for the Atkin–Lehner involution w2 is +1. Let D > 1 be a fundamental discriminant.
We now compute Λ( f ,χD ,8)/Λ( f ,8) with χD = ( D

· ) for the first few D . Note that if (D,2) = 1, then
the functional equation for L( f ,χD , s) has sign χD(−2). Thus, if D ≡ 5 mod 8 and D > 0, we know
that L( f ,χD ,8) = 0.

Proceeding as in Example 2 and using Theorems 1.1 and 1.3 of [8], we find that

T3

⎛
⎝ R2

R4

R6

⎞
⎠ = [

r2 j−1(T3 R2i)
][

r2 j−1(R2i)
]−1

⎛
⎝ R2

R4

R6

⎞
⎠

=
⎛
⎝ 154348 2478080 3784704

−11648 −186388 −279552

1456 22880 31596

⎞
⎠

⎛
⎝ R2

R4

R6

⎞
⎠ ,

where T3 denote the third Hecke operator. The characteristic polynomial of the above matrix is
(x + 3348)2(x − 6252). The eigenfunction 7R2 + 110R4 + 168R6 associated to the eigenvalue 6252
must be a newform. Applying Theorem 1.1 of [8] and Theorem 2 we obtain
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D D−1/2Λ( f ,χD ,8)/Λ( f ,8)

8 2(27 · 32)2

12 2(28 · 3 · 7)2

17 (26 · 32 · 72)2

24 2(28 · 3 · 7 · 29)2

28 2(210 · 3 · 7 · 19)2

33 (26 · 3 · 7 · 11 · 23)2

40 2(28 · 3 · 5 · 7 · 61)2

41 (29 · 32 · 7 · 23)2

44 2(28 · 32 · 11 · 41)2

56 2(29 · 32 · 5 · 72)2

57 (26 · 3 · 15671)2

60 2(210 · 3 · 5 · 43)2

65 (28 · 32 · 5 · 13 · 23)2

Remark 2.1. Apparently, when D is odd, the ratio D−1/2Λ( f ,χD ,8)/Λ( f ,8) is a perfect square, and
when D is even, the ratio is 2 times a perfect square. As pointed out by the referee, there is a
representation-theoretical explanation for this extra factor 2. See [3], in particular, formula (1.5) in
Theorem 1.2 of [3].

To check the correctness, we note that a half-integral weight cusp form on Γ0(8) corresponding to
the normalized newform of weight 16 on Γ0(2) is

− 11

252

[
E6(4τ ), θ(τ )

]
1 + 32

252

[
E6(8τ ), θ

]
1 − 88η(4τ )8η(8τ )8θ(τ )

= q − 128q4 − 27 · 33q8 + 4065q9 − 28 · 3 · 7q12 + 214q16 − 26 · 32 · 72q17 + · · · ,

where [g,h]r denotes the Rankin–Cohen bracket, E6(τ ) is the usual Eisenstein series of weight 6 on
SL(2,Z), and θ(τ ) = ∑

n∈Z
e2π in2τ is the Jacobi theta function.

2.5. Newforms on Γ0(2)

For the convenience of the reader, here we tabulate newforms on Γ0(2) in terms of Rn for the first
few w . Note that for w + 2 = 8,10, we have dim S w+2(Γ0(2)) = 1 and each Rn is a newform. Also,
for w + 2 = 12, the space of newforms has dimension 0.

weight bases

14 21R1 + 220R3, R1 + 12R3 or
R2 + 8R4, 11R2 + 120R4

16 49R1 + 936R3 + 1872R5 or
7R2 + 110R4 + 168R6

18 11R1 + 300R3 + 1056R5 or
15R2 + 364R4 + 1232R6

20 11R1 + 416R3 + 2576R5 + 2816R7,
3861R1 + 123488R3 + 321776R5 − 622336R7 or
51R2 + 1722R4 + 9464R6 + 8448R8, R2 + 30R4 + 104R6

22 143R1 + 6612R3 + 48640R5 + 63232R7,
1105R1 + 52524R3 + 425472R5 + 708864R7 or
113R2 + 4624R4 + 28896R6 + 29952R8,
19R2 + 816R4 + 6048R6 + 9984R8

24 10R3 + 459R5 + 3264R7 + 3536R9 or
693R2 + 34010R4 + 228480R6 + 16320R8 − 311168R10
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Remark 2.2. For N = 2, it is shown in [8] that the first few R2i or the first few R2i−1 is a basis for
S w+2(Γ0(N)). Our computation suggests that the same is true for N = 3,4,5. In these cases, we can
compute the ratios of twisted L-values of newforms using the above approach. For N � 6, the method
no longer works, as the dimension of S w+2(Γ0(N)) already exceeds the number of Rn .

3. Proof of theorems

3.1. Preliminary

Let f ∈ S w+2(Γ0(N)) and χ be a Dirichlet character modulo D with D > 1. Recall that if χ is
primitive, then we have

χ(n) = 1

τ (χ)

D−1∑
h=0

χ(h)e2π ihn/D .

It follows that

fχ (z) = 1

τ (χ)

D−1∑
h=0

χ(h) f (z + h/D)

and

rm,χ ( f ) = 1

τ (χ)

D−1∑
h=0

χ(h)rm,h/D( f ),

where

rm,h/D( f ) =
i∞∫
0

f (z + h/D)zm dz.

Before we proceed to evaluate rm,h/D(Rn), let us recall the following properties of the Bernoulli
polynomials. (See [1, pp. 804–805].) Here in the lemma, the notation {x} represents the fractional part
of a real number x.

Lemma 3.1. For two real numbers a and x and an integer k, we have

Bk(a + x) =
k∑

j=0

(
k

j

)
B j(a)xk− j .

Moreover, the Fourier expansion for the Bernoulli function Bk({x}), k � 2, is given by

Bk
({x}) = − k!

(2π i)k

∑
r∈Z,r �=0

e2π irx

rk
,

and
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− 1

2π i
lim

T →∞
∑

0<|r|<T

e2π irx

r
=

{
B1({x}) = {x} − 1/2, if x /∈ Z,

0, if x ∈ Z.

To evaluate rm,h/D(Rn), we shall utilize the following expression for Rn .

Lemma 3.2. Let Rn(z) be the cusp form of weight w + 2 on Γ0(N) characterized by the property rn( f ) =
〈 f , Rn〉 for all f ∈ S w+2(Γ0(N)). We have

Rn(z) = c−1
n

∑
(a b

c d

)∈Γ0(N)

1

(az + b)ñ+1(cz + d)n+1
, cn = (−1)n4π i(2i)−w−1

(
w

n

)
.

Proof. See [8, Lemma 2.1]. (See also [2, Proposition 1].) �
From the above lemma, we have

cn Rn(z + h/D) =
∑

(a b
c d

)∈Γ0(N)

1

(az + ah/D + b)ñ+1(cz + ch/D + d)n+1
.

We shall consider the cases

(1) a = 0 (with N = 1),
(2) c = 0,
(3) (a,b) = ±(D,−h) (with (N, D) = 1),
(4) (c,d) = ±(D,−h) (with N|D),
(5) ac(ah/D + b)(ch/D + d) < 0,
(6) ac(ah/D + b)(ch/D + d) > 0,

separately. For j = 1, . . . ,6 and h ∈ Z with (h, D) = 1, we let

S j,h(z) =
∑

(a b
c d

)∈Γ0(N)

satisfying the jth condition

1

(az + ah/D + b)ñ+1(cz + ch/D + d)n+1
.

Note that we have

S j,h+D(z) = S j,h(z). (2)

This is because a matrix
( a b

c d

)
contributes to the sum S j,h+D(z) if and only if the matrix

( a a+b
c c+d

)
contributes to the sum S j,h(z). In the following sections, we will obtain formulas for

I j,h,m :=
i∞∫
0

(
S j,h(z) + (−1)m+n+1 S j,−h(z)

)
zm dz

and
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F j,h(X) :=
i∞∫
0

S j,h(z)(X − z)w dz + (−1)n−1

i∞∫
0

S j,−h(z)(X + z)w dz

=
w∑

m=0

(−1)m
(

w

m

)
I j,h,m Xm̃.

3.2. Case a = 0 (and N = 1)

In this section, we shall evaluate the integral

i∞∫
0

S1,h(z)zm dz.

3.2.1. Case m + 1 > n
If a = 0, then

(
a b
c d

)
= ±

(
0 −1
1 d

)
, d ∈ Z.

We have

S1,h(z) =
∑

( 0 −1
1 d

)∈SL(2,Z)

(−1)ñ+1

(z + h/D + d)n+1
+

∑
( 0 1
−1 d

)∈SL(2,Z)

(−1)n+1

(z + h/D − d)n+1

= 2(−1)n+1(−2π i)n+1

Γ (n + 1)

∞∑
r=1

rne2π ir(z+h/D).

(Here we have used the formula [17, p. 51] for
∑

d∈Z
(τ + d)−n .) It follows that

i∞∫
0

S1,h(z)zm dz = 2(−1)n+1(−2π i)n−m m!
n!

∞∑
r=1

e2π irh/D

rm−n+1
.

From this and Lemma 3.1, we obtain

I1,h,m = (−1)m(4π i)m!
n!(m − n + 1)! Bm−n+1

({h/D})

for positive integers m and n with m + 1 > n. (Note that the integral-sum is no longer absolutely con-
vergent in the case m = n. However, the conclusion remains valid in view of the bounded convergence
theorem.)
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3.2.2. Case m + 1 < n
It is easy to check that

S1,h(z) �
{

1, if |z| � 1,

|z|−n, if |z| � 1.

Therefore, if m + 1 < n, we may integrate term by term. Now we have

S j,−h(z) = (−1)n+1 S j,h(−z) (3)

for j = 1, . . . ,6. Hence,

i∞∫
0

(
S1,h(z) + (−1)m+n+1 S1,−h(z)

)
zm dz =

i∞∫
−i∞

S1,h(z)zm dz.

We then integrate term by term. By shifting the path of integration to Re z = ∞ or Re z = −∞ de-
pending on whether h/D + d is positive or negative, we find that the integral for each term is zero.
This shows that the contribution of S1,h in the case m + 1 < n is 0.

3.2.3. Case m = n − 1
From (3), we obtain

I1,h,n−1 =
i∞∫

−i∞
S1,h(z)zn−1 dz = 2(−1)n+1 lim

U→∞
∑
d∈Z

iU∫
−iU

zn−1 dz

(z + h/D + d)n+1
.

If n = 1, then we have

I1,h,n−1 = −2 lim
U→∞

∑
d∈Z

(
1

iU + h/D + d
− 1

−iU + h/D + d

)

= 4i lim
U→∞

∑
d∈Z

U

(h/D + d)2 + U 2
= 4i lim

U→∞
1

U

∑
d∈Z

1

((h/D + d)/U )2 + 1
.

Interpreting the last sum as a Riemann sum, we arrive at

I1,h,n−1 = 4i

∞∫
−∞

dx

x2 + 1
= 4π i.

If n � 2, we apply integration by parts once and get

I1,h,n−1 = 2(−1)n+1 lim
U→∞

∑
d∈Z

(
− (iU )n−1

n(iU + h/D + d)n
+ (−iU )n−1

n(−iU + h/D + d)n

+ n − 1

n

iU∫
zn−2 dz

(z + h/D + d)n

)
.

−iU
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Again, the sum

∑
d∈Z

(
− (iU )n−1

(iU + h/D + d)n
+ (−iU )n−1

(−iU + h/D + d)n

)

can be interpreted as a Riemann sum for some integral whose value turns out to be 0. Thus, we have

I1,h,n−1 = 2(−1)n+1 n − 1

n
lim

U→∞
∑
d∈Z

iU∫
−iU

zn−2 dz

(z + h/D + d)n
.

Integrating by parts repeatedly, we eventually obtain

I1,h,n−1 = (−1)n+1 4π i

n
.

3.2.4. Summary for the case a = 0
We now combine the computations in Sections 3.2.1–3.2.3. We have

F1,h(X) :=
i∞∫
0

S1,h(z)(X − z)w dz + (−1)n−1

i∞∫
0

S1,−h(z)(X + z)w dz

=
w∑

m=0

(−1)m
(

w

m

)
I1,h,m X w−m.

The result in Section 3.2.1 shows that the contribution from the terms with m � n is

4π i

n!
w∑

m=n

(
w

m

)
m!

(m − n + 1)! X w−m Bm−n+1
({h/D})

= 4π i

ñ + 1

(
w

n

) w∑
m=n

(
w − n + 1

m − n + 1

)
X w−m Bm−n+1

({h/D}).
In view of Lemma 3.1, this is equal to

4π i

ñ + 1

(
w

n

)(
Bñ+1

({h/D} + X
) − X w−n+1).

From Section 3.2.2, we know that the contribution from the terms with m + 1 < n to (4) is 0, while
Section 3.2.3 shows that the term m = n − 1 yields

(−1)n−1
(

w

n − 1

)
X w−n+1(−1)n+1 4π i

n
= 4π i

ñ + 1

(
w

n

)
X w−n+1.

Combining everything, we get the following formula for S1,h(z).
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Lemma 3.3. Let cn be defined as in Lemma 3.2. We have

c−1
n I1,h,m = (−1)n+m(2i)w+1

(
w

m

)−1( ñ

m̃

)
Bñ−m̃+1({h/D})

ñ − m̃ + 1
,

or equivalently,

c−1
n F1,h(X) = (−1)n(2i)w+1 Bñ+1({h/D} + X)

ñ + 1
.

3.3. Case c = 0

The evaluation for the case c = 0 is very similar to the case a = 0, so the proof will be very sketchy.
We have

S2,h(z) = 2
∑
b∈Z

1

(z + h/D + b)ñ+1
= 2(−2π i)ñ+1

ñ!
∞∑

r=1

rñe2π ir(z+h/D).

Thus, when m + 1 > ñ,

i∞∫
0

S2,h(z)zm dz = 2(−2π i)ñ−m m!
ñ!

∞∑
r=1

e2π irh/D

rm−ñ+1
,

and

I2,h,m = (−1)m+n+1(4π i)m!
ñ!(m − ñ + 1)! Bm−ñ+1

({h/D}).
When m + 1 < ñ, we find that

I2,h,m = 0.

The case m = ñ − 1 yields

I2,h,ñ−1 = 4π i

ñ
.

In summary, the contribution of the case c = 0 to the period polynomial is the following.

Lemma 3.4. We have

c−1
n I2,h,m = (−1)m−1(2i)w+1

(
w

m

)−1(n

m̃

)
Bn−m̃+1({h/D})

n − m̃ + 1
,

and

c−1
n F2,h(X) = −(2i)w+1 Bn+1({h/D} + X)

n + 1
.
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3.4. Case (a,b) = ±(D,−h) (with (N, D) = 1)

Let c and d be any two integers satisfying dD + cNh = 1. Then the matrices in Γ0(N) with an
upper row ±(D,−h) are

±
(

D −h
N(c + kD) d − khN

)

for integers k ∈ Z. Then

S3,h(z) = 2
∑
k∈Z

1

(Dz)ñ+1((c + kD)Nz + 1/D)n+1
.

Now we make a change of variable z �→ −1/N D2z in the integral

i∞∫
0

S3,h(z)zm dz = 2

i∞∫
0

(∑
k∈Z

zm

(Dz)ñ+1((c + kD)Nz + 1/D)n+1

)
dz

= 2(−1)m+n Nñ−m D w−2m

i∞∫
0

(∑
k∈Z

zm̃

(z − k − c/D)n+1

)
dz.

At this point, we are basically back to the previous cases. For m̃ + 1 > n, we have

i∞∫
0

S3,h(z)zm dz = 2(−1)m+n Nñ−m D w−2m(−2π i)n−m̃ m̃!
n!

∞∑
r=1

e−2π irc/D

rm̃−n+1
.

Then Lemma 3.1 yields

I3,h,m = −4π iNñ−m D w−2mm̃!
n!(m̃ − n + 1)! Bm̃−n+1

({−c/D}).
For m with m̃ + 1 < n, arguing as in Section 3.2.2, we find that

I3,h,m = 0.

When m̃ + 1 = n (i.e., m = ñ + 1), a discussion similar to that in Section 3.2.3 leads to

I3,h,ñ+1 = −4π iD w−2ñ−2

Nn
.

Finally, the condition dD + cNh = 1 means that c is the multiplicative inverse of Nh modulo D .

Lemma 3.5. The contribution from S3,h is

c−1
n I3,h,m = (−1)n−1(2i)w+1

(
w

m

)−1( ñ

m

)
D w−2m Nñ−m Bñ−m+1({−Nh/D})

ñ − m + 1
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and

c−1
n F3,h(X) = (−1)n−1(2i)w+1Nñ D w X w Bñ+1({−Nh/D} − 1/D2N X)

ñ + 1
,

where N and h denote the multiplicative inverses of N and h modulo D, respectively.

3.5. Case (c,d) = ±(D,−h) (with N|D)

This case is similar to the previous case. Choose integers a and b with ah + bD = −1. Then the
matrices in SL(2,Z) with a lower row ±(D,−h) are

±
(

a + kD b − kh
D −h

)
.

Thus,

S4,h(τ ) = 2
∑
k∈Z

1

((a + kD)τ − 1/D)ñ+1(Dτ )n+1
.

Arguing similarly as in the previous section, we obtain the following evaluation.

Lemma 3.6. We have

c−1
n I4,h,m = (2i)w+1

(
w

m

)−1(n

m

)
D w−2m Bn−m+1({−h/D})

n − m + 1

and

c−1
n F4,h = (2i)w+1 D w X w Bn+1({−h/D} − 1/D2 X)

n + 1
,

where h is the multiplicative inverse of h modulo D.

3.6. Case ac(ah/D + b)(ch/D + d) < 0

From (3) we know that

i∞∫
0

S5,h(z)(X − z)w dz + (−1)n−1

i∞∫
0

S5,−h(z)(X + z)w dz

=
i∞∫

−i∞
S5,h(z)(X − z)w dz. (4)

Considering Eq. (3), we assume h > 0 and evaluate the integral above.
There are two cases ac > 0 and ac < 0. In the former case, because ad − bc = 1, we must have

−d/c < h/D < −b/a. In the latter case we have −b/a < h/D < −d/c instead. Also, if
( a b

c d

)
contributes

to S5,h , then so does
( −a −b). It follows that
−c −d
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S5,h(z) = 2
∑

(a b
c d

)∈Γ0(N),a,c>0

−d/c<h/D<−b/a

1

(az + ah/D + b)ñ+1(cz + ch/D + d)n+1

+ 2
∑

(a b
c d

)∈Γ0(N),a>0,c<0

−b/a<h/D<−d/c

1

(az + ah/D + b)ñ+1(cz + ch/D + d)n+1
.

Now the condition ad − bc = 1 implies that −b/a and −d/c are Farey neighbors. Then a general
property of the Farey fractions says that in order for a fraction h/D > 0 to be sandwiched between
−b/a and −d/c, h and D must be of the form h = k|b| + �|d| and D = k|a| + �|c| for some positive
integers k and �. This in particular shows that the number of terms in the sum S5,h is finite.

In the case a, c > 0, the integers b and d are non-positive. Thus, D = ka + �c and h = −kb − �d. We
have

ah

D
+ b = a(−kb − �d)

ka + �c
+ b = − �

ka + �c
= − �

D
.

Likewise, we have

ch

D
+ d = k

D
.

In the case a > 0, c < 0, we have b � 0 and d � 0. Thus, D = ka − �c, h = −kb + �d, and

ah

D
+ b = �

D
,

ch

D
+ d = k

D
.

Then S5,h becomes

S5,h(z) = 2
∑

(a b
c d

)∈Γ0(N),a,c,k,�>0

D=ka+�c,h=−kb−�d

1

(az − �/D)ñ+1(cz + k/D)n+1

+ 2
∑

(a b
c d

)∈Γ0(N),a,k,�>0,c<0

D=ka−�c,h=−kb+�d

1

(az + �D)ñ+1(cz + k/D)n+1
. (5)

Now let us recall a formula from [8].

Lemma 3.7. Let a,b, c,d be real numbers such that abcd < 0. Then

i∞∫
−i∞

(X − τ )w

(aτ + b)ñ+1(cτ + d)n+1
dτ = (−1)n2π i

(ad − bc)w+1

(
w

n

)
sgn(ab)(aX + b)n(c X + d)ñ.

Proof. See [8, p. 341]. �
Applying this lemma to (5), we obtain the following formula for (4).
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Lemma 3.8. We have

c−1
n F5,h(X) = −(2i)w+1

∑
(a b

c d

)∈Γ0(N),a,c,k,�>0

D=ka+�c,h=−kb−�d

(aX − �/D)n(c X + k/D)ñ

+ (2i)w+1
∑

(a b
c d

)∈Γ0(N),a,k,�>0,c<0

D=ka−�c,h=−kb+�d

(aX + �/D)n(c X + k/D)ñ.

3.7. Case ac(ah/D + b)(ch/D + d) > 0

The evaluation of the terms with ac(ah/D + b)(ch/D + d) > 0 follows the argument in [8, pp. 13–
16]. Here we only provide a sketch.

Firstly, we have S6,−h(z) = (−1)n−1 S6,h(−z), so that

I6,h,m =
i∞∫

−i∞
S6,h(z)zm dz.

We can show that

∑
ac(ah/D+b)(ch/D+d)>0

1

|(az + ah/D + b)ñ+1(cz + ch/D + d)n+1|

�
{

1/|z|, if |z| � 1,

1/|z|w+1, if |z| � 1.

3.7.1. Case 0 < m < w
If m is not 0 or w , we may change the order of integration of summation. In this case, since the

two poles of 1/(az + ah/D + b)ñ+1(cz + ch/D + d)n+1 lie on the same side of the imaginary axis, we
have

I6,h,m = 0.

3.7.2. Case m = w
Here we consider the contribution from S6,h(z) in the case m = w . The key point to be observed

here is that I6,h,w takes the same value for all h with (h, D) = 1, so that when we combine everything
into a formula for rχ (Rn)(X), the contributions from S6,h(z) cancel out each other.

We have

I6,h,w = lim
ε→0

∑
ac(ah/D+b)(ch/D+d)>0

iε∫
−i/ε

zw dz

(az + ah/D + b)ñ+1(cz + ch/D + d)n+1

= − lim
ε→0

∑( i∞∫
i/ε

+
−i/ε∫

−i∞

)
zw dz

(az + ah/D + b)ñ+1(cz + ch/D + d)n+1
.
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Making a change of variable z �→ i/(εt), we obtain

I6,h,w = i lim
ε→0

ε
∑ 1∫

−1

dt

(a − iεt(ah/D + b))ñ+1(c − iεt(ch/D + d))n+1
.

For a given pair of integers a and c, we fix integers b0 and d0 such that ad0 − b0c = 1. The other
integers b and d satisfying ad − bc = 1 are b = b0 + ak and d = d0 + ck for k ∈ Z. Then

I6,h,w = i lim
ε→0

ε
∑
a,c

1

añ+1cn+1

∑
u∈Z+b0/a+h/D

1∫
−1

dt

(1 − iεtu)ñ+1(1 − iεt(u + 1/ac))n+1
.

(Note that there might be some integers k such that ac(ah/D +b0 +ak)(ch/D +d0 +ck) is not positive.
However, it should be clear that the contribution of these terms to the above sum is not significant.)
Observe that ∣∣∣∣ 1

(1 − iεt(u + 1/ac))n+1
− 1

(1 − iεtu)n+1

∣∣∣∣ � ε

|ac|
|t|

|1 − iεtu|n+2
.

Since

1

|1 − iεtu|n+2
�

{
1, if |u| � 1/|εt|,
1/|εtu|n+2, if |u| � 1/|εt|,

we have

∑
u∈Z+b0/a+h/D

∣∣∣∣ 1

(1 − iεt(u + 1/ac))n+1
− 1

(1 − iεtu)n+1

∣∣∣∣ � 1.

Hence

I6,h,w = i lim
ε→0

ε
∑
a,c

1

añ+1cn+1

∑
u∈Z+b0/a+h/D

1∫
−1

dt

(1 − iεtu)w+2

= i
∑
a,c

1

añ+1cn+1

∞∫
−∞

1∫
−1

dt

(1 − itu)w+2
du.

(Note that at this point it is already enough to complete the proof of Theorem 1 since the last expres-
sion is independent of h so that the contributions from all h will cancel out each other. For the sake
of completeness, we will carry through the computation.) Following the computation in [8, p. 341],
we find that

∞∫
−∞

1∫
−1

dt

(1 − ixt)w+2
dx = 2π

w + 1
,

and
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I6,h,w = 2π i

w + 1

∑
(a,c)=1,N|c,a,c �=0

1

añ+1cn+1
.

The sum is equal to 0 if n is even, and is equal to

I6,h,w = 8π i

w + 1

ζ(n + 1)ζ(ñ + 1)

ζ(w + 2)Nn+1

∏
p|N

1 − p−(ñ+1)

1 − p−(w+2)

if n is odd. In either case, we have

I6,h,w = − 4π i

Nn+1

(
w

n

)
w + 2

B w+2

Bn+1

n + 1

Bñ+1

ñ + 1

∏
p|N

1 − p−ñ−1

1 − p−w−2
, (6)

where p runs through all prime divisors of N . This settles the case m = w .

3.7.3. Case m = 0
We first make a change of variable z → −1/N D2z and obtain

I6,h,0 =
i∞∫

−i∞

∑ (−1)n Nñ D w zw dz

(a/D − N(ah + bD)z)ñ+1(−c/N D + (ch + dD)z)n+1
.

Now choose integers u and v such that Du − Nhv = 1. For each
( a b

c d

)
in Γ0(N), we set

(
α β

γ δ

)
=

(
a b
c d

)(
u h

N v D

)
.

We check that the condition ac(ah/D + b)(ch/D + d) > 0 holds if and only if the matrix

(
a′ b′
c′ d′

)
:=

(
δ −γ /N

−βN α

)

satisfies

a′c′(a′v/D + b′)(c′v/D + d′) > 0.

In fact, we have

a′ = ch + dD, c′ = −N(ah + bD), a′v/D + b′ = −c/DN, c′v/D + d′ = a/D,

and as
( a b

c d

)
goes through every element in Γ0(N) satisfying ac(ah/D + b)(ch/D + d) > 0, the corre-

sponding
( a′ b′

c′ d′
)

goes through elements in Γ0(N) satisfying a′c′(a′v/D + b′)(c′v/D + d′) > 0. It follows
that

I6,h,0 =
i∞∫ ∑

a′,b′,c′,d′

(−1)n Nñ D w zw dz

(a′z + a′v/D + b′)n+1(c′z + c′v/D + d′)ñ+1
.

−i∞
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By (6), this is equal to

4π iD w

N

(
w

n

)
w + 2

B w+2

Bn+1

n + 1

Bñ+1

ñ + 1

∏
p|N

1 − p−n−1

1 − p−w−2
.

Remark 3.9. Note that the argument above can be extended to show that

rm,h/D(Rn) = (−1)n+m Nñ−m Dm̃−mrm̃,v/D(Rñ)

for 0 � m � w and 1 � n � w − 1. Here the integer v is the multiplicative inverse of −Nh modulo D
since u and v satisfy Du − Nhv = 1.

3.7.4. Summary for the case ac(ah/D + b)(ch/D + d) > 0
Combining the computations above, we arrive at the following conclusion.

Lemma 3.10. We have, for all h with (h, D) = 1,

c−1
n F6,h(X) = (−1)n(2i)w+1 w + 2

B w+2

Bn+1

n + 1

Bñ+1

ñ + 1

×
(

X w D w

N

∏
p|N

1 − p−n−1

1 − p−w−2
− 1

Nn+1

∏
p|N

1 − p−ñ−1

1 − p−w−2

)
,

where the products run over all prime divisors p of N.

3.8. Proof of Theorem 1

This is just a summarization of Lemmas 3.3–3.6, 3.8, and 3.10.

3.9. Proof of Theorem 2

Since { f1, . . . , f s} is an orthogonal basis, we have

Rn =
s∑

i=1

〈Rn, f i〉
〈 f i, f i〉 f i . (7)

Now applying rm,χ to both sides of (7), we obtain

rm,χ (Rn) =
s∑

i=1

〈Rn, f i〉
〈 f i, f i〉 rm,χ ( f i) =

s∑
i=1

1

〈 f i, f i〉 rn( f i)rm,χ ( f i)

= n!
(2π i)n+1

m!
(−2π i)m+1

s∑
i=1

1

〈 f i, f i〉 L( f i,n + 1)L( f i,χ,m + 1).

Then Theorem 2 follows from Theorem 1.
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