Results: A total of 1847 pts (904 right-sided and 943 left-sided) were treated with either 40 Gy/15 fx (912 pts) or 50 Gy/25 fx (935 pts). 388 of the left-sided pts were treated with gated RT, and 440 without. No information about gating was available for the remaining 115 pts. Dmax(CTV) was less than 110% of the prescription dose in 99.4% of the plans. More than 2 cm3 of the CTV received 107-110% of the dose in 1% of the hypo-fractionated plans. For the normo-fractionated plans, this deviation was observed in 3.5% of the plans. For 92.3% of the hypo-fractionated plans, less than 2% of the CTV was covered with doses above 105%, whereas 3.9% and 3.5% of the plans had minor and major deviations, respectively. For 80.8% of the pts, the part of the CTV covered with at least 95% of the prescription dose was in compliance with the guidelines. Minor and major deviations were observed for 12.6% and 6.6% of the pts, respectively. By taking laterality into consideration, 90.8% of the right-sided pts were in compliance with the guidelines compared to only 71.2% of the left-sided pts. For the left-sided pts with available information about gating, it was found that 87.4% and 59.3% of the pts treated with and without gated RT, respectively, were in compliance, thus indicating that shielding of the heart resulted in CTV under-dosage. This was supported by compliance to the protocol heart dose guidelines for 941 left-sided pts. Only one hypo-fractionated pt showed a major deviation in V35Gy and a minor deviation in V17Gy (data missing for one pt). The lung dose satisfied the protocol guidelines for 99.4% of the pts.

Conclusion: A high degree of compliance with protocol guidelines was found for the DBCG HYPO trial. Only a few pts received CTV doses above 107% of the prescription dose. The CTV volume covered with less than 95% dose deviated from protocol guidelines for about 40% of the left-sided pts treated without gated RT. With gated RT this number decreased to about 12%, almost equal to that of right-sided pts. This indicates that gated RT for left-sided pts reduces the necessity of CTV dose compromise due to heart shielding.

EP-1938
Evaluation of pre-treatment verification for hyperthermia treatment plans
D. Harder1, N. Brändli2, G. VanStam3, G. Lutters1
1Kantonsspital Aarau, Radio-Onkologie-Zentrum KSA-KSB, Aarau, Switzerland
2Kantonsspital Aarau, Medizintechnik Service Center, Aarau, Switzerland

Purpose or Objective: The BSD-2000/3D system (BSD Medical Cooperation, Salt Lake City, USA) is used to treat deep seated tumors with hyperthermia (to temperatures of 41-43° C) in combination with radiotherapy. Treatment planning for this system is done with the software SigmaHyperplan (Dr. Sennewald Medizintechnik GmbH, Munich, Germany). In this study a method and first results for pre-treatment verification of clinical patient treatment plans using a 3D SAR scanning phantom developed at the Kantonsspital Aarau are presented.

Material and Methods: Treatment plans for individual patients were generated with SigmaHyperplan and applied to a saline phantom model. The result is a set of data for the
specific absorption rate (SAR) distribution. The measurement data is obtained with a saline phantom consisting of a tube with elliptical cross section. The tube is inserted into the BSD-2000/3D Sigma60 and a probe inside is moved in 3 spatial dimensions. The probe, a commercial isotropic SAR sensor, is scanned in 2 cm steps for a distance of 20 cm in horizontal and vertical directions and relative SAR values are recorded. Planned and measured data in the central plane of the applicator are compared for the location of the focus to assess the transferability of treatment plans to the treatment machine.

Results: The location of the focus maximum can be determined from the graphs and compared to the location of the maximum from the simulation. For the investigated plans, an agreement between simulation and measurement was found with deviations of the focal area between 0 and 2 cm.

Conclusion: Good agreement for the investigated patient plans was found between simulation and measurement. With an automated measurement system higher resolutions and 2D or 3D comparisons would be possible. The method described allows the transferability of a patient treatment plan to the treatment machine to be verified, however it does not check the correct heating of the patient.

EP-1939
An optimal grid block design for spatially fractionated radiation therapy
S. Gholami1, H.A. Nedaie2, F. Longo1, M.R. Ay1, A. S.Meigooni1
Tehran University of Medical Sciences, Medical Physics, Tehran, Iran
Islamic Republic of
1Tehran University of Medical Sciences, Radiation Oncology Department- Cancer Institute, Tehran, Iran Islamic Republic of
2University of Trieste and INFN Trieste, Department of Physics, Trieste, Italy
3Comprehensive Cancer Centers of Nevada, Radiation Oncology, Las Vegas- Nevada, USA

Purpose or Objective: In the present work, we performed model calculations of cell survival to design a Grid block with optimal therapeutic ratio. The optimal Grid block was manufactured and dosimetric characteristics of the Grid were introduced.

Material and Methods: The Geant4 toolkit (Version 9.6.p02) was used to simulate the head of the Varian2100C linear accelerator for a 6 MV photon beam based on the vendor detailed information. The dose distributions of a Grid block with hole-diameters of 0.5 cm, 0.75 cm, 1.0 cm, 1.25 cm, and 1.5 cm with constant center-to-center spacing of 1.8 cm, were calculated separately using the Monte Carlo simulation technique. A dose profile from Monte Carlo simulation, across a single hole of the Grid, has been utilized to calculate therapeutic ratio for different Grid blocks separately. The Hug-Kellerer (H-K) radiobiological model (Equation 1) which is more appropriate at doses higher than 12 Gy was utilized to calculate survival fraction of cell lines under a single hole of the Grid. The values of α/β ratios for tumor cells and normal cells were considered to be 10 Gy and 2.5 Gy, respectively.

Equation 1:

\[SF_i = \sum_{k=0}^{n} \left[\left(\frac{\alpha_k \cdot D_k}{\beta_k + D_k} \right) \right] \]

Where the Vi represents the relative cell numbers receiving the same dose ranging from Di and Di+1. The therapeutic advantage of the Grid irradiation was considered in terms of the normal tissue cell survival ratio (Grid/open field ratio) for the same tumor cell survival.

A Grid with optimal TR value was selected to manufacture. Dosimetric characteristics of the Grid were measured using ionization chamber in water phantom and Gafchormic film dosimeter in Solid WaterTM phantom materials.

Results: The results from the Monte Carlo studies showed that increasing the spacing between the Grid holes with a given hole diameter keep the TR value of the Grid block nearly unchanged (±6%). Moreover, a Grid block with a hole-diameter of 1.0 cm and 1.25 cm may lead to about 19% higher clinical responses relative to the Grids with hole-diameters smaller than 1.0 cm or larger than 1.25 cm. Dosimetric measurements of the optimal Grid were in good agreement (± 5%) using different dosimetry techniques. Table 1 shows comparison between different dosimetric features of the manufactured Grid and the dosimetric features that were predicted by Monte Carlo simulation.

Table 1

<table>
<thead>
<tr>
<th>Grid Parameters</th>
<th>Output factor</th>
<th>Valley-to-Peak ratio</th>
<th>TR (15 Gy to dose)</th>
<th>EUD (15 Gy to dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated</td>
<td>0.87</td>
<td>2.14</td>
<td>1.95</td>
<td>6.14</td>
</tr>
<tr>
<td>Measured</td>
<td>0.89</td>
<td>2.08</td>
<td>2.00</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Conclusion: Designed Grid block leads to have an optimal therapeutic ratio for spatially fractionated radiation therapy.

EP-1940
Individual cases review in KROG-0806 study Phase III randomized trial for breast cancer patients
Y.B. Kim1, J. Yoon1, H. Han1, H. Cha1, J. Choi1, M. Lee1, O.C. Suh1
1Yonsei University, Radiation Oncology, Seoul, Korea
Republic of

Purpose or Objective: Korea Radiation Oncology Group (KROG)-0806 study has been the phase III randomized trial to investigate the efficacy of internal mammary node(IMN) irradiation in breast cancer patients. Previous dummy run study evaluated protocol compliance of participating institutions. The purpose of this study is to assess the protocol compliance based on individual cases review (ICR).

Material and Methods: For ICR, patients were divided into eight subgroups based on IMN irradiation (non-irradiation (N) vs. Irradiation (I), tumor laterality (left-side (L) vs. right-side (R)) and type of surgery (breast-conserving surgery (B) vs. mastectomy (M)), respectively: NLB, NRB, NLM, NRM, RLB, RRB, RLM and RR. We excluded 15% among patients enrolled in each subgroup using the SURVEYSELECT procedure with the simple random sample. Then, all participating institutions were requested to upload the following information: planning computed tomography (CT) images, structure sets, and radiation doses as well as the documents containing treatment techniques and all beams’ eye views with questionnaire. We performed the comparison of the dose distribution among 8 subgroups. Major and minor violations are determined according to IMN treatment and dose delivered to IMN.

Results: The information of 102 patients was collected. Institutions used the different treatment techniques such as standard tangents (42.2%), partial wide tangent (23.5%), 30/70 photon/electron mix (17.6%), IMN-electrorns only (4.9%), and reverse hockey stick (11.8%). The IMN average doses in subgroups were as follows: Arm1[NLB(14.9Gy±10.7Gy), NRB(18.5Gy±13.0Gy), NLM(27.7Gy±16.4Gy), NRM(27.5Gy±15.6Gy)] and Arm2[RLB(48.3Gy±4.5Gy), RRM(50.9Gy±4.1Gy), RLM(49.3Gy±4.1Gy), RR(51.3Gy±3.2Gy)]. The dose differences between Arm1 and Arm2 groups were statistically significant. Dose variations in IMN were much greater in Arm1 than Arm2. In Arm1 group,