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a b s t r a c t

A connected graph is said to be `1 if its path distance isometrically
embeds into the space `1. Following the work of Deza, Grishukhin,
Shtogrin, and others on polyhedral `1 graphs, we determine all
finite closed polyhexes (trivalent surface graphs with hexagonal
faces) that are `1.
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1. Introduction

The path distance on a connected graph Γ is a metric on the set of vertices of Γ . Thus, for each
connected graph there is a corresponding metric space. Studying graphs from this point of view is
what is sometimes called themetric graph theory. One of the advantages of the metric point of view is
that it gives a way to define several natural classes of graphs. Indeed, given a collection of ‘‘standard’’
metric spaces, we can define the corresponding class of graphs by requiring that the metric space of
the graph should be isomorphic to a subspace of one of the standard spaces. The class of graphs that
is central to this paper is defined exactly in this way: A graph Γ is called an `1 graph if and only if the
metric space on the vertices of Γ is isomorphic to a subspace of `1. That is, the vertices of Γ can be
matched with some points of `1 in such a way that the path distance between every two vertices is
equal to the distance between the corresponding two points of `1. We recall that `1 denotes the set
of all real sequences {an}, such that

∞∑
i=0

|ai| <∞,

with distance (metric) on this set defined by

d1(a, b) =
∞∑
i=0

|ai − bi|.
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Here, of course, a = {an} and b = {bn} are two points of `1.
The class of `1 graphs contains somewell-known series of graphs, such as, say, the complete graphs

Kn, the cocktail-party graphsKn×2, theHamming cubesQn, the half-cubes 12Qn, and someothers. Partial
cubes, which attracted a lot of attention in recent years (see for example [1–4]), are `1. The Petersen
graph and its complement are both `1 graphs. The Cartesian product of two `1 graphs is again `1. It was
noticed early on that the 1-skeleton graphs of the five regular polyhedra are all `1. This observation
motivated themassive search undertaken by Deza, Grishukhin, and Shtogrin, aiming to answer which
polytopal graphs (1-skeletons of polytopes) are `1. The results of that search were summarized in the
influential monograph [5].
Among more recent results, we can mention the search for `1 graphs among the graphs kn. These

are the trivalent plane graphs whose faces are all 6-gons and k-gons (and there is, of course, at least
one k-gon). The subscript n refers to the number of vertices of the graph. If k ≥ 6 then all such graphs
are infinite and, furthermore, according to [6] they are all `1. The picture changes when k < 6. First of
all, all such graphs are finite. If k = 3 then it is easy to see that only the smallest such graph, K4, is `1.
For k = 4, it was shown in [7] that only five of 4n graphs are `1. The graphs 5n are called the fullerene
graphs. The name and themotivation to study these graphs come fromchemistry. The fullerene graphs
that are `1 were classified in [8]. Again, there are only finitely many (five) such graphs.
In this paper we classify `1 polyhexes. By a polyhexwemean a finite closed polyhex, that is, a finite

trivalent surface graphΓ drawn on a surface S in such away that every face is a hexagon. These graphs
are also interesting from the chemistry point of view.
SinceΓ is trivalent, every 2-path inΓ lies on a unique face. Furthermore, if two faces share a vertex,

they also share a unique edge incident to that vertex. A polyhex is called polyhedral if any two faces
share a single edge or nothing at all. We view the polyhedral polyhexes as the generic ones, but we do
not exclude the nonpolyhedral polyhexes from consideration. In a nonpolyhedral polyhex some two
faces share two or three disjoint edges.
Note also that our definition does not exclude loops and multiple edges in Γ . However, as we

are interested in `1 graphs, this point is mute, as neither loops, nor multiple edges are possible in `1
graphs.
By an easy calculation, the Euler characteristic of the surface S is zero, that is, S is the torus, when S

is orientable, or the Klein bottle, when it is nonorientable. We call the corresponding polyhexes toric
and Kleinean.
As the same graph Γ can sometimes be drawn on a surface in several different ways, we will

distinguish between the graph Γ and the polyhex Γ . The difference is the polyhex structure, that
is, the collection of the face cycles. We will write cycles as closed paths, but we want to make it clear
from the start that we view cycles up to the choice of the starting point and/or direction. That is, two
closed paths that only differ by the choice of the starting point and/or direction are considered to be
the same cycle.
The number N of face cycles is related to the number n of vertices. Indeed, as every 2-path is

contained in a unique face cycle, we get 3n = 6N , that is, N = n
2 .

Wewill now state our results. First, we describe the examples of polyhexes that arise in this paper.
We start with the infinite series of examples. Let Γ be the n-prism graph, n ≥ 3. Then we can denote
the vertices of Γ as ai’s and bi’s, where the index i is viewed modulo n, in such a way that every ai is
adjacent to ai−1, ai+1, and bi, and symmetrically, every bi is adjacent to bi−1, bi+1, and ai. The n-prism
is known to be `1. Indeed, Γ is the Cartesian product of an edge and an n-cycle, which are both `1. Let
Fi = ai−1aiai+1bi+1bibi−1ai−1. Here i is again understoodmodulo n, so thatwe have exactly n hexagons.
It is easy to see that every 2-path is contained in a unique hexagon Fi, so the set of Fi provides a valid
polyhex structure onΓ . Wewill denote the resulting polyhex asΓ2n. We leave it to the reader to check
that Γ2n is toric for even n and Kleinean for odd n.
Our next example is defined on Γ = K4, the complete graph on four vertices. We need 42 = 2

face cycles for the polyhex structure. If we denote the vertices as a, b, c , and d, then here is a possible
choice of two hexagons: abcdbca and badcadb. Again, it is easy to see that every 2-path is contained
in a unique face cycle, so this is a valid polyhex structure. Note that the face cycles here have self-
intersection, but this is allowed by our definition. We denote this example as Γ ′4 (leaving the name Γ4
for the 2-prism, which we disregard because of the multiple edges). The polyhex Γ ′4 is Kleinean.
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For the next two examples we set Γ = Q3, the cube graph. As Q3 is the same as 4-prism, we have
already seen one polyhex structure on this graph. As in the prism example, we denote the vertices
of Γ by ai and bi, where i is taken modulo four. Let the hexagons Fi be as in the prism example. Note
that these hexagons have chords. Namely, Fi contains the chord xiyi. The cube Γ also has hexagons
that have no chord. Namely, if one removes two opposite vertices of the cube then the remaining six
vertices form a hexagon. Let Gi be the hexagon obtained by removing ai and its opposite, bi+2. For the
second polyhex structure we can take F1, F3, G2, and G4. For the third structure, take all four hexagons
Gi. The details that these are valid polyhexes are straightforward. We denote the two new polyhexes
by Γ ′8 and Γ

′′

8 , respectively. Looking at the number of face cycles having a chord (four for Γ8, two for
Γ ′8 , and zero for Γ

′′

8 ) we see that the three polyhexes on the cube graph are pairwise nonisomorphic.
We also note that Γ ′8 is Kleinean, while Γ

′′

8 is again toric, like Γ8.
In our final example Γ is the 1-skeleton of the cube truncated at two opposite vertices. This

polyhedron is sometimes called the Dürer octahedron (or the melancholia octahedron), because it
appears in the famous engraving ‘‘Melencolia I’’ by Albrecht Dürer. The graph Γ is known to be `1, see
for example [5], Proposition 5.2. To exhibit the polyhex structure, let us assign names to the vertices
of Γ . Recall that the cube graph with two opposite vertices removed is a hexagon. We can denote
these six vertices as ai, where i is taken modulo six, and each ai is adjacent to ai−1 and ai+1. One of
the removed vertices was adjacent to the vertices ai with i even, while the second removed vertex
was adjacent to ai’s with i odd. So in Γ , in addition to ai’s, we have vertices bi, where i is again taken
modulo six, and every bi is adjacent to ai, bi−2, and bi+2. The polyhex structure consists of the six
hexagons Fi = aiai+1bi+1bi+3bi−1ai−1ai. This polyhex is Kleinean; it will be denoted by Γ ′12.
Here is our main theorem.

Theorem 1.1. If Γ is an `1 polyhex then either Γ is the prism polyhex Γ2n, n ≥ 3, or one of the four
sporadic examples Γ ′4 , Γ

′

8 , Γ
′′

8 , or Γ
′

12.

To prove this result we utilize the labels on `1 graphs. This technique originated from [9,10]. It was
also used in [7,8]. In Section 2 we briefly review the basics of labels. In Sections 3 and 4 we present
the proof of Theorem 1.1. Namely, in Section 3 we classify all `1 polyhexes, where some face cycle is
not isometric. These are considered as ‘‘small’’, or ‘‘exceptional’’ polyhexes. After that, in Section 4 we
do the ‘‘generic’’ case, where all faces are isometric. Although the generic case contains most of the
polyhexes, under the `1 condition it only brings one example, Γ ′′8 .

2. Labels on `1 graphs

Recall that the Hamming cube graph Qn can be realized as follows. LetΩ = {1, 2, . . . , n}. We will
call the elements ofΩ the coordinates of Qn. The vertices of Qn are all subsets ofΩ . Two subsets A and
B are adjacent if and only if they differ in a single element, that is, if |A4B| = 1. Here 4 denotes the
symmetric difference of sets, i.e., A4B = (A \ B) ∪ (B \ A). In general, the distance in Qn between two
subsets A and B ofΩ equals |A4B|.
A mapping φ from Γ to Qn is a scale λ embedding if dQn(φ(u), φ(v)) = λdΓ (u, v) for all vertices

u and v of Γ . Assouad and Deza showed in [11] that a finite graph is `1 if and only if it has a scale λ
embedding in Qn for some λ and n.
Let Γ be a finite `1 graph and φ be a scale λ embedding of Γ in Qn. Using φ we assign to each edge

uv a label `(uv) as follows: `(uv) = φ(u)4φ(v). Every label consists of exactly λ coordinates. Wewill
need the following properties of labels. The proofs can be found in, say, [10], see Lemma 4.2 there.

Lemma 2.1. If γ = uu1u2 . . . uk−1v is a path from u to v then φ(u)4φ(v) = `(uu1)4`(u1u2)4
. . .4`(uk−1v). Furthermore, if γ is geodesic, that is, if dΓ (u, v) = k, then the labels `(uu1),
`(u1u2), . . . , `(uk−1v) are pairwise disjoint and φ(u)4φ(v) = `(uu1) ∪ `(u1u2) ∪ · · · ∪ `(uk−1v).
In particular, every edge label on every shortest path from u to v is contained in φ(u)4φ(v). �

Recall that a subgraph of Γ is isometric if the distance in the subgraph between any two vertices
equals the distance in Γ between the same two vertices. For two edges in a k-cycle graph we say that
they are opposite if they are at the maximum possible distance. Thus, if k is even then every edge has
a unique opposite edge, while if k is odd then every edge has two opposite edges.
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Lemma 2.2. Suppose that ∆ is an isometric subgraph of Γ isomorphic to the k-cycle. Suppose further
that uv and wz are opposite edges of ∆. If k is even then `(uv) = `(wz), while if k is odd then
|`(uv) ∩ `(wz)| = λ

2 (in particular, λmust be even). �

Notice that Lemma 2.1 implies that if uv andwz are not opposite then `(uv) and `(wz) are disjoint,
unless of course the two edges coincide. Also, it follows that if k is odd and, say, zt is the second edge
opposite to uv then `(uv) ⊂ `(wz) ∪ `(zt).
From this point on, Γ is an `1 polyhex.We fix a scale embedding of Γ into a suitable Hamming cube

and assign labels to the edges, as described above.

3. Nonisometric faces

In this section we deal with all the cases where at least one face cycle C is not isometric. First, we
consider the case where C has a self-intersection. Since Γ has no double edges, two vertices of C can
coincide only if they are at distance three in C .

Lemma 3.1. If Γ has a face cycle with a self-intersection then Γ is the polyhex Γ ′4 .

Proof. Suppose that C = abcdefa is the face cycle having self-intersection. By the comment before
the lemma, we can assume that, say, a = d. As Γ has valency three, b, c , e, and f cannot be all distinct.
So b = e, or c = f . Without loss of generality, assume that b = e. If also c = f then C passes twice
through cab; clearly, a contradiction. So c 6= f .
First suppose that c and f are not adjacent. Let g be the third neighbour of c , and h the third

neighbour of f . Then gcafh and gcbfh are parts of two different face cycles, say, C1 = gcafhxg and
C2 = gcbfhyg . Note that in particular g 6= h, as they are at distance two in C1 (and C2). Also, x 6= y,
since C1 and C2 cannot share a 2-path. Among the vertices above, only x and y have free valencies.
This implies that both C1 and C2 are isometric. Let us take a look at the labels. Since C1 is isometric,
`(af ) = `(gx) by Lemma 2.2. Also, `(af ) ⊂ `(bf ) ∪ `(bc), and since `(af ) 6= `(bf ), we must have
`(af )∩`(bc) 6= ∅. Hence `(gx)∩`(bc) 6= ∅, whichmeans that dΓ (x, b) < 3. However, the neighbours
of b are a, c , and f . Clearly, x is neither equal, nor adjacent to either of these vertices; a contradiction.
Thus, c and f are adjacent. As all four vertices have no free valencies and Γ is connected, we

conclude that Γ ∼= K4. Finally, it is now easy to see that our polyhex has exactly two faces, C and
C ′ = cafcbfa. So the polyhex structure is unique, and Γ = Γ ′4 . �

From now on we assume that no face cycle of Γ has a self-intersection.

Lemma 3.2. Any two 3-cycles in Γ are disjoint.

Proof. Suppose to the contrary that Γ contains two 3-cycles, abca and adea, sharing the vertex a.
Since Γ has valency three, the vertices b, c , d, and e cannot be all distinct. Without loss of generality,
assume that b = d. Now let C be the face cycle passing through acb. Since C has no self-intersection,
a cannot follow b on C , so emust follow b, as c , a, and e are the only neighbours of b. Similarly, emust
precede a on C . This is a contradiction, as C passes through e twice. �

Corollary 3.3. If C = abcda is a 4-cycle with a 6= c and b 6= d then C is isometric.

Proof. If a is adjacent to c , or b is adjacent to d then two 3-cycles sharing a common edge arise,
contrary to Lemma 3.2. �

We next deal with the cases where the nonisometric face cycle contains a chord, i.e., an edge
between nonconsecutive vertices of the cycle. The distance in the face cycle between the ends of the
chord is either two, or three. We call such chords short, or long, respectively.

Lemma 3.4. No face has two long chords.
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Proof. By contradiction, suppose that C = abcdefa is a face cycle with two long chords; say, a is
adjacent to d, and b is adjacent to e. By Corollary 3.3, the 4-cycle abeda is isometric. So Lemma 2.2
yields that `(ab) = `(de). Similarly, abefa is isometric, and so `(ab) = `(ef ). Hence `(de) = `(ef ),
implying that d = f , a contradiction. �

Lemma 3.5. Suppose a face cycle C has two chords. Then Γ is the 3-prism polyhex Γ6.

Proof. By Lemma 3.4, at least one of the chords is short. So, without loss of generality, C = abcdefa
and a is adjacent to c. Since Γ has valency three, a second chord cannot start at a or c . Furthermore,
by Lemma 3.2, the second chord cannot connect bwith d, and similarly, it cannot connect bwith f . So
the second chord either connects bwith e, or it connects dwith f .
Suppose that b is adjacent to e. Let us take a look at the labels. First of all, `(ab) ∩ `(bc) 6= ∅,

since a and c are adjacent. Also, the 4-cycles bcdeb and bafeb are isometric. Hence, by Lemma 2.2,
`(ab) = `(ef ) and `(bc) = `(de). So `(de) ∩ `(ef ) 6= ∅, which implies that d and f are adjacent. This
means that Γ is the 3-prism, as claimed.
Suppose now that d is adjacent to f . Let D be the face cycle passing through acd. Since D and C

cannot share a 2-path, f must follow d on D. Since D cannot have a self-intersection, emust follow f .
Similarly, bmust precede a. Now it is clear that D = bacdfeb, that is, b and emust be adjacent, and we
are back to the 3-prism.
The polyhex structure on Γ is unique. Indeed, the 3-prism has exactly three 6-cycles having no

self-intersections, and by counting all three must be face cycles. So Γ ∼= Γ6. �

Lemma 3.6. Suppose a face cycle C contains a single chord, which is short. Then Γ ∼= Γ ′12.

Proof. Suppose that C = abcdefa, and the short chord connects a and c , that is, a and c are adjacent.
If Γ has a face with two chords then by Lemma 3.5 Γ is the 3-prism. However, in this case every face
has two chords, a contradiction. Hence every face of Γ has at most one chord.
Let g be the third neighbour of b. Let D and E be the face cycles passing through bca and cab,

respectively. Then D = bcafhgb and E = cabgkdc for some vertices h and k. We note that the vertices
a, b, c , d, e, f , g , h, and k are pairwise distinct. Indeed, the first six vertices are on C , which has no self-
intersection. Furthermore, since C has only one chord, g , h, and k are not on C . It remains to see that
g , h and k are pairwise distinct. The vertices g and h belong to D and hence they are distinct. Similarly,
g and k are distinct since they are together on E. Finally, if h = k then D and E share a 2-path bgh; a
contradiction. Within our configuration of nine vertices, only e, h, and k have unused valencies. We
next claim that no two of these three vertices are adjacent. Indeed, suppose, say, e and h are adjacent.
Then the face cycle F passing through efh cannot continue to g , since it cannot share a 2-path with D.
Hence F should continue to e, which makes F self-intersect; a contradiction.
Let l,m, and n be the third neighbours of e, h, and k, respectively. Then lefhm,mhgkn, and nkdel are

contained in three face cycles F , G, and H , respectively. In particular, this means that the three new
vertices are pairwise distinct.
Let F = lefhmol, G = mhgknpm, and H = nkdelqn for some vertices o, p, and q. If one of these faces,

say F , has a chord then the chord in F can only be between l andm. Thenm = q and l = p, and so we
also must have n = o. This completes the graph Γ , which turns out to be the cube with two opposite
vertices truncated, as in Γ ′12.
Thus, we can now assume that neither of the face cycles F , G, and H has chords. Since on F only

o has unused valencies, we conclude that F is isometric, and similarly, G and H are also isometric. By
observation, also the 6-cycle efhgkde is isometric. Let us look at the labels. By Lemma 2.2, `(de) =
`(gh). Also, `(de) = `(nq) and `(gh) = `(np). So `(nq) = `(np), implying p = q. However, this
means that G and H share the 2-path knp, a contradiction.
So Γ is indeed the cube with two opposite vertices truncated. Let us see that the structure of the

polyhex is unique. Counting yields that theremust be six faces. The graph contains six 6-cycles having
a chord, and one 6-cycle (efhgkde, above) having no chord. The latter cycle meets all other 6-cycles in
a 2-path, so it cannot be a face cycle. So the six 6-cycles with chords must be the face cycles, and Γ is
the polyhex Γ ′12. �
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Corollary 3.7. If Γ contains a 3-cycle then it is one of the polyhexes above. �

We now assume that Γ contains no 3-cycles. In particular, only long chords are possible.

Lemma 3.8. Suppose that C = abcdefa is a face with the long chord ad. If bade is part of a face cycle then
Γ is the polyhex Γ ′8 .

Proof. Let D be the face containing bade, say, D = badexyb for some vertices x and y. Clearly, x 6= f ,
so x is the third neighbour of e (the one that is not adjacent to e in C), and similarly, y is the third
neighbour of b.
If x is on C then ex is a chord of C and so, by assumption, we must have that x = b, which is

impossible since Γ has no multiple edges. Thus, x is not on C and, similarly, y is not on C , either.
We claim that D is isometric. First of all, as only x and y can have new neighbours, D has no chords.

It remains to see that vertices that are at distance three in D cannot be at distance two in Γ . Clearly,
b and e cannot be at distance two. If a and x are at distance two then xmust be adjacent to f , leading
to a 3-cycle. Similarly, if d and y are at distance two then y must be adjacent to c , again leading to a
3-cycle.
Thus, D is isometric, which according to Lemma 2.2 means that `(ad) = `(xy). By Corollary 3.3,

the 4-cycle adefa is isometric. Applying again Lemma 2.2, we get `(ad) = `(ef ). Hence `(ef ) = `(xy),
which yields that f and y are adjacent. Similarly, from the 4-cycle adcba we get `(ad) = `(bc). This
gives `(bc) = `(xy), and hence c is adjacent to x. We conclude that the graph Γ is the cube. The
complete polyhex structure is easy to recover. In addition to C and D, we must also have face cycles
E = fadcxyf and F = acbyfea. So Γ is the polyhex Γ ′8 . �

We now additionally assume that Γ is not as in Lemma 3.8. This means that if C = abcdefa is a face
with a long chord ab then there exist face cyclesD and E containing badc and fade, respectively.We call
D and E the neighbours of C . Manifestly,D and E have long chords and, furthermore, C is a neighbour of
both D and E. So we get a graph∆ on the set of faces with chords, where every such face is adjacent to
two further faces. Since Γ is finite, every connected component of∆ is a cycle. Let C0 = C, C1, . . . , Cn
be the faces in the connected component containing C . We will let the index i run through the entire
Z in such a way that Ci = Ci+n for all i. We also assume that Ci−1 and Ci+1 are the neighbours of Ci for
all i.

Lemma 3.9. Suppose a face cycle C has a long chord. Then Γ is the n-prism polyhex Γ2n, for n ≥ 4.

Proof. We adopt the notation introduced before this lemma. We will also need notation for the
vertices involved in the cycles Ci. We let Ci = xixi+1xi+2yi+2yi+1yixi, where x0 = f , x1 = a, x2 = b,
y0 = e, y1 = d, and y2 = c. Set L = `(ab). By Corollary 3.3, all 4-cycles xixi+1yi+1yixi are isometric.
Using Lemma 2.2 repeatedly, we see that `(xiyi) = L for all i.
Clearly, the edge xiyi coincides with xi+nyi+n for all i. We claim that, furthermore, xi = xi+n and

yi = yi+n. By contradiction, suppose xi = yi+n and yi = xi+n. Then xixi+1 . . . xi+n is a path connecting
xi with yi = xi+n. By Lemma 2.1, the label `(xiyi) = L is the symmetric difference of all the labels
`(xjxj+1) along the above path. Hence there must be a label `(xjxj+1) that is not disjoint from L. This
leads to a contradiction since `(xjyj) = L and the 4-cycle xjxj+1yj+1yjxj is isometric. Thus xi = xi+n and
yi = yi+n for all i.
If xi = xj or yj with i 6≡ j mod n then, because of the labels, xiyj = xjyj. Since Γ has valency three,

Ci and Cj must share xi−1xixi+1, which means that Ci = Cj, a contradiction. So we have constructed
a configuration consisting of exactly 2n vertices. Furthermore, each vertex has the full valency three
within the configuration. Since Γ is connected, we conclude that Γ is indeed the n-prism. Since Γ
contains no 3-cycles, we have n ≥ 4.
Manifestly, the polyhex structure consists of all cycles Ci. �

So far we classified all `1 polyhexes having a face with a self-intersection or with a chord. The
following lemma now makes a bridge to the generic case.

Lemma 3.10. Suppose that no face cycle in Γ has a chord. Then all face cycles are isometric.
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Proof. By contradiction, suppose that the face C = abcdefa is not isometric. Then, by assumption, two
opposite vertices on C must have distance two in Γ . Say, a and d have a common neighbour x. Since C
has no chords, x does not lie on C . Let D be the face cycle containing axd. By symmetry, we can assume
that D continues to e after d. Which vertex precedes a? It must be either b or f . If it is f then D has a
chord fe, a contradiction. So D = baxdeyb for some vertex y, a joint neighbour of b and e. Thus b and e
are at distance two in Γ .
We claim that c and f also are at distance two from each other. For this let us take a look at the

labels. Note that, since Γ contains no 3-cycles, every 5-cycle in Γ is isometric. Looking at the 5-cycle
abyefa, we see by Lemma 2.2 that `(ef ) is contained in `(by) ∪ `(ab). Since the edge bc is adjacent to
both by and ab, we have that `(bc) is disjoint from both `(by) and `(ab). Hence `(bc) ∩ `(ef ) = ∅.
Next we look at the 5-cycle bcdeyb. Since bc and de are opposite in this cycle, by Lemma 2.2 we have
that T = `(bc)∩ `(de) has size 12 |`(bc)|. Finally, let us focus on the 5-cycle axdefa. Here de is opposite
to af and ef . So by Lemma 2.2 we must have that `(de) ⊂ `(af ) ∪ `(ef ). Now recall that `(bc) and
`(ef ) are disjoint. This implies that T ⊂ `(af ). Therefore, the labels of the edges bc and af are not
disjoint, which yields that c and f cannot be at distance three from each other.
Since C has no chords, c and f must be distance two apart. Now we are prepared for the final

contradiction. Let z be the common neighbour of c and f and let E be the face cycle passing through
czf . By symmetry we can assume that E continues to a after f . Since E cannot have a chord, d must
precede c on E. It is now clear that E = dczfaxd, since x is the only common neighbour of a and d. We
conclude that E and D share axd, which is a contradiction. �

To summarize, in this section we have proven that if the polyhex Γ has a nonisometric face then
it is either the prism polyhex Γ2n, or one of the three additional examples, Γ ′4 , Γ

′

8 , and Γ
′

12. In the next
section we take on the generic case of polyhexes with isometric faces. There we will encounter the
last example of `1 polyhexes.

4. Isometric faces

Throughout this sectionwe assume thatΓ is a polyhex, inwhich all faces are isometric. Combining
this with the `1 condition, we get the following.

Lemma 4.1. Opposite edges on a face carry the same label. �

Before we deal with the general case, let us consider the particular case where the last example of
an `1 polyhex arises.

Lemma 4.2. Suppose that Γ contains a 4-cycle. Then Γ is the polyhex Γ ′′8 .
Proof. Suppose that abcda is a 4-cycle. Let C be the face passing through abc. Then C = abcxyza for
some vertices x, y, and z. Since faces of Γ have no chords, x 6= d 6= z. Also, let D be the face cycle
passing through cda. Then D = cdazuxc and u 6= y. Let us look at the labels. Since Γ contains no
3-cycles, every 4-cycle is isometric. Hence `(ab) = `(cd). Since D is isometric, we get `(cd) = `(zu).
Thus, `(ab) = `(zu). Combining labels along bazu, we see that two equal labels cancel, and so b and u
must be adjacent. Similarly, we show that d and y are adjacent, which means that Γ is the cube.
The cube has exactly four isometric 6-cycles, and so all of them must be faces. �

From now on we assume that Γ has no 4-cycles. There are no further examples left, and so we will
aim now to arrive at a contradiction in all remaining subcases.
We next introduce zigzags and railroads, discuss the relationship between them, and get some

important consequences on the way.
Letγ = . . . x−1x0x1x2 . . .be a path infinite in both directions.We also assume thatγ has no returns,

that is, xi 6= xi+2 for all i. Let Fi be the face passing through xi−1xixi+1. Then we say that γ is a zigzag
if Fi 6= Fi+1 for all i. The face Fi will be called the side face of γ at xi. If we select an orientation at
one vertex xi and then carry it along γ then a left turn on γ is followed by a right turn and vice versa.
This explains the name ‘‘zigzag’’. We takewith zigzags the same approach as with cycles. Namely, two
zigzags differing from each other only by a shift of indices and/or change of direction are considered
to be the same.
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Note that if we know three consecutive vertices of a zigzag then the continuation is unique in both
direction. Hence every 2-path, that is not a return, is contained in a unique zigzag. In particular, if
xi−1xixi+1 coincides with xj−1xjxj−1 then xk = xk+n for all k, where n = i − j. Since Γ is finite, it
contains a finite number of different 2-paths, and so there must exist n > 0 such that xi = xi+n for all
i. The smallest n like that is called the length of the zigzag. Associatedwith γ , there is a cycle x0x1 . . . xn,
which we will call the zigzag cycle, or simply zigzag, where no confusion may result. Recall that we
view cycles up to the choice of direction and the origin. In particular, xixi+1 . . . xi+n is the same cycle,
no matter which iwe choose.
For a zigzag γ , let yi be the third neighbour of xi (i.e., the neighbour not equal to xi−1 or xi+1). The

edge ei = xiyi will be called the side edge to γ at xi, and the label `(ei)will be called the side label.

Lemma 4.3. Suppose that γ is a zigzag. Then ei−1 and ei+1 are opposite edges of Fi. In particular,
`(ei−1) = `(ei+1). Furthermore, `(ei) 6= `(ei+1).

Proof. Since Fi 6= Fi+1, xi+2 does not follow xi+1 on Fi. Similarly, xi−2 does not precede xi−1 on Fi. Since
Γ is trivalent, Fi = xixi+1yi+1zyi−1xi−1xi for some vertex z. Manifestly, ei−1 and ei+1 are opposite to
each other on Fi. So they must carry the same label, since Fi is isometric.
Suppose `(ei) = `(ei+1). Then, combining the labels along yixixi+1yi+1, we determine that yi and

yi+1 are adjacent; a contradiction, since Γ contains no 4-cycles. �

Using this lemma and induction, we establish the following.

Corollary 4.4. Side labels at xi and xj are equal if and only if i ≡ jmod 2. �

Now the following key fact follows.

Corollary 4.5. All zigzags have even length. �

Proof. If γ is a zigzag of length n and ei’s are the side edges then en = e0 and so, obviously, en and e0
carry the same label. By Corollary 4.4, n = n− 0 is even. �

Given two cycles C and D having a common subpath T , we may combine the complements of T in
C andD to form a new cycle, whichwe call the product of C andD. We note that in general the product
of C and D is not uniquely defined, so this is not a proper algebraic operation, and the term ‘‘product’’
simply refers to the way in which the new cycle is obtained. We also note that this construction can
be used repeatedly, and so we can talk of products of three and more cycles.
Corollary 4.5 works best in conjunction with the following.

Lemma 4.6. Every cycle in Γ is a product of faces and zigzag cycles.

Proof. By contradiction, suppose that γ = x0x1 . . . xk−1x0 is the shortest cycle that is not a product
of faces and zigzags. If γ is not isometric then it is a product of two shorter cycles, which leads to a
contradiction. Thus, γ is isometric. For every i ∈ Z, set xi = xr , where r is the remainder of i divided
into k. Also, let Fi be the face cycle passing through xi−1xixi+1. Since γ cannot be a zigzag cycle, for
some iwe must have Fi = Fi+1. This means that Fi = xi−1xixi+1xi+2uwxi−1 for some vertices u and w.
Construct γ ′ from γ by substituting the subpath xi−1xixi+1xi+2 with xi−1wuxi+2. Note that, since γ is
isometric, u and w are not on γ , and hence γ ′ is a cycle of the same length as γ . Manifestly, γ is the
product of γ ′ and the face Fi, so γ ′ in turn cannot be a product of faces and zigzags. In particular, γ ′ is
also isometric.
Let e be the edge of γ that is opposite to xi−1xi, but not to xixi+1. Then e also lies on γ ′. Moreover, in

γ ′ the edge e is opposite to xi−1w, but not towu, and hence also not to uxi+2. However, xn−1xi and uxi+2
are opposite edges of Fi, and so they carry the same label by Lemma 2.2. This leads to a contradiction,
since the labels of e and of uxi+2 must be disjoint, while the labels of e and xn−1xi are equal or share
half of their coordinates. �

We now derive some important consequences of Corollary 4.5 and Lemma 4.6.
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Corollary 4.7. The graph Γ is bipartite. In particular, every label consists of a single coordinate.

Proof. By Corollary 4.5 all zigzags have even length. Also, all faces manifestly have even length. A
product of two cycles of even length again has an even length. It now follows from Lemma 4.6 that all
cycles in Γ have even length. Hence Γ is bipartite. The last claim follows from [9]. �

Another significant simplification of the picture comes from the following.

Lemma 4.8. Face and zigzag cycles preserve orientation.

Proof. Face cycles are boundaries of disks, so they clearly preserve orientation.
Consider a zigzag γ of length n = 2k. Pick an orientation O = O0 at x0 and carry it along γ to an

orientationO1 at x1, orientationO2 at x2, and so on. Eventually we arrive at xn = x0with an orientation
O′ = On. We need to show that O = O′.
We have already mentioned that the turns alternate on a zigzag. That is, if, say, γ makes a left turn

at x0 with respect to O = O0 then it makes a right turn at x1 with respect to O1, and so on. That is, γ
makes a left turn with respect to Oi at every xi with i even, and a right turn at every xi with i odd. In
particular, since n is even, γ makes a left turn at xn = x0 with respect to O′ = On. Since it also makes
a left turn with respect to O, we must have O′ = O. �

Corollary 4.9. The surface S is orientable, that is, S is a torus.

Proof. The surface S is orientable if and only if every cycle on Γ preserves orientation. If two
cycles preserve orientation then their product also preserves orientation. So the claim follows from
Lemmas 4.6 and 4.8. �

Before we turn to railroads, we prove some further properties of zigzags.

Lemma 4.10. Suppose that γ = . . . x−1x0x1x2 . . . is a zigzag of length n. Then xi = xj if and only if
i ≡ jmod n.

Proof. By contradiction, suppose that xi = xj, where k = j− i > 0 is minimal subject to i 6≡ j mod n.
Clearly, k < n.
First assume that k is odd. Then the side edges xiyi at xi and xj+1yj+1 at xj+1 carry the same label by

Corollary 4.4. Looking at the 3-path yixixi+1yj+1 we conclude that yi and yj+1 are adjacent, which leads
to a 4-cycle, a contradiction. Hence k is even.
Since the side edges at xi and xj carry the same label, theymust in fact coincide. Hence {xi−1, xi+1} =

{xj−1, xj+1}. In view of the minimality of k, we must have further that xi−1 = xj−1 and xi+1 = xj+1.
Iterating this argument in both directions along γ , we establish that xs = xs+k for all s; a contradiction,
since 0 < k < n. �

Corollary 4.11. Zigzag cycles have no self-intersections. �

We strengthen this as follows.

Lemma 4.12. Zigzag cycles are isometric.

Proof. Suppose that γ = . . . x−1x0x1x2 . . . is a zigzag of length n and C = x0x1 . . . xn is the
corresponding cycle. Suppose that C is not isometric and choose two vertices, a and b, of C such that
the distance between a and b in Γ is smaller than the distance between them in C . We may assume
that the distance in C between a and b is smallest among all such pairs. Let ac . . . b be the shortest
path in Γ between a and b. By the minimality, c does not lie on C , that is ac is a side edge at a, and
so L = `(ac) is a side label. Since a and b can also be connected by a path in C , we conclude that one
of the labels `(xixi+1) equals L. (Recall that every label consists of a single coordinate.) This leads to a
contradiction. Indeed, L equals the side label at xi or at xi+1 by Corollary 4.4, and so L cannot be equal
to `(xixi+1). �
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Note that this argument in fact shows that every zigzag cycle is convex. We now turn to the next
concept.
A railroad is a sequence of edges T = . . . t−1t0t1t2 . . ., infinite in both directions, such that ti and ti+1

are opposite edges of some face Ti, for all i. We note that Ti is uniquely determined by this condition,
sinceΓ has no 4-cycles and no 5-cycles.We call the Ti’s the connecting faces of T . Aswith the cycles and
zigzags, we will view two railroads obtained from each other by a shift of indices and/or reversal of
the direction as being the same.With this understanding, every edge is contained in a unique railroad.
The length of the railroad T is the smallest positive n such that ti = ti+n for all i.
The following property follows directly from Lemma 4.1.

Lemma 4.13. All edges of a railroad carry the same label. �

Thus, we can speak of the labels carried by railroads.
Let us now discuss the relation between zigzags and railroads. First, suppose that γ =

. . . x−1x0x1x2 . . . is a zigzag with side edges xiyi. Let tj be the side edge x2jy2j and sj be the side edge
x2j+1y2j+1. Then it follows from Lemma 4.3 that T = . . . t−1t0t1t2 . . . and S = . . . s−1s0s1s2 . . . are two
railroads. Furthermore, Corollary 4.4 tells us that T and S carry different labels, therefore T 6= S. We
call these T and S the side railroads of γ .
Conversely, suppose that T = . . . t−1t0t1t2 . . . is a railroad with connecting faces Ti. Suppose

ti = uivi, where we can assume that ui and ui+1 are at distance two for all i, that is, they have a
common neighbour wi. Note that vi and vi+1 then also must be at distance two from each other.
Let zi be the common neighbour of vi and vi+1. With this notation we have Ti = uiwiui+1vi+1ziviui.
From this it follows that Ti is not equal to the face containing wi−1uwi, and similarly, Ti is not equal
to the face containing wiui+1wi+1. This means that γ = . . . w−1u0w0u1 . . . is a zigzag. Similarly,
ρ = . . . z−1v0z0v1 . . . is a zigzag.Wewill call γ and ρ the boundary zigzags of T . Note that Lemma 4.12
implies that γ 6= ρ.

Lemma 4.14. If γ is a zigzag of length n then its side railroads have length k = n
2 . Conversely, if T is a

railroad of some length k then its boundary zigzags have length n = 2k.

Proof. Let γ = . . . x−1x0x1x2 . . . be a zigzag with side edges xiyi and let T = . . . t−1t0t1t2 . . . , where
tj = x2jy2j. Clearly, tj = tj+k, where k = n

2 . Suppose tj = tm with 0 < |j − m| < k. This gives
us {x2j, y2j} = {x2m, y2m}. Furthermore, if x2j = y2m then γ must coincide with the other boundary
zigzag of T , which is impossible. Hence, x2j = x2m, which leads to a contradiction with Lemma 4.10.
Conversely, suppose T = . . . t−1t0t1t2 . . . be a railroad of length k and let Ti, ui, vi, wi, and zi be as

above. Let γ = . . . w−1u0w0u1 . . . . Set x2j = uj and x2j−1 = wj for all j, so that γ = . . . x−1x0x1x2 . . . .
Let n be the length of γ . Clearly, xi = xi+k for all i. So n ≤ 2k. By Corollary 4.5 n is even, that is, n = 2m
for somem > 0. This means that uj = uj+m andwj = wj+m for all j. It follows that also vj = vj+m, that
is, tj = tj+m for all j. Hencem ≥ k, giving n ≥ 2k. Thus, n = 2k. �

To conclude this discussion, every zigzag is a boundary zigzag of each of its two side railroads, and
similarly, every railroad is a side railroad of each of its two boundary zigzags.
Consider two railroads, T = . . . t−1t0t1t2 . . . (with connecting faces Ti) and S = . . . s−1s0s1s2 . . .

(with connecting faces Si). We say that T and S intersect each other if Ti = Sj for some i and j, and
furthermore, {ti, ti+1} and {sj, sj+1} are different pairs of opposite edges on this face.
Since face cycles are isometric, we have the following.

Lemma 4.15. If two railroads intersect each other then they carry disjoint labels. �

Since every face F has three pairs of opposite edges, it serves as a connecting face for three railroads.
These three railroads intersect one another at F , and so they carry different labels and are pairwise
distinct.
We say that two railroads are neighbours if they are the two side railroads of the same zigzag.

Lemma 4.16. Suppose T and S are neighbour railroads. A third railroad intersects T if and only if it
intersects S.
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Proof. Suppose a railroad R intersects T at a connecting face Ti. The face Ti is adjacent to two
connecting faces of S, say, Sj and Sj+1. Manifestly, one of the two railroads intersecting T at Ti intersects
S at Sj, and the other intersects S at Sj+1. �

We are now approaching the final contradiction. Tomanufacture this contradiction, we fix a zigzag
γ = . . . x−1x0x1x2 . . . of length n = 2k, where k is the length of the side railroads of γ . Note that since
Γ has no 4-cycles, we have n ≥ 6. Let Fi be the side face of γ at xi, and let xiyi be the side edge at xi.

Lemma 4.17. We have that k is even, that is, k = 2s for some s. In particular, n ≥ 8.

Proof. The edges x0x1 and xkxk+1 are opposite on the zigzag cycle. The latter is isometric by
Lemma 4.12, so the two edges above carry the same label. Let Ti be the railroad defined by xixi+1
and set T = T0. Manifestly, T intersects T1 at F1. Furthermore, for every i we have that Ti and Ti+2
are neighbours. Indeed, they are the side railroads of the zigzag containing yi+1xi+1xi+2yi+2. It follows
inductively from Lemma 4.16 that T intersects every Ti with odd i.
By the above, T and Tk carry the same label, and so T cannot intersect Tk in view of Lemma 2.1.

Thus, k is even. �

Note that Fk = xkxk+1yk+1zyk−1xk−1xk for some vertex z. Set x = x0 and consider the following
path ρ = xx1x2 . . . xk−1yk−1z from x to z. Let us take a look at the labels along this path. First of all, the
labels along the subpath from x till xk−1 are pairwise disjoint, because the zigzag cycle of γ is isometric.
Secondly, xk−1yi−1 is a side edge, and so its label is disjoint from all preceding labels. Finally, the edge
yk−1z is opposite to xkxk+1 on Fk. So these two edges carry the same label. On the other hand, xkxk+1
is opposite to xx1 on the zigzag cycle of γ . Hence they also carry the same label. We conclude that
`(yk−1z) = `(xx1). Combining the labels along ρ, we see that the distance between x and z is k − 1,
and furthermore, every label on a shortest path from x to z must be contained in

`(x1x2) ∪ · · · ∪ `(xk−2xk−1) ∪ `(xk−1yk−1).

Which edge can come first on the shortest path from x to z? It cannot be xx1, because its label is
disjoint from all the labels in `(x1x2) ∪ · · · ∪ `(xk−2xk−1), because the zigzag cycle is isometric, and
disjoint from `(xk−1yk−1), because xk−1yk−1 is a side edge. Similar argument shows that the shortest
path cannot start from xxn−1. So the shortest path must start from xy0. However, this is a side edge,
and so its label is disjoint from all labels in `(x1x2)∪ · · · ∪ `(xk−2xk−1). This means that we must have
`(xy0) = `(xk−1yk−1). According to Corollary 4.4, k − 1 is even; a contradiction, since k is even, too.
This is our final contradiction and it established for us the following.

Proposition 4.18. If a polyhex Γ has isometric faces and no 4-cycles then it cannot be `1. �

This concludes the proof of our Theorem 1.1.

References

[1] D. Eppstein, Cubic partial cubes from simplicial arrangements, Electron. J. Combin. 13 (2006) #R79.
[2] S. Klavžar, M. Kovše, Partial cubes and their τ -graphs, European J. Combin. 28 (2007) 1037–1042.
[3] S. Klavžar, S. Shpectorov, Tribes of cubic partial cubes, Discrete Math. Theoret. Comput. Sci. 9 (2007) 273–292.
[4] N. Polat, Netlike partial cubes IV. Fixed finite subgraph theorems, European J. Combin. 30 (5) (2009) 1194–1204.
[5] M. Deza, V. Grishukhin, M. Shtogrin, Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices, Imperial College
Press and World Scientific, 2004.

[6] V. Chepoi, F. Dragan, Y. Vaxes, Distance and rooting labelling schemes for non-positively curved plane graphs, J. Algorithms
61 (2006) 60–88.

[7] M. Deza, M. Dutour-Sikiric, S. Shpectorov, Graphs 4n that are isometrically embeddable in hypercubes, Southeast Asian
Bull. Math. 29 (2005) 469–484.

[8] M. Marcušanu, The classification of `1-embeddable fullerenes, Ph.D. Thesis, Bowling Green State University, 2007.
[9] S. Shpectorov, On scale embeddings of graphs into hypercubes, European. J. Combin. 14 (1993) 117–130.
[10] M. Deza, S. Shpectorov, Recognition of `1-graphs with complexity O(nm), or football in a hypercube, European. J. Combin.

17 (1996) 279–289.
[11] P. Assouad, M. Deza, Espaces metriques plongeables dans un hypercube: Aspects combinatoires, Ann. Discrete Math. 8

(1980) 197–210.


	Polyhexes that are  ell1  graphs
	Introduction
	Labels on  ell1  graphs
	Nonisometric faces
	Isometric faces
	References


