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a b s t r a c t

The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of
a nonlinear oscillator with dissipation. The nonlinear oscillator model is applicable to the area because
stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS). The
model is consistent with the space-time patterns of regional seismicity in which coupled large earth-
quakes, proximal in time but distant in space, may be a response to bifurcations in nonlinear resonance
hysteresis in a system of three oscillators corresponding to the rifting attractors. The space-time dis-
tribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity, with the
largest events occurring in pairs, one shortly after another, on two ends of the rift system and with
couples of smaller events in the central part of the rift. The event couples appear as peaks of earthquake
‘migration’ rate with an approximately decadal periodicity. Thus the energy accumulated at RAS is
released in coupled large events by the mechanism of nonlinear oscillators with dissipation. The new
knowledge, with special focus on space-time rifting attractors and bifurcations in a system of nonlinear
resonance hysteresis, may be of theoretical and practical value for earthquake prediction issues.
Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the
region, i.e., there is growing risk of a pending M z 7 coupled event to happen within a few years.

� 2013, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. All rights reserved.
1. Introduction

Intermediate, and especially, short-range earthquakeprediction is
still a challenge though considerable progress has been achieved in
seismology in the last two decades. The current prediction practice
focuses mostly on statistics of local seismicity and preseismic geo-
logical and geophysical changes in seismogenic crust. The preseismic
processes have been explained in terms of crack nucleation based on
the hierarchical structure of slip bands, grain boundary sliding, dis-
location pile-ups, dislocation-to-crack transition, and microcrack
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formation (Zhurkov et al., 1981; Sobolev, 1993; Teisseyre and
Majewski, 2002). On a large scale, the existing approaches proceed
from the idea that an earthquake represents a fluctuation about the
long-term motion of the plates (Rundle, 1988), or that prominent
heterogeneities in fault zones act as barriers affecting seismicity and
rupture arrest (Das and Aki, 1977). A number of intermediate-range
earthquake prediction algorithms were developed based on pattern
recognition (Keilis-Borok and Kossobokov, 1990) including quies-
cence, closer clustering of events, and changes in aftershock statistics.
Several authors (Sykes and Jaume, 1990; Knopoff et al., 1996) pro-
posed systematic increase in intermediate-level seismicity prior to
a large earthquake. There were a number of positive aspects to these
approaches, but there is certainly no general consensus on the effi-
cacy of intermediate-range forecasts (Turcotte and Malamud, 2002).
It is hard to find reliable prediction criteria for specific seismic areas
because of local, diverse and changeable geological and geophysical
conditions while the exact knowledge of physical processes in the
lithosphere remains limited.

It appears reasonable to view the problem in the more general
perspective of the complexity theory (Nicolis and Prigogine, 1989)
eking University. Production and hosting by Elsevier B.V. All rights reserved.
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and investigate basic evolution trends of a seismic area as a self-
organized complex system. Some aspects of the theory of com-
plexity are beginning to have a major impact on the understanding
of earthquake faulting, rock fracture, and, more generally, tecto-
nophysics and geodynamics of the lithosphere (Lee et al., 2002).
Recent studies have brought out a revival model of self-organized
space-time structure and criticality in earthquakes (Bak and Tang,
1989). It has become increasingly evident that evolution of a seis-
mic area is among numerous examples of geophysical systems
where spatial, temporal, or spatiotemporal structures arise out of
chaotic states (Keilis-Borok, 1990; Sornette et al., 1990). Such
spontaneously developing systems, which exchange energy and
matter with the environment, may undergo three stages of evolu-
tion, besides thermodynamic instabilities: organization, self-
organization, and chaos (Majewski and Teisseyre, 1997). Large
systems of this kind demonstrate consistency between entropy
production, progressive differentiation, increase in complexity, and
self-organization (Nicolis, 1986). Self-organization of a system im-
plies that it can replicate its environment or parts of it (lower
hierarchic levels), and is logically related to the properties of
attractors within the system.

We apply the theory of complex self-organizing systems and
their nonlinear dynamics to study the seismic process and stresses
in the rifted crust of the Baikal region. Thus we have tried to
highlight basic trends in the space and time patterns of stress as the
main physical proxy of lithospheric forces related to heat sources,
deformation, and earthquakes (Zoback, 1992).

The history of instrumental seismicity in the Baikal rift system
(BRS) includes several spells of high activity with severalMLH > 5.5
earthquakes (Golenetsky, 1990), which we correlate to reversals of
lithospheric stress (Klyuchevskii, 2003, 2007). The stress change
events were recognized in patterns derived from fault radii and
seismic moments of more than 70,000 MLH � 2.0 local shocks
(Klyuchevskii, 2004); these were analyzed jointly with the focal
mechanisms of 265MLH� 3.5 local earthquakes for the period from
1968 to 1994. Using the ample database of seismic moments of
MLH � 2.0 earthquakes was a major step forward relative to the
previous BRS stress reconstructions with only MLH � 3.5 earth-
quakemechanisms (Doser, 1991; Solonenko et al., 1997). Analysis of
small events has significantly improved the resolution of the
regional stress pattern and its space-time variations. The regional
stress history between 1968 and 1994 which was thus analyzed,
with three significant stress events distinguished in this study, was
interpreted as a scenario of nonlinear evolution with triple equi-
librium bifurcation (Klyuchevskii, 2010a). The stress events were
noted to localize in zones of predominantly vertical stress in the
center and on the flanks of the rift system. These zones, wheremost
earthquakes of different magnitudes had normal-slip mechanisms,
correspond to local highs of strain anisotropy. By analogy with
attractors related to structure formation in classical self-organized
systems (Nicolis and Prigogine, 1989; Majewski and Teisseyre,
1997), we interpret the zones of vertical stress and strain aniso-
tropy as rifting attractor structures (RAS) which are the key agents
in the current BRS tectonics and seismicity (Klyuchevskii, 2005,
2010a, 2011a, b).

The time span considered for this study is million times shorter
than the MesozoiceCenozoic period in the history of rifting in
Central Asia (Logatchev and Florensov, 1978; Ma and Wu, 1987;
Logatchev, 1993; Liu et al., 2004; Zhao et al., 2006, 2007; Mats and
Perepelova, 2011). Taking into account the spontaneously devel-
oping nonlinear systems, this difference in characteristic times
allows one to move away from the question of origin and driving
forces of the Baikal rifting (Molnar and Tapponnier,1975; Logatchev
and Zorin, 1987), and instead to highlight the pulse-like quasi-
periodic regional perturbations arising at RAS on the background of
global stress (Klyuchevskii, 2010a, 2011a, b). With this in mind, we
are developing an approach to explain a striking regularity
observed in several MLH > 5.5 earthquakes that occurred periodi-
cally in couples, one shortly after another, in the same locations at
two ends of the rift system (Klyuchevskii, 2003). We explore the
origin, distribution, and periodicity of the coupled events which are
considered as a response to stress reversal generated by the rifting
attractors. Furthermore, we suggest a general perspective of the
current geodynamics of the rift lithosphere, using a model of
nonlinear oscillators with dissipation in the phase space of energy
(Klyuchevskii, 2007, 2010a). The rifting attractors are simulated by
nonlinear oscillators which operate jointly in a single system.
Inasmuch as the stress reversals at rifting attractors cause quasi-
periodic perturbations to the lithosphere, we assume that the
couples of MLH > 5.5 events distant in space but proximal in time
may correspond to energy change events in nonlinear oscillators
associated with bifurcations (catastrophes) in nonlinear resonance
hysteresis.

This approach is the first attempt at synthetic modeling of the
physics of continental lithosphere in the Baikal rift. We expect that
this would provide new insights into the basic trends of the
regional seismicity and would have valuable theoretical and prac-
tical earthquake prediction implications.

2. Method

The energy evolution of the seismic process is modeled here,
proceeding from the analogy with an oscillating nonlinear pen-
dulum, the most spectacular and best known specific case in the
theory of catastrophes (Poston and Stewart, 1978; Arnold, 1983).
The energy exchange of an oscillating systemwith its environment
is the key parameter of sustained nonlinear dissipative oscillations.
The total stored energy changes slowly when the oscillator and the
exciting agent interact weakly, because energy changes only
slightly within each period. However, the energy change can be
very rapid if the interaction is strong, as in the case of nonlinear
resonance oscillations (Nicolis, 1986).

Nonlinear resonance in a dissipative oscillator with, say, a cubic
nonlinearity, can be expressed as (e.g., Arnold, 1983; Kuznetsov
et al., 2005)

€xþ u2
0x ¼ �2g _x� bx3 þ f cos ut (1)

where x is the displacement of the oscillator relative to its equi-
librium and u0 is its natural frequency, g is the dissipation constant,
and b is the nonlinearity constant; f and u are the amplitude and
the frequency of the exciting force. Thus, the terms on the right-
hand side are responsible for dissipation, nonlinearity, and excita-
tion. After transformation, (1) becomes the equation of a resonance
curve,

ðga0Þ2 þ a20

 
d� 3ba20

8u0

!2

¼ f 2

4u2
0

(2)

where a0 is the equilibrium amplitude of oscillations, and
d ¼ u� u0 is the frequency mismatch (resonance detuning). The
nonlinearity parameter b is assumed to be positive, for the sake of
certainty, and several dimensionless parameters are additionally
introduced: P ¼ ð3bf 2Þ=ð32g3u3

0Þ responsible for the excitation
intensity, X ¼ ð3ba20=ð8gu0Þ responsible for the intensity of the
excited oscillations, and the nondimensional detuning D ¼ d=g.
Then (2) becomes

X ¼ P

ðX � DÞ2 þ 1
: (3)
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Assigning different values to the excitation intensity P, one can
obtain a family of curves X ¼ XðDÞ, which are the resonance curves
of a nonlinear oscillator in the dimensionless coordinates X and D
(Fig. 1a). If the excitation is small,

X ¼ P

D2 þ 1
(4)

and the corresponding curve has a bell shape typical of linear
resonance. As P grows, the amplitude of the excited oscillations
increases, and the upper part of the resonance curve gradually
bends to the right making the curve ever more asymmetrical, to
eventually acquire a prominent ‘appendix’ (Fig. 1b).

In the analysis of bifurcations, the resonance curve (Eq. (3)) is
differentiated along X to obtain:

ðD� XÞ2 þ 2XðD� XÞ
�
vD
vX

� 1
�
þ 1 ¼ 0: (5)

3. Models of nonlinear oscillators

The behavior of the system is analyzed in terms of a phase
portrait (Khlebopros et al., 2007; Klyuchevskii, 2007, 2010a) in the
phase space of energy. The phase space in the coordinates
Figure 1. Family of resonance curves of a nonlinear oscillator with dissipation. a: Each
curve shows dependence of X (intensity of excited oscillations) on D (nondimensional
detuning) at a fixed excitation amplitude defined by P (see Eq. (3)). The cross marks the
point corresponding to the first appearance of the vertical tangent (the coordinates of
the cusp point: (P ¼ 8=ð3

ffiffiffi
3

p
Þ, D ¼

ffiffiffi
3

p
, X ¼ 2=

ffiffiffi
3

p
), after (Kuznetsov et al., 2005).

b: As P grows (P1 > P), the amplitude of the excited oscillations increases, and the
upper part of the resonance curve gradually bends to the right making the curve ever
more asymmetrical to eventually acquire a prominent ‘appendix’.
D�X (eu0/g < D < N) is divided into three domains, and the res-
onance curve, correspondingly, has three branches with the
boundaries between them being defined according to the condition
vD=vX ¼ 0: from �u0/g to D1, from D1 to D2, and from D2 to N

(Fig. 2). The domains from �u0/g to D1 and from D2 to N are the
same as the ascending left-hand and descending right-hand
branches of the linear oscillator, while the domain from D1 to D2
deserves special attention. The resonance curve that forms at
a rather large excitation amplitude includes, within this domain, an
ascending (1) and a descending (3) branch, and branch 2 between
them. Branches 1 and 3 lie one above another and thus can be called
an upper and a lower branch, respectively. The intermediate branch
of the resonance curve corresponds to unstable equilibrium and is
a divide in the phase space between the two branches (1) and (3)
which represent two stable states of the system (Fig. 2).

Gradual increase in the excitation frequency applied to the
system, which is originally far from the resonance, is plotted as the
motion of the system along the left (upper) branch of the resonance
curve. As the excitation frequency increases, the oscillation
amplitude increases proportionally, and soon after the peak there
follows a sudden change (a hard transition or a catastrophe). The
excitation amplitude drops to some minor value, whereby the en-
ergy of the nonlinear oscillator drops abruptly, and the system falls
on the right-hand (lower) branch of the curve. At this end the
system can follow either of the two possible evolution scenarios. In
one extreme case, it falls at some small starting energy point and
resumes its evolution in the domain from �u0/g to D1 to arrive
again at the domain between D1 and D2 as a result of numerous
stochastic pulses. In this case events occur along the upper branch
of the curve, and the energy of the system builds up monotonously
within the deterministic component (from u0/g to D2), until a ca-
tastrophe happens. In the other extreme case, as the excitation
frequency decreases, the system, instead of falling to initial small
energy level, moves toward greater energy along the right-hand
(lower) branch, including the bandwidth where large-amplitude
oscillations occurred before (Fig. 2). The oscillation amplitude in-
creases gradually (while the excitation amplitude remains invar-
iable and large enough), and another catastrophe happens at some
point. This catastrophe is associated with a jump-like transition to
high-amplitude oscillations and extremely rapid increase in the
oscillator’s energy (unlike the previous catastrophe in which the
energy decreased); thereby the system returns to the left-hand
(upper) branch of the resonance curve. Thus, a change in the
Figure 2. Nonlinear resonance hysteresis. Arrows show direction of motion along the
resonance curve in the case of slow change in excitation frequency, modified after
(Kuznetsov et al., 2005). See text for explanation.
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excitation frequency at quite a large excitation amplitude and small
dissipation leads to hysteresis of the nonlinear resonance. In the
domain of hysteresis, the nonlinear oscillator is bistable, which
corresponds to coexistence of two attractors in the phase
space: one related to a small excitation amplitude and the other to
a large one.

More complicated processes occur in a system of two interacting
nonlinear oscillators (1 and 2). The oscillators are located at some
distance from one another and are commensurate in their natural
(resonance) frequencies and excitation amplitudes, as well as in the
nonlinearity and dissipation parameters. The two oscillators are
related in a specific way: their interaction becomes especially active
only when one of them arrives at a catastrophe (a jump from one
curve branch to the other). Although one oscillator lags behind the
other in the phase, the two have similar phase portraits. Thus we
may assume that the phase curves of two nonlinear oscillators
coincide and use a single phase portrait (Fig. 2). Let one oscillator
(oscillator 1) be located at the point A on the upper branch of the
phase curve and move slowly along it to the right while the other
(oscillator 2) be at the point B on the lower curve branch and move
slowly to the left. As the system arrives at D2, oscillator 1 experi-
ences a catastrophewith a large energy release, and both oscillators
come to be located on the lower branches of their phase curves
(shown as a single curve in Fig. 2). While the system is moving
slowly from A to D2, oscillator 2 moves from B toward D1 (point B1).

If the distance between B1 and D1 is not very large, oscillator 2
jumps it over and achieves a catastrophe whereby it almost
instantaneously moves from the lower curve branch to the upper
one. Then oscillator 1, which again is moving slowly along the lower
curve branch, arrives at D1 and jumps up to the upper branch, and
the two again stay on the same branch for a short while. If at that
time oscillator 2 is close enough to D2, oscillator 1 pushes it toward
Figure 3. Map of earthquakes and density of MLH � 5.5 earthquakes in the Baikal region sin
events (I is earlier event, II is later event; dashed line connects the coupled events; arrow is
earthquakes, circle sizes are proportional to earthquake magnitudes; 5 ¼ rifting attractor st
area and lifetime). Inset A gives frequency histogram (annual numbers) of MLH � 5.5 earth
this critical point and thus triggers a catastrophe in No. 2. Note that
each oscillator, when being pushed by its counterpart, moves
orders of magnitude faster than in the absence of that propulsive
action. However, if the distance from B1 to D1 is greater than some
critical value, the catastrophe in oscillator 2 occurs much later, i.e.,
the arising regularity may stochastically break down.

This dynamics realizes at some quasi-periodicity and can gen-
erate one or two catastrophes. The stochastic component in the
periodicity is due to the difference in the velocities of the moving
oscillators in the absence of interaction and to the phase lag in the
beginning of the interaction. In a system of three synchronized
nonlinear oscillators (1, 2, 3), a catastrophe occurs as two oscillators
move along the upper phase curve branch and have the same
natural frequencies; another catastrophe takes place as the fre-
quency of oscillator 3 coincides with that of 1 and 2 jointly. Inas-
much as the frequency of No. 3 lags slightly behind that of No. 2,
there is some time lag in their frequencies, and another catastrophe
can break in a while. The behavior of the system moving along the
lower curve is similar to the above pattern, but the energy of the
lower branch is low, and the generated events are slightly smaller
than those associated with the drop from the upper branch.

4. Data and results

In this section we analyze relevant earthquake data from the
Baikal rift system to see whether the above models with one to
three nonlinear oscillators can apply. The map in Fig. 3 shows
locations andmagnitudes ofMLH � 5.5 events that have occurred in
the Baikal region since 1950 when continuous recording became
possible due to a newly developed regional seismological network
of permanent stations. Location errors in the 1950s were within
50 km. By the mid-1960s, the network had approached its present
ce 1950. 1 ¼ couples of MLH � 5.5 earthquakes; 2 ¼ large faults; 3 ¼ year and order of
directed from earlier shock to later shock), and the shock magnitudes; 4 ¼ MLH � 5.5
ructures (RAS) (the structure size in the map approximately corresponds to its surface
quakes in the Baikal region since 1950.



Table 1
Couples of instrumentally recorded large earthquakes in the Baikal rift system.

Coupled events No. Earthquake Date Lat. (� N) Long. (� E) M

Couple I 1 Kyakhta 1957.02.06 50.0 105.5 6.5
2 Muya 1957.06.27 56.1 116.4 7.9

Couple II 3 Mogod 1967.01.05 48.0 103.0 7.8
4 Tas-Yuryakh 1967.01.18 56.6 121.8 7.0

Couple III 5 Unnamed 1981.05.22 51.96 105.52 5.6
6 Unnamed 1981.05.27 53.94 108.92 5.5

Couple IV 7 South Yakutia 1989.04.20 57.17 122.31 6.6
8 North Mongolia 1989.05.13 50.17 105.34 5.8

Couple V 9 South Baikal 1999.02.25 51.64 104.82 6.0
10 Kichera 1999.03.21 55.83 110.34 6.0
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configuration and could record continuously MLH � 2.5 earth-
quakes, while the location errors reduced to 5e10 km (Golenetsky,
1990).

Data on five couples of large instrumental events in the Baikal
rift system is given in Table 1. There were three coupled events
between 1967 and 1994 (in 1967, 1981, and 1989) in the Baikal
region (Klyuchevskii, 2003), which were distant in space but
proximal in time (Fig. 3, Table 1). Note that all three earthquake
couples followed stress change events within the rifting attractor
structures (Klyuchevskii, 2010a, 2011a). The statistical significance
of this series increases as it is extended with the earthquake couple
of the Kyakhta event of 06.02.1957 (20-34-58;M¼ 6.5; 4¼ 50.0� N,
l ¼ 105.5� E) south of Lake Baikal and the Muya event of 27.06.1957
(M ¼ 7.9; 4 ¼ 56.1� N, l ¼ 116.4� E) in the northeastern flank of the
rift system (Fig. 3, Table 1). The same spatial combination of the
events repeated in 1967, when the Tas-Yuryakh earthquake in the
northeastern flank of the rift (18.01.1967; M ¼ 7.0; 4 ¼ 56.6� N,
l ¼ 121.8� E) followed the Mogod one in northern Mongolia
(05.01.1967; M ¼ 7.8; 4 ¼ 48.0� N, l ¼ 103.0� E), and then in 1989
with the South Yakutian earthquake of 20.04.1989 (MLH ¼ 6.6;
4 ¼ 57.17� N, l ¼ 122.31� E) preceding another event in northern
Mongolia (13.05.1989;MLH ¼ 5.8; 4¼ 50.17�N, l¼ 105.34� E). There
is obviously a striking regularity in these couples of earthquakes
that occurred south of Lake Baikal and in the northeastern part of
the rift system (Fig. 3) and had a magnitude difference of about
a unity (Table 1). A couple of smaller events shook the central part
of the rift in 1981 (22.05.1981; 09-51-20.5;MLH ¼ 5.6; 4 ¼ 51.96� N,
l¼ 105.52� E) and (27.05.1981; 21-26-07.8;MLH¼ 5.5; 4¼ 53.94� N,
l ¼ 108.92� E). In 1999 there was another couple: the South Baikal
earthquake of 25.02 beneath southern Baikal (18-58-29.9;
MPSP¼ 6.0; 4¼ 51.64� N, l¼ 104.82� E) followed soon by a shock on
the northern Baikal end (the Kichera earthquake of 21.03.1999,
16-16-03.1;MPSP ¼ 6.0; 4¼ 55.83� N, l¼ 110.34� E) (Fig. 3, Table 1).
The four events likewise show systematic distributions in space and
Figure 4. Mean “migration” rate
time and inmagnitudes. Note that no coupled earthquakes have yet
been recorded after 1999 in the Baikal region, but a single event
occurred in the south of Lake Baikal near Kultuk village
(27.08.2008; MW ¼ 6.3; 4 ¼ 51.62� N, l ¼ 104.06� E).

The epicentral field in the map of Fig. 3 extends from the
southwest to the northeast along the basins and ranges of the rift
zone. The largest events tend to be along the rift flanks, and
earthquakes in the central part have smaller magnitudes; several
large shocks appear south of Lake Baikal. There are three domains
of high earthquake density on the 100 km � 100 km grid (at the
flanks and at the center of the rift) which match the areas of the
rifting attractor structures in the lithosphere (Klyuchevskii, 2011a).
The annual MLH � 5.5 earthquake frequency histograms since 1950
show three major peaks at 1957, 1981, and 1999, and all MLH � 6.0
events occur in couples (Fig. 3A). This feature is illustrated
numerically in Fig. 4 as a plot of mean ‘migration’ rate of MLH � 5.5
earthquakes. The rate V is found as a ratio of the distance between
earthquakes to their time spacing. The migration rates of coupled
events are much above the average in the late 1950s, 1960s, and
1980s, as well as in 1981 and 1999, the peaks having a w10 year
periodicity.
5. Discussion

In the case of detuning, when the resonance linearity fails, there
arise forced oscillations of a relatively small amplitude a1 (Fig. 5a)
(Kuznetsov et al., 2005). The same external force F applied to an
oscillator of an originally large amplitude, which then has its nat-
ural frequency about that of the exciting action, will push the
oscillator to oscillate in time with this action and to swing at the
ever larger amplitude a2 (Fig. 5b). Thus oscillators can become
synchronized in frequency and phase in the conditions of nonlinear
resonance. An intermediate amplitude corresponds to an unstable
state: any minor increase or decrease in the amplitude of oscilla-
tions, after a transition, pushes the oscillator to the states a1 or a2,
i.e., to one of its attractors. It is important for our consideration that,
according to Nicolis (1986), the total energy density in a system of n
synphase oscillators is proportional to n2, and the system operates
coherently. Otherwise, if the phases are random and distributed
uniformly over some 2p interval, the total energy density of the
system is proportional to n, and the energy release is incoherent.
Furthermore, interaction of linear related oscillators leads to energy
exchange between their amplitudes but does not involve their
phases or frequencies. Yet, if the oscillators are nonlinear, there is
interrelation between their amplitudes and phases (or amplitudes
and frequencies). Two coupled nonlinear oscillators begin to
interact (when their oscillation amplitude is small) and exchange
V of MLH � 5.5 earthquakes.



Figure 5. Amplitude interactions among related nonlinear oscillators transposed to
phase relationship, modified after (Nicolis, 1986; Kuznetsov et al., 2005). See text for
explanation.
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energy between their amplitudes A1, A2 (Fig. 5c). However, by the
relationship A1441, A2442, the energy exchange between the
amplitudes leads to the phase relationship 41442 of the oscilla-
tors, and, besides anharmonicity, there appears a relationship of the
amplitudes with the main frequency. Thus the energy interaction
between the amplitudes of anharmonic oscillators gives rise to the
frequency (or phase) relationship and thereby opens a way for
phase coherence of three oscillators, which causes instability and
nonlinear resonance bifurcations. This very combination of factors
likely maintains the most ‘efficient’way of system energy release in
extreme states.

Another essential theoretical point is that a nonlinear oscillator
always becomes excited, to the probability P z 1, when the mean
square deviation of the imposed fluctuations exceeds some critical
value (Nicolis, 1986). This excited oscillator then reaches its limit
period with the main frequency u0 and a large amplitude.
Depending on the threshold relation coefficients (governing
parameters) m, the set of mean square amplitudes 3of the excited
concurrent modes, and the imaginary parts of the eigenvalues of
the latter (their threshold frequencies U), one can observe some
interesting dynamic regimes in such a multi-mode oscillator. Spe-
cifically, spontaneous mergence (uptake) of some frequencies if the
frequencies U of the concurrent modes are similar enough and the
amplitudes 3i of some of them exceed a certain threshold can be
observed. Once this happens, the whole system oscillates at one
combined frequency which can change (as a function of intensity
and topology of the relationship) from the arithmetic

PK
i¼1 Ui=K or

geometric ðPK
i¼1 UiÞ1=K means to the weighted mean frequency

0
BBB@
PK

i¼1 32i U
2
iPK

i¼1 32i

1
CCCA

1=2

where K is the number of the excited modes. This behavior is
obviously self-organizing and features high order, though low
complexity, and is typical of homeostasis-maintaining systems. In
this case, all oscillators oscillate synchronously and the system is
functionally uniform.

This very synchronicity applies in the suggested model of non-
linear oscillators, which appears to explain the generation of some
earthquakes associated with nonlinear geodynamics of the Baikal
rift lithosphere. In the simplest case, one nonlinear oscillator
periodically generates single events of roughly similar magnitudes
within the hysteresis of the nonlinear resonance. In the case of
several coupled and interacting oscillators, the systemmoves along
the lower branch of the phase curve toward lower excitation fre-
quencies and the catastrophes are realized as the system jumps up
to the upper branch. In terms of the seismic process this indicates
some cyclicity of large events: frequency build-up e a catastrophe
(a large or great event) e frequency decay e a catastrophe (slightly
smaller event), etc. The cyclicity may be interrupted (apparently, by
period duplication) if, after the catastrophe, the events follow the
former scenario of frequency growth.

The interaction of two or three related nonlinear oscillators,
similar in size and oscillation (dissipation) parameters, can account
for the synchronization of coupled events corresponding to stress
reversal in three geographically dispersed areas which fall in the
zones of rifting attractors (Klyuchevskii, 2011a). In our assumption
they are, specifically, the rifting attractor structures (Fig. 3) dis-
tinguished on the basis of MLH � 2.5 statistics of fault radii and
seismic moments (Klyuchevskii, 2004, 2005, 2007). The coupled
MLH � 5.5 earthquakes occurred exactly within those areas: the
largest shocks ofMLH � 6.0 on the rift flanks in 1957, 1967, and 1989
and MLH z 5.5 couples in 1981 and 1999 in the central part of the
rift system south of Lake Baikal. In terms of the above model, the
events on the rift flanks may correspond to drops to the lower
branch of the hysteresis while those in the rift center may fit the
jumps up to the upper branch of the phase curve.

The specific subsurface physical mechanisms that govern the
operation of the nonlinear oscillating system remain unclear and
require further studies. The thermal and gravity instability that
maintains rifting within the rifting attractor structures (domains of
high stress and strain anisotropy) may be associated with different
lithospheric and sublithospheric processes: rise of melts or hot
fluids through the highly permeable rifted lithosphere,
decompression-related gas-to-liquid phase change transitions,
metamorphic reactions, etc (see, for example, Letnikov, 1992, 2006;
Logatchev, 1993; Golubev and Zubkov, 2006; Klyuchevskii,
2011a, b). What is important, is that the responses of the system
are obviously nonlinear, and catastrophes (bifurcations) are the
optimal way of abrupt energy release in extreme states for the sake
of system’s conservation. This is exactly the ‘efficiency’ principle
(see above) which appears to work in the hierarchy of earthquakes
as the greatest amount of strain energy built-up slowly in the
source area releases instantaneously in a single large shock
(Zhurkov et al., 1981; Sobolev, 1993).

Thus, at least a part of MLH � 5.5 events in the Baikal rift system
are associated with its nonlinear geodynamics. This inference has
important implications for intermediate-range earthquake predic-
tion based on fault radius and seismic moment statistics of
MLH � 2.5 earthquakes (Klyuchevskii, 2004, 2005, 2007). Extrap-
olating the results into the nearest future, and bearing in mind the
decade-long periodicity of the pulses, one may expect a bifurcation
to approach, i.e., there is growing risk that M z 7 coupled events
may happen in the region within a couple of years.

A number of other relatively large earthquakes in the area fail to
fit the suggested model. The reasons may be in some unknown
lithospheric tectonophysical effects in the Baikal rift and/or in their
interplay with processes in neighboring active seismic areas of
Mongolia, Yakutia, and Altai-Sayan which may affect the Baikal
regional seismicity. Inasmuch as changes in lithospheric stress in
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the Baikal rift affect seismicity in the neighboring regions (i.e., local
seismicity in Mongolia (Klyuchevskii, 2010b)), prediction of large
earthquakes requires further investigation into nonlinear geo-
dynamic and tectonophysical processes in Central Asia.

6. Conclusions

The space-and-time patterns of MLH > 5.5 earthquakes in the
Baikal rift system hold over the entire period of instrumental
seismicity and reflect the origin, energy, and activity time of the
causative phenomena. These patterns are interpreted in terms of
nonlinear resonance hysteresis associated with pulse-like pertur-
bations at three rifting attractor structures. The model presents the
stress evolution in the rifting attractor zones as operation of a dis-
sipative system of interacting nonlinear oscillators. Periodic catas-
trophes (bifurcations) in this system provide the most efficient way
of energy release for the sake of system conservation. The bi-
furcations show up as stress reversals with the ensuing couples of
earthquakes that happen alternately on the two flanks of the rift
system, one shortly after another. Thus, at least a part of MLH � 5.5
events in the Baikal region must be associated with nonlinear
geodynamics of the rift system. This inference has important im-
plications for intermediate-range earthquake prediction based on
fault radius and seismic moment statistics of MLH � 2.5 earth-
quakes. Extrapolating the results into the near future, and bearing
in mind the decade-long periodicity of the seismicity pulses, one
may expect a bifurcation to approach. That is, there is growing risk
that coupled events of M z 7 may occur in the region within a few
coming years.

This interpretation of the current geodynamics and tectono-
physics of the Baikal rift system using the model of a nonlinear
oscillator with dissipation is the first attempt to synthesize the
physics of continental lithosphere. We expect this to provide new
insights into the regional seismicity and to be of theoretical and
practical value for earthquake prediction issues. Better under-
standing of the controls of stress evolution and seismicity requires
further investigation into nonlinear processes of the whole Central
Asian geodynamics and tectonophysics.
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