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We obtain a new method for the study of class groups of cyclotomic fields by
investigating cyclotomic integers of prescribed absolute value. Explicit subgroups
of the classgroup C modulo the class group C+ of the maximal real subfield are
exhibited and lower bounds on their orders are derived. For the m th cyclotomic
field Km , where m= pam$, ( p, m$)=1, and p is a prime, we determine the structure
of C+CP�C +CQ up to a binary parameter; here CP , CQ are the subgroups of C
generated by the classes [Pi] respectively [Qi], where p factors in Km as > Qi ,
Qi=P.( pa)

i , and the Pi are prime ideals. � 1998 Academic Press

1. INTRODUCTION

A basic theorem of algebraic number theory asserts that all elements of
a prescribed norm in an order O of an algebraic number field have the form
=x for a unit = # O and x # X, where X is a fixed finite subset of O. Further-
more, X can be determined in a finite number of steps. The corresponding
section of [2], for instance, ends with the sentence, ``This gives a final solu-
tion to the problem...'' [2, p. 123]. Statements like this are very frustrating
for anyone who really wants to work with numbers of prescribed norm��
because the actual computation of X is usually impossible within one's
lifetime and theoretically almost nothing is known about X.

The first part of this paper is devoted to an instance of the norm problem
of particular interest, namely cyclotomic integers with prescribed absolute
value. That is, we investigate the problem of prescribed relative norm for
cyclotomic fields K with respect to the maximal real subfield K+. In the
second part we will show that the absolute value problem is intimately
connected with the structure of the class group of K modulo the class
group of K+, thereby demonstrating the significance of our approach. Our
main result will concern the class group C of the mth cyclotomic field Km

where m= pam$ and p is a prime. Let CP , CQ be the subgroups of C
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generated by the classes [Pi] respectively [Qi], where p factors in Km as
> Qi , Qi=P.( pa)

i , and the Pi are prime ideals. We will determine the
structure of the group C+CP�C +CQ almost completely. A further result of
a different type will provide explicit bounds on the size of subgroups of
C�C+. Of course, the knowledge of C+CP �C+CQ also yields information
on class number factors, a problem which has been studied intensively in
the literature. Work related to our results in one way or another can be
found in [4�8, 12, 13, 15, 16]. The underlying methods mainly rely on the
class number formula or on class field theory and are completely different
from our approach. I am not aware of any previous work utilizing the
connection to the absolute value problem for the study of class groups.

Last but not least, cyclotomic integers of prescribed absolute value play
an important role in combinatorics, see [1, 10, 11, 14, 17, 19]. For example,
one of the most popular combinatorial problems related to the absolute value
problem is circulant Hadamard matrices. A circulant Hadamard matrix is
a v_v-matrix H with entries \1 of the form

\
a1

av

} } }
a2

a2

a1

} } }
a3

} } }
} } }
} } }
} } }

av

av&1

} } }
a1
+

such that any two rows of H are orthogonal. The Circulant Hadamard
Matrix Conjecture asserts that there is no circulant Hadamard matrix
besides the trivial examples for v=1, 4. The connection to cyclotomic
integers of prescribed absolute value is the following. Set bi :=(ai+1)�2.
One can show that �v

i=1 bi !i has absolute value u :=- v�2 for any v th root
of unity !{1 and that u must be a rational integer. Thus the investigation
of elements of Z[!] of absolute value u is essential for the study of Circulant
Hadamard matrices. Using this method, dramatic progress towards the
Circulant Hadamard Matrix Conjecture was recently achieved in [18].

2. CYCLOTOMIC INTEGERS OF PRESCRIBED
ABSOLUTE VALUE

We will prove several restrictions on the structure of cyclotomic integers
satisfying the equation xx� =n for an integer n>1. Exploiting the decom-
position groups of the prime ideals involved in the right way will be the key
to these results.

Throughout the rest of the paper, we use the following notation. By
Km=Q(!m), !m=e2?i�m, we denote the mth cyclotomic field and by Om its
ring of integers. For _ # Gm :=Gal(Km �Q) we write Fix(_) for the subfield
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of Km fixed by (_). For positive integers t and s we denote the order of
t modulo s by os(t).

A prime p will be called self-conjugate modulo m if there is an integer j
such p j#&1 (mod m$), where m= pam$, ( p, m$)=1. Note that p is self-
conjugate modulo m if and only if the primes above p in Om are invariant
under complex conjugation. Moreover, if q{ p is an odd prime then p is
self-conjugate modulo paqb, a�0, b�1, if and only if oq( p) is even.

The following preliminary results will be basic for the whole paper.
We first note the following consequence of Kronecker's result that an

algebraic integer all of whose conjugates have absolute value 1 is a root of
unity.

Lemma 2.1. Let x # Om be a solution of xx� =n, where n is a positive
integer. If _ # Gm fixes all primes above n then

x_==(_) ! j(_)
m x,

where =(_) and j(_) are integers with =(_)=\1 and =(_)=1 if m is even.

Proof. Since (x)=(x_), we have x_=ux for some unit u. As |x_|2=
(xx� )_=n_=n=|x|2, u has absolute value 1. By Kronecker's result, u must
be a root of unity, i.e., u=\! j

m for some j. If m is even then we can choose
the positive sign. K

The next lemma shows that =(_) and j(_) satisfy important restrictions.

Lemma 2.2. In the situation of Lemma 2.1, write m=qam$, where q is a
prime and (q, m$)=1. Let _ be defined by !m � ! t

m , (t, m)=1, let y=om(t)
denote the order of _, and write

x_==(_) ! j1
qa! j2(_)

m$ x

(with =(_)=1 if m is even). Then qa�(qa, (t y&1)�(t&1)) divides j1(_).
Furthermore, if both m and y are odd then =(_)=1.

Proof. Write ' :=! j1(_)
qa and # :=! j2(_)

m$
. We have

x=x_y
=(=(_) '#x)_ y&1

=(=(_)2 '1+t#t+1x)_ y&2

= } } }

==(_) y '(ty&1)�(t&1)#(ty&1)�(t&1)x.

Thus =(_) y '(ty&1)�(t&1)=1 (in any case!) implying the assertion. K
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We need conditions guaranteeing that we can assume j1(_)=0. This will
be achieved simply by replacing x by x times a suitable root of unity.

Lemma 2.3. Assume that q does not divide t&1 or that qa+1 does not
divide t y&1 in Lemma 2.2. Then there is an integer k such that

(x!k
qa)_==(_) ! j2(_)

m$
(x!k

qa).

Proof. We have to find a solution k of ! tk+ j1(_)
q a =!k

qa , i.e., of k(t&1)+
j1(_)#0 (mod qa). This is possible if and only if (qa, t&1) divides j1(_).
Thus the assertion is clear if (qa, t&1)=1. Assume that qa+1 does not
divide t y&1. Then (qa, (t y&1)�(t&1))=qa�(qa, t&1) and Lemma 2.2
implies that (qa, t&1) divides j1(_). K

Corollary 2.4. If m is even or both m and y are odd and the assump-
tion of Lemma 2.3 is satisfied for every prime divisor q of m then there is an
integer r such that x! r

m # Fix(_).

Proof. Note =(_)=1 and apply Lemma 2.3 repeatedly. K

Now we are ready to prove an important restriction on the structure of
the solutions of xx� =n in the case where n= pa for a rational prime p. In
a sense this result will tell us that any ``ramified'' solution of xx� = pa is
necessarily a Gauss sum times an ``unramified'' solution.

Let p=ef +1 (e{1) be an odd prime, let 1 be the set of all primitive
eth roots of unity and let h be a fixed primitive root modulo p. The set of
all Gauss sums � p&2

i=0 #i!hi

p , # # 1, will be denoted by G( p, e). For p=2 we
define G(2, 2)=[1+i].

Theorem 2.5. Let m= pam$, where p is a prime, ( p, m$)=1, and m�2
(mod 4). If x # Om is a solution of xx� = pb, b�1, then there is an integer j
such that

x! j
m # Om$ or x=! j

m yz,

where z # Om$ , zz� = pb&1, and y # G( p, e) for some divisor e{1 of w0 with
w0=2 if p=2, w0=( p&1, m$) if m$ is even, and w0=( p&1, 2m$) if both
p and m$ are odd.

Remark. The special case m$=4, p#1 (mod 4) and a=1 of Theorem
2.5(b) was obtained in [14, Lemma 5].

Proof. Let >s
i=1 qai

i be the prime power decomposition of m$.

(a) We first treat the case p=2. Let t be an integer satisfying t#5
(mod 2a+1) and (for technical reasons only) t#qai

i +1 (mod qai+1
i ), i=1, ..., s,
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and let _ # Gm be defined by !m � !t
m . Since t#1 (mod m$), _ fixes all primes

above 2 in Om . We will show that the assumption of Lemma 2.3 is satisfied
for every prime divisor of m. We have y=2a&2 and 2a+1 does not divide
t y&1 since o2 a+1(5)=2a&1. Similarly, we conclude that t y&1 is not
divisible by qai+1

i for all i. Thus we can apply Corollary 2.4 to get x1 :=
x!r

m # Fix(_) & Om=O4m$ for some r. Let _1 be defined by i � &i, !m$ � !m$ .
By Lemma 2.3 there are integers r1 , r2 such that x_1

2
=i r1x2 where x2 :=

x1 !r2
m$

. Write x2= y1+ y2 i with y1 , y2 # Om$ . If r1=0 then x2 # Fix(_1) and
we are finished. If r1=2 then x_1

2
= y1& y2 i=&x2=& y1& y2 i. Hence

x2= y2 i yielding the assertion. If r1=1 then x_1
2

= y1& y2 i=ix2=&y2+ y1 i.
Thus y1=&y2 , i.e., x2=(1&i) y1=&i(1+i) y1 again yielding the assertion.
The case r1=3 is similar. This completes the proof for p=2.

(b) Let p be odd. We first show x! j
m # Opm$ for some j. Let t be an

integer satisfying t# p+1 (mod pa+1) and (for technical reasons) t#qai+1
(mod qai+1

i ), i=1, ..., s. Then _ # Gm defined by !m � ! t
m fixes all primes

above p. It is easy to see that Corollary 2.4 can be applied and yields
x1 :=x! j

m # Fix(_) & Om=Opm$ for some j.

Now let t1 satisfy the same conditions as t with the first one replaced by
t1 #h (mod p) and let _1 # Gpm$ be defined by !pm$ � ! t1

pm$
. Note that _1

fixes all primes above p. However, also note that we cannot apply
Corollary 2.4��this is quite plausible since it would imply the nonexistence
of Gauss sums. By Lemma 2.1 we have x_1

1
==! j0

p >s
i=1 ! ji

q i
ai x1 with ==\1

and for some integers ji . Since ( p, t1&1)=1, we can assume j0=0 by
Lemma 2.3. Let qbi

i be the highest power of qi dividing p&1. From Lemma 2.2
we infer that qai

i �(qai
i , (t p&1

1 &1)�(t1&1)) divides ji for all i. Since oqi
ai+1(t1)=qi ,

we have oqi
ai+bi+1(t1)=qbi+1

i and hence qai+bi+1
i does not divide t p&1

1 &1. As qai
i

divides t1&1, we get (qai
i , (t p&1

1 &1)�(t1&1)) | qbi
i and thus qai&bi

i | ji . It follows
that x_1

1
='x1 where ' is a primitive eth root of unity for some divisor e of w0 .

If '=1 then x1 # Fix(_1) & Om=Om$ yielding the assertion. Thus assume '{1.
We write x1=� p&2

i=0 Ai!h i

p with Ai # Om$ . Then

x_1
1

=' :
p&2

i=0

Ai!hi

p

= :
p&2

i=0

Ai!hi+1

p

=Ap&2!h0

p + :
p&2

i=1

A i&1 !hi

p .

Hence A0'=Ap&2 and Ai '=A i&1 for i=1, ..., p&2. Thus Ai=A0'&i,
i=1, ..., p&2. This gives x1=A0 � p&2

i=0 '&i!hi

p completing the proof. K
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The following theorem gives a restriction on the solutions of xx� =n of a
completely different type. A special case of this result was proved in [3].

Theorem 2.6. Let x # Om be a solution of xx� =n, where (m, n)=1,
m= pa, and p is an odd prime. Let n=>s

i=1 rai
i be the prime power decom-

position of n. If a�2, we assume r p&1
i �1 (mod p2) for all i. Let f be any

common divisor of op(r i), i=1, ..., s, and write p=ef +1. Then the following
hold.

(a) If n is a square of a rational integer u and f>2u( p&1)�p then
(x)=(u).

(b) If n is a nonsquare then f is odd and there is an integer y satisfying
y2#e2n (mod p) and 1� y�e - n. In particular, e2n>p.

Remarks. (i) Under additional assumptions, one can allow m to be
the product of two prime powers in Theorem 2.6.

(ii) For f =( p&1)�2 the assumptions of Theorem 2.6 can slightly be
weakened.

Proof. If f is even, the assertion is obvious since then all primes above
n in Om are invariant under complex conjugation; see the beginning of this
section or [19], for instance.

Thus assume that f is odd. Let t be an integer such that opa(t)= fpa&1

and define _ # Gm by !m � ! t
m . It is easy to see that the assumptions of the

theorem imply that fpa&1 divides opa(ri) for all i. We conclude that for
every i there is an integer ji such that r ji

i #t (mod pa). Thus _ fixes all
primes above n in Om . As opa(t)= fpa&1 is odd and since ( p, t&1)=1, we
can apply Corollary 2.4 which shows that we can assume x # Kp, e , where
Kp, e is the subfield of dimension e :=( p&1)� f of Kp . Let g be a primitive
root modulo p. The Gaussian periods 'i=� f &1

t=0 ! get+i

p , i=0, ..., e&1, form
an integral basis of Kp, e over Q. Hence we can write x=�e&1

i=0 bi' i with
bi # Z. It is shown in [3, Lemma 2.3] that this implies

en= p : b2
i & f \: bi +2 (1)

and |� bi |�e - n. Considering (1) modulo p and multiplying by e we
conclude y2#e2n (mod p) where y=|� bi |. This already proves part (b).
Furthermore, if n=u2 for a positive integer u then y#\eu (mod p). Since
y�eu and p>2u( p&1)�f=2ue, we infer y=ue. Now (1) gives � b2

i =eu2

and this together with |� bi |=eu implies that bi=u or bi=&u for all i
completing the proof of (a). K
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Remark. Under appropriate assumptions one can combine Theorem 2.5
and Theorem 2.6 to show that under these assumptions (x)=( pa) if
xx� = p2a, x # Op bqc , where p and q are primes and q is odd. We omit the
explicit statement and proof which are tedious but straightforward.

3. SUBGROUPS OF THE CLASS GROUPS OF
CYCLOTOMIC FIELDS

In this section, we use our results on cyclotomic integers of prescribed
absolute value to study subgroups of ideal class groups of cyclotomic fields
generated by prime ideals above fixed rational integers. The both most
obvious and most important connection between the class group and
solutions of xx� =n in cyclotomic integers is described in the following
proposition. For the sake of clarity, we state it in a way slightly differing
from the version needed in the proofs of Theorems 3.3 and 3.7.

Proposition 3.1. Let m and n be any positive integers and assume that
there is a principal ideal A=( y) of Om solving the ideal equation AA� =(n).
Then the following hold.

(a) There is a solution x # Om of xx� =n with (x)=A if and only if n�yy�
is a square of a real unit = in Om .

(b) There is always a solution z # Om of zz� =n2 with (z)=A2.

Proof. (a) If n�yy� ==2 then x :==y solves xx� =n.
Conversely, if xx� =n and (x)=A then x=$y for some unit $ and n�yy� =$$�

which is a square of a real unit since any unit in Om is a product of a real unit
and a root of unity.

(b) This follows from (a) since n2�y2y� 2 surely is a square of a real
unit. K

Our strategy will be the following. Theorems 2.5 and 2.6 provide necessary
conditions on the ideals (x) generated by solutions of xx� =n. Combined with
Proposition 3.1 this shows that usually a lot of solutions of the ideal equation
AA� =(n) must be nonprincipal. Thus we get a grip on the subgroup of the
classgroup generated by the classes of the prime ideals above n.

We are now going to utilize Theorem 2.5 for the study of class groups.
We will need some notation. We fix a positive integer m�2 (mod 4) and
work in the m th cyclotomic field K=Km . Let K + be the maximal real
subfield of K. By I, H, C, respectively I+, H +, C+, we denote the group
of all (fractional) ideals, the group of all principal ideals, and the class
group of K, respectively K+. We view I+, H+, C+ as imbedded in I, H,
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C in the natural way. Note that the imbedding of C+ in C makes sense, since
the natural homomorphism C+ � C is an injection, see [20, Theorem 4.14].

Let m= pam$, where p is a prime relatively prime to m$. Recall that p
factors in K as > Qi , where Qi=P ( p&1) pa&1

i and the P i are distinct prime
ideals. We write IP , IQ for the subgroups of I generated by the Pi , respec-
tively the Qi . The groups HP , HQ , CP , CQ are defined similarly. Thus, for
instance, CP=IPH�H and CQ=IQH�H.

We define the ``Gauss sum group'' as the subgroup G( p) of H generated
by all J # H which are generated by an element of G( p, e) for some divisor
e{1 of w0 , where w0=2 if p=2, w0=( p&1, m$) if m$ is even, and
w0=( p&1, 2m$) if both p and m$ are odd.

Finally, . denotes the Euler . function.

Lemma 3.2. (a) The ideal group

I &
P :=[J # IP : J�J� # G( p) IQ]

contains IP & I +IQH.

(b) Assume that p is not self-conjugate modulo m= pam$. Then

IP�I &
P $(Z�wZ)_(Z�uZ)e�2&1,

where u=.( pa), e=.(m$)�om$( p), w=u�w0 , and w0 is defined above.

Proof. (a) Since IQ�I &
P by definition, it suffices to show IP & I+H�I &

P .
Thus let J # IP & I +H be arbitrary and write J=J +(h) with J + # I + and
h # K. Since J+ is invariant under complex conjugation, we have J�J� =(h�h� ).
As J�J� # IP , there is a positive integer b such that y :=pbh�h� # Om . Because
of yy� = p2b we conclude ( y) # G( p) IQ by Theorem 2.5. Hence J�J� =( y)�( pb)
# G( p) IQ , too, since ( pb) # IQ . This shows IP & I +IQH�I &

P .

(b) Let P1 , P1 , ..., Pe�2 , Pe�2 denote the primes above p in Om and
define

T :={`
e�2

i=1

Pci
i : 0�c1�w&1, 0�ci�u&1 for i=2, ..., e�2= .

We first show that the elements of T represent distinct cosets of I &
P in IP .

Thus assume S :=>e�2
i=1 Pci&c$i

i # I &
P with 0�c1 , c$1�w&1 and 0�ci ,

c$i�u&1 for i=2, ..., e�2. Then S�S� # G( p) IQ by the definition of I &
P .

Theorem 2.5 implies that every element of G( p) IQ can be written in the
form G$J with $ # [0, 1], G # G( p, r) for some divisor r{1 of w0 , and
J # IQ . Thus we can write S�S� in this form, say S�S� =G$S

S JS . If $S=1 then
by Stickelberger's relation (see [9, p. 209, Theorem 2; 20, p. 98, 1.19]) P1

occurs in S�S� =G$S
S JS to a power xu�r+ yu, where x, y are integers with
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(x, r)=1. This implies |c1&c$1 |=|xu�r+ yu|�u�r�w which is impossible.
Hence $S=0, i.e., S�S� # IQ . We conclude ci=c$i for all i showing that the
elements of T indeed represent distinct cosets of I &

P .

Our next goal is to show I &
P T=IP . For that let J # IP be arbitrary, say

J=>e�2
i=1 Pai

i P i
bi. Because of Pi Pi # I &

P we may assume b i=0 for all i.
Write a1=z1w+z2 , where z1 , z2 are integers with 0�z2<w. By Stickelberger's
relation there is G # G( p) such that G=Pw

1 P1
u&w >e�2

i=2 P fi
i Pi

u& fi for some
integers fi . Then J1 :=Pw

1 >e�2
i=2 P fi

i # I &
P , since IQJ1J1

&1=IQG. Note that
Pz2

1
>e�2

i=2 Pai&z1 fi
i can be written as L1 L2 with L1 # T and L2 # IQ . Thus

J=Pz2
1

J z1
1

>e�2
i=2 Pai&z1 fi

i =(J z1
1

L2) L1 # I &
P T. This shows I &

P T=IP .
We conclude [IP : I &

P ]=wue�2&1. Let U be the subgroup of IP generated
by P2 , P2 , ..., Pe�2 , Pe�2 . Then I &

P U�I &
P $(Z�uZ)e�2&1, since by what we

have shown I &
P P2 , ..., I &

P Pe�2 is a basis of I &
P U�I &

P . Now assertion (b)
follows from the theorem on subgroups of free abelian groups of finite rank
since the exponent of IP �I &

P divides u. K

Theorem 3.3. Assume that p is not self-conjugate modulo m= pam$.
Then

CPC+�CQ C+$(Z�2$wZ)_(Z�uZ)e�2&1,

where $ # [0, 1], u=.( pa), e=.(m$)�om$( p), w=u�w0 , w0=2 if p=2,
w0=( p&1, m$) if m$ is even, and w0=( p&1, 2m$) if both p and m$ are odd.

In particular, the relative class number h&
m of Km is divisible by wue�2&1.

Remarks. (a) If p is self-conjugate modulo m= pam$ then CPC+�CQC+

=[1] trivially.

(b) The reason for the binary uncertainty $ in the structure of
CPC+�CQ C+ is the loss of information by squaring in Proposition 3.1(b).
The determination of $ is an interesting problem; in particular, it would
yield new information on cyclotomic integers of prescribed absolute value.

Proof. We first note

C+CP�C +CQ $(I +IPH�H)�(I +IQH�H)

$I+IPH�I+IQH

$IP�IP & I +IQH.

Write A=IP �IP & I +IQH. The exponent of A divides u and its rank is at
most e�2. We know from Lemma 3.2(a) that IP�I &

P is isomorphic to a
factor group of A. Putting these facts together and using Lemma 3.2(b) we
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see that A$(Z�vZ)_(Z�uZ)e�2&1 for some divisor v of u with v#0
(mod w) by the theorem on subgroups of free abelian groups of finite rank.

Our next claim is that B :=I&
P �IP & I+IQH is either trivial or an elementary

abelian 2-group. For that let J # I &
P be arbitrary. Then J�J� # IP & IQH and

hence J2=(J�J� )(JJ� ) # IP & I+IQ H, as JJ� # IP & I +. This proves the claim.
Finally, since A�B$IP�I &

P $(Z�wZ)_(Z�uZ)e�2&1, we must have v=w
or v=2w. K

It is interesting to compare Theorem 3.3 with previously known results
which were obtained by completely different methods. We first consider
some results of Metsa� nkyla� [15, 16] who proved congruences for relative
class numbers by manipulations of the class number formula. In parts (a)
and (b) of the following corollary we essentially recover Satz 10 of [15]
and in part (c) we obtain new congruences which are somewhat related to
Satz 8 and Satz 9 of [15].

Corollary 3.4. Let p and q be odd primes and let h&
m denote the

relative class number of Km . Then the following hold.

(a) h&
3pa #0 (mod .( pa)�6) for p#1 (mod 3),

(b) h&
4pa #0 (mod .( pa)�4) for p#1 (mod 4),

(c) h&
paqb #0 (mod .( pa) (q&1) qc&1�2�2qc) if qc, 1�c�b, is the highest

power of q dividing p&1.

Proof. (a) We put m$=3 in Theorem 3.3. Then the assumptions are
satisfied and we have u=.( pa), e=2, w0=6, and w=.( pa)�6 implying
the assertion.

(b) We put m$=4 in Theorem 3.3 and get the assertion.

(c) Put m$=qb in Theorem 3.3. Then u=.( pa), w0=2qc, and
e=(q&1) qc&1 since oq b( p)=qb&c. K

Example 3.5. We choose an example which can be compared with
the table of relative class numbers in [20]. By Corollary 3.4(c) we have
h&

23 } 11 #0 (mod 24 } 114). The table shows that 24, 114 are actually the
highest powers of 2 respectively 11 dividing h&

23 } 11 .

Another approach to class number factors can be found in [4, 6]; the
method is to use Abhyankar's lemma to construct unramified abelian extensions
which yield class number factors by class field theory. For instance, it is
shown in [4] that the class group of K4p , where p#1 (mod 4) is a prime,
contains a cyclic group of order ( p&1)�4. Note that this result is contained
in our Theorem 3.3. A further result from [6] is that the class number of
Kpq is divisible by ( p&1)�2 or (q&1)�2 if p and q are distinct primes #3
(mod 4). This is a consequence of the following.
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Corollary 3.6. Let p and q be primes #3 (mod 4). By quadratic
reciprocity we may w.l.o.g. assume that p is a square modulo q, i.e., that oq( p)
is odd. Then

h&
pq #0 (mod( p&1) (q&1)�(2oq ( p))�2)

if ( p&1, q)=1 and

h&
pq #0 (mod( p&1) (q&1)�2�(2q))

if q divides p&1.

Proof. Put m$=q in Theorem 3.3. K

We need some notation for the formulation of our next result. Let m and
t be positive, relatively prime integers, where m= pa for an odd prime p.
Furthermore, let t=>s

i=1 rdi
i be the prime power decomposition of t. We

are only interested in the case where fi :=op(ri) is odd for every i. Then the
prime ideals above ri in Om are not invariant under complex conjugation.
Hence each ri factors in Om as

(ri)= `
ui

j=1

Pij Pij ,

where ui=.( pa)�(2opa(ri)) and the Pij are distinct prime ideals. We also
keep the notation introduced before Lemma 3.2.

Theorem 3.7. Assume that f is a common divisor of f1 , ..., fs and that
r p&1

i �1 (mod p2) if m= pa> p. If the fi are odd and if

t= `
s

i=1

rdi
i <

fp
2( p&1)

,

where the di are any nonnegative integers, then the ideal classes

_`
s

i=1

`
ui

j=1

Pcij
ij & , 0�cij�di ,

i=1, ..., s, j=1, ..., ui , represent distinct cosets of C+ in C. Here we have
ui=( p&1)�2 fi .

In particular, the order of the subgroup of C�C+ generated by the cosets
C+[Pij], i=1, ..., s, j=1, ..., ui , is at least >s

i=1 (di+1)ui.
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Proof. Assume C+[>s
i=1 >ui

j=1
Pcij

ij ]=C+[>s
i=1 >ui

j=1
Pc$ij

ij ]. Then there
are h # K and J+ # I+ such that J :=>s

i=1 >ui
j=1

Pcij&c$ij
ij =(h) J+. Since

(h�h� )=J�J� and |cij&c$ij |�di for all i, j, we know that y :=th�h� lies in Om . As
yy� =t2 and f>2t( p&1)�p by the assumption, we can apply Theorem 2.6(a)
and get ( y)=(t). Thus (h)=(h� ) and J=J� , i.e., cij=c$ij for all i, j. K

Corollary 3.8. Let m= pa for an odd prime p. Assume that q is a
prime such that op(q) is odd and that q p&1�1 (mod p2) if a�2.

Then the size of the subgroup of C�C+ generated by the classes of the
primes Qi above q in Om is at least

\\ln
op(q) p
2( p&1)<ln q�+1+

( p&1)�2op(q)

.

Furthermore, each Qi has order at least wln((op(q) p)�2( p&1))�ln qx+1
in C.

Proof. We put s=1, r1=q, f =op(q), and d1=wln((op(q) p)�2( p&1))�ln qx
in Theorem 3.7. Then the assumptions are satisfied, for t=qd1< fp�(2( p&1)).
Thus Theorem 3.7 gives the assertion. K

Example 3.9. We consider the classical example p=23, q=2. Corollary 3.8
shows that the order of a prime above 2 in the class group of K23 is at least
wln((11 } 23)�(2 } 22))�ln 2x+1=3. Since the class number of K23 is 3, such
a prime generates the full class group.

It is straightforward to combine Corollary 3.8 with reciprocity laws to
show that certain prime ideals are always nonprincipal. We only mention
the following case containing the classical p=23.

Corollary 3.10. Let p�23 be a prime #7 (mod 8). Then the prime
ideals above 2 in Op are nonprincipal.

Proof. Since p�23 and o23(2)=11, we have op(2)�5. By quadratic
reciprocity op(2) is odd. Thus Corollary 3.8 shows that the order of a prime
above 2 in the class group of Kp is at least w(ln 5�2)�ln 2x+1=2. K
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