A variant of Jensen's inequality of Mercer's type for operators with applications

A. Matković ${ }^{\text {a }}$, J. Pečarić ${ }^{\text {b,* }}$, I. Perić ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Natural Sciences, Mathematics and Education, University of Split, Teslina 12, 21000 Split, Croatia
${ }^{\text {b }}$ Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
${ }^{\text {c }}$ Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

Received 24 October 2005; accepted 28 February 2006
Available online 2 May 2006
Submitted by R.A. Brualdi

Abstract

A variant of Jensen's operator inequality for convex functions, which is a generalization of Mercer's result, is proved. Obtained result is used to prove a monotonicity property for Mercer's power means for operators, and a comparison theorem for quasi-arithmetic means for operators. © 2006 Elsevier Inc. All rights reserved.

AMS classification: 47A63; 47A64
Keywords: Jensen's operator inequality; Monotonicity; Power means; Quasi-arithmetic means

1. Introduction

For a given $a<b$, let $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$ be such that $a \leqslant x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{k} \leqslant b$ and $\mathbf{w}=$ $\left(w_{1}, \ldots, w_{k}\right)$ be nonnegative weights such that $\sum_{j=1}^{k} w_{j}=1$. Mercer [3] proved the following variant of Jensen's inequality.

[^0]Theorem A. Iff is a convex function on $[a, b]$ then

$$
f\left(a+b-\sum_{j=1}^{k} w_{j} x_{j}\right) \leqslant f(a)+f(b)-\sum_{j=1}^{k} w_{j} f\left(x_{j}\right) .
$$

For $a>0$ the (weighted) power means $M_{r}(\mathbf{x}, \mathbf{w})$ are defined as

$$
M_{r}(\mathbf{x}, \mathbf{w})= \begin{cases}\left(\sum_{j=1}^{k} w_{j} x_{j}^{r}\right)^{\frac{1}{r}}, & r \neq 0 \\ \exp \left(\sum_{j=1}^{k} w_{j} \ln x_{j}\right), & r=0\end{cases}
$$

In [4] Mercer defined the family of functions

$$
Q_{r}(a, b, \mathbf{x})= \begin{cases}{\left[a^{r}+b^{r}-M_{r}^{r}(\mathbf{x}, \mathbf{w})\right]^{\frac{1}{r}},} & r \neq 0 \\ \frac{a b}{M_{0}(\mathbf{x}, \mathbf{w})}, & r=0\end{cases}
$$

and proved the following.
Theorem B. For $r<s, Q_{r}(a, b, \mathbf{x}) \leqslant Q_{s}(a, b, \mathbf{x})$.
In this paper we consider similar inequalities in a more general setting. To do this we need some well known results. The first one is Löwner-Heinz inequality (see for example [5, p. 9]).

Theorem C. Let A and B be positive operators on a Hilbert space H. If $A \geqslant B$, then $A^{p} \geqslant B^{p}$ for all $p \in[0,1]$.

In [5, p. 220, 232, 250] the following theorems are also proved.
Theorem D. Let A, B be positive operators on a Hilbert space H with $S p(A) \subseteq\left[m_{1}, M_{1}\right]$, and $\operatorname{Sp}(B) \subseteq\left[m_{2}, M_{2}\right]$ for some scalars $M_{j}>m_{j}>0(j=1,2)$. If $A \geqslant B$, then the following inequalities hold:
(i) for all $p>1$:

$$
\begin{aligned}
& K\left(m_{1}, M_{1}, p\right) A^{p} \geqslant B^{p} \\
& K\left(m_{2}, M_{2}, p\right) A^{p} \geqslant B^{p}
\end{aligned}
$$

(ii) for all $p<-1$:

$$
\begin{aligned}
& K\left(m_{1}, M_{1}, p\right) B^{p} \geqslant A^{p}, \\
& K\left(m_{2}, M_{2}, p\right) B^{p} \geqslant A^{p},
\end{aligned}
$$

where a generalized Kantorovich constant $K(m, M, p)$ is defined by

$$
K(m, M, p)=\frac{\left(m M^{p}-M m^{p}\right)}{(p-1)(M-m)}\left(\frac{p-1}{p} \frac{M^{p}-m^{p}}{m M^{p}-M m^{p}}\right)^{p}
$$

for all $p \in \mathbf{R}$.

Theorem E. Let A, B be selfadjoint operators on a Hilbert space H with $\operatorname{Sp}(B) \subseteq[m, M]$ for some scalars $M>m$. If $A \geqslant B$, then

$$
S\left(e^{M-m}\right) e^{A} \geqslant e^{B}
$$

where the Specht ratio $S(h)$ for $h>0$ is defined by $S(h)=\frac{(h-1) h^{\frac{1}{h-1}}}{e \ln h}(h \neq 1)$ and $S(1)=1$.
In Section 2 we give the main result of our paper which is an extension of Theorem A to selfadjoint operators and positive linear maps. This variant of Jensen's inequality for operators holds for arbitrary convex functions, while Davis-Choi-Jensen's inequality asserts that

$$
f(\Phi(A)) \leqslant \Phi(f(A))
$$

holds for an operator convex function f defined on an interval $(-a, a)$, where $\Phi: \mathscr{B}(H) \rightarrow \mathscr{B}(K)$ is a normalized positive linear map and A is a selfadjoint operator with spectrum in $(-a, a)$ (see $[1,2]$).

In Section 3 we use that result to prove a monotonicity property of power means of Mercer's type for operators. In the final section we consider related quasi-arithmetic means for operators.

2. Main result

In what follows we assume that H and K are Hilbert spaces, $\mathscr{B}(H)$ and $\mathscr{B}(K)$ are C^{*}-algebras of all bounded operators on the appropriate Hilbert space and $\mathbf{P}[\mathscr{B}(H), \mathscr{B}(K)]$ is the set of all positive linear maps from $\mathscr{B}(H)$ to $\mathscr{B}(K)$. We denote by $C([m, M])$ the set of all real valued continuous functions on an interval $[m, M]$.

We show a variant of Jensen's operator inequality which is an extension of Theorem A to selfadjoint operators and positive linear maps.

Theorem 1. Let $A_{1}, \ldots, A_{k} \in \mathscr{B}(H)$ be selfadjoint operators with spectra in $[m, M]$ for some scalars $m<M$ and $\Phi_{1}, \ldots, \Phi_{k} \in \mathbf{P}[\mathscr{B}(H), \mathscr{B}(K)]$ positive linear maps with $\sum_{j=1}^{k} \Phi_{j}\left(1_{H}\right)=$ 1_{K}. If $f \in C([m, M])$ is convex on $[m, M]$, then

$$
\begin{equation*}
f\left(m 1_{K}+M 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)\right) \leqslant f(m) 1_{K}+f(M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(f\left(A_{j}\right)\right) \tag{1}
\end{equation*}
$$

In fact, to be more specific, the following series of inequalities holds

$$
\begin{align*}
f\left(m 1_{K}+M 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)\right) \leqslant & \frac{M 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)}{M-m} \cdot f(M) \\
& +\frac{\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)-m 1_{K}}{M-m} \cdot f(m) \\
\leqslant & f(m) 1_{K}+f(M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(f\left(A_{j}\right)\right) \tag{2}
\end{align*}
$$

If a function f is concave, then inequalities (1) and (2) are reversed.

Proof. Since f is continuous and convex, the same is also true for the function $g:[m, M] \rightarrow \mathbf{R}$ defined by $g(t)=f(m+M-t), t \in[m, M]$. Hence, the following inequalities hold for every $t \in[m, M]$ (see for example [6, p. 2]):

$$
\begin{aligned}
& f(t) \leqslant \frac{t-m}{M-m} \cdot f(M)+\frac{M-t}{M-m} \cdot f(m), \\
& g(t) \leqslant \frac{t-m}{M-m} \cdot g(M)+\frac{M-t}{M-m} \cdot g(m)
\end{aligned}
$$

Since $m 1_{H} \leqslant A_{j} \leqslant M 1_{H}$ for $j=1, \ldots, k$ and $\sum_{j=1}^{k} \Phi_{j}\left(1_{H}\right)=1_{K}$, it follows that $m 1_{K} \leqslant$ $\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right) \leqslant M 1_{K}$. Now, using the functional calculus we have

$$
g\left(\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)\right) \leqslant \frac{\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)-m 1_{K}}{M-m} \cdot g(M)+\frac{M 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)}{M-m} \cdot g(m)
$$

or

$$
\begin{align*}
& f\left(m 1_{K}+M 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)\right) \\
& \leqslant \frac{\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)-m 1_{K}}{M-m} \cdot f(m)+\frac{M 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)}{M-m} \cdot f(M) \\
& \quad=f(m) 1_{K}+f(M) 1_{K} \\
&-\left[\frac{M 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)}{M-m} \cdot f(m)+\frac{\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)-m 1_{K}}{M-m} \cdot f(M)\right] . \tag{3}
\end{align*}
$$

On the other hand, using the functional calculus we also have

$$
f\left(A_{j}\right) \leqslant \frac{A_{j}-m 1_{H}}{M-m} \cdot f(M)+\frac{M 1_{H}-A_{j}}{M-m} \cdot f(m) .
$$

Applying positive linear maps Φ_{j} and summing, it follows that

$$
\begin{equation*}
\sum_{j=1}^{k} \Phi_{j}\left(f\left(A_{j}\right)\right) \leqslant \frac{\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)-m 1_{K}}{M-m} \cdot f(M)+\frac{M 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}\right)}{M-m} \cdot f(m) \tag{4}
\end{equation*}
$$

Using inequalities (3) and (4), we obtain desired inequalities (1) and (2).
The last statement follows immediately from the fact that if φ is concave then $-\varphi$ is convex.

3. Applications to Mercer's power means

We suppose that:
(i) $\mathbf{A}=\left(A_{1}, \ldots, A_{k}\right)$, where $A_{j} \in \mathscr{B}(H)$ are positive invertible operators with $\operatorname{Sp}\left(A_{j}\right) \subseteq$ [m, M] for some scalars $0<m<M$.
(ii) $\boldsymbol{\Phi}=\left(\Phi_{1}, \ldots, \Phi_{k}\right)$, where $\Phi_{j} \in \mathbf{P}[\mathscr{B}(H), \mathscr{B}(K)]$ are positive linear maps with $\sum_{j=1}^{k} \Phi_{j}\left(1_{H}\right)=1_{K}$.
(iii) $\Delta(m, M, p)=K\left(m^{p}, M^{p}, \frac{1}{p}\right)=\frac{p\left(m^{p} M-M^{p} m\right)}{(1-p)\left(M^{p}-m^{p}\right)}\left(\frac{(1-p)(M-m)}{m^{p} M-M^{p} m}\right)^{\frac{1}{p}}, \quad$ for $\quad 0<m<M$ and $\quad p \in \mathbf{R}, \quad p \neq 0 . \quad$ Set: $\quad \Delta(m, M, 0)=\lim _{p \rightarrow 0} \Delta(m, M, p)=S\left(\frac{M}{m}\right)=\frac{M-m}{\ln M-\ln m}$ $\exp \left(\frac{m(1+\ln M)-M(1+\ln m)}{M-m}\right)$.

We define, for any $r \in \mathbf{R}$

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}):=\left\{\begin{array}{l}
{\left[m^{r} 1_{K}+M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right)\right]^{\frac{1}{r}}, \quad r \neq 0,} \\
\exp \left((\ln m) 1_{K}+(\ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right)\right), \quad r=0
\end{array}\right.
$$

Observe that, since $0<m 1_{H} \leqslant A_{j} \leqslant M 1_{H}$, it follows that:

- $0<m^{r} 1_{H} \leqslant A_{j}^{r} \leqslant M^{r} 1_{H}$ holds for all $r>0$,
- $0<M^{r} 1_{H} \leqslant A_{j}^{r} \leqslant m^{r} 1_{H}$ holds for all $r<0$,
- $(\ln m) 1_{H} \leqslant \ln \left(A_{j}\right) \leqslant(\ln M) 1_{H}(j=1, \ldots, k)$.

Applying positive linear maps Φ_{j} and summing, it follows that:

- $0<m^{r} 1_{K} \leqslant \sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right) \leqslant M^{r} 1_{K}$, for all $r>0$,
- $0<M^{r} 1_{K} \leqslant \sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right) \leqslant m^{r} 1_{K}$, for all $r<0$,
- $(\ln m) 1_{K} \leqslant \sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right) \leqslant(\ln M) 1_{K}$,
since $\sum_{j=1}^{k} \Phi_{j}\left(1_{H}\right)=1_{K}$. Hence, $\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi})$ is well defined.
Furthermore, we define, for any $r, s \in \mathbf{R}$

$$
S(r, s, \mathbf{A}, \boldsymbol{\Phi}):=\left\{\begin{array}{l}
{\left[\frac{M^{r} 1_{K}-S_{r}}{M^{r}-m^{r}} \cdot M^{s}+\frac{S_{r}-m^{r} 1_{K}}{M^{r}-m^{r}} \cdot m^{s}\right]^{\frac{1}{s}}, \quad r \neq 0, s \neq 0,} \\
\exp \left(\frac{M^{r} 1_{K}-S_{r}}{M^{r}-m^{r}} \cdot \ln M+\frac{S_{r}-m^{r} 1_{K}}{M^{r}-m^{r}} \cdot \ln m\right), \quad r \neq 0, s=0, \\
{\left[\frac{(\ln M) 1_{K}-S_{0}}{\ln M-\ln m} \cdot M^{s}+\frac{S_{0}-(\ln m) 1_{K}}{\ln M-\ln m} \cdot m^{s}\right]^{\frac{1}{s}}, \quad r=0, s \neq 0,}
\end{array}\right.
$$

where $S_{r}=\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right)$ and $S_{0}=\sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right)$. It is easy to see that $S(r, s, \mathbf{A}, \boldsymbol{\Phi})$ is also well defined.

Theorem 2. Let $r, s \in \mathbf{R}, r<s$.
(i) If either $r \leqslant-1$ or $s \geqslant 1$, then

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

(ii) If $-1<r$ and $s<1$, then

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant \Delta(m, M, s) \cdot \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

Proof. (i) Step 1: Suppose that $0<r<s$ and $s \geqslant 1$.
Applying the inequality (1) to the convex function $f(t)=t^{\frac{s}{r}}$ (note that $\frac{s}{r}>1$ here) and replacing A_{j}, m and M with A_{j}^{r}, m^{r} and M^{r}, respectively, we have

$$
\begin{equation*}
\left[m^{r} 1_{K}+M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right)\right]^{\frac{s}{r}} \leqslant m^{s} 1_{K}+M^{s} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right) \tag{5}
\end{equation*}
$$

Raising both sides to the power $\frac{1}{s}\left(0<\frac{1}{s} \leqslant 1\right)$, it follows from Theorem C that

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

Step 2: Suppose that $r<0$ and $s \geqslant 1$.
Applying the inequality (1) to the convex function $f(t)=t^{\frac{s}{r}}$ (note that $\frac{s}{r}<0$ here) and proceeding in the same way as in Step 1, we have

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant \widetilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

Step 3: Suppose that $r=0$ and $s \geqslant 1$.
Applying the inequality (1) to the convex function $f(t)=\exp (s \cdot t)$ and replacing A_{j}, m and M with $\ln \left(A_{j}\right), \ln m$ and $\ln M$, respectively, we have

$$
\begin{align*}
& \exp \left(s\left((\ln m) 1_{K}+(\ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right)\right)\right) \\
& \quad \leqslant \exp (s \ln m) 1_{K}+\exp (s \ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\exp \left(s \ln \left(A_{j}\right)\right)\right) \\
& \quad=m^{s} 1_{K}+M^{s} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right) \tag{6}
\end{align*}
$$

or

$$
\left[\tilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi})\right]^{s} \leqslant\left[\tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})\right]^{s}
$$

Raising both sides to the power $\frac{1}{s}\left(0<\frac{1}{s} \leqslant 1\right)$, it follows from Theorem C that

$$
\tilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

Step 4: Suppose that $r<s<0$ and $r \leqslant-1$.
Applying the inequality (1) to the convex function $f(t)=t^{\frac{r}{s}}$ (note that $\frac{r}{s}>1$ here) and replacing A_{j}, m and M with A_{j}^{s}, m^{s} and M^{s}, respectively, we have

$$
\begin{equation*}
\left.\left[m^{s} 1_{K}+M^{s} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right)\right)\right]^{\frac{r}{s}} \leqslant m^{r} 1_{K}+M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right) \tag{7}
\end{equation*}
$$

Raising both sides to the power $-\frac{1}{r}\left(0<-\frac{1}{r} \leqslant 1\right)$, it follows from Theorem C that

$$
\left[\tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})\right]^{-1} \leqslant\left[\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi})\right]^{-1}
$$

Hence, we have

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

Step 5: Suppose that $s>0$ and $r \leqslant-1$.

Applying the inequality (1) to the convex function $f(t)=t^{\frac{r}{s}}$ (note that $\frac{r}{s}<0$ here) and proceeding in the same way as in Step 4, we have

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant \widetilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

Step 6: Suppose that $s=0$ and $r \leqslant-1$.
Applying the inequality (1) to the convex function $f(t)=\exp (r \cdot t)$ and replacing A_{j}, m and M with $\ln \left(A_{j}\right), \ln m$ and $\ln M$, respectively, we have

$$
\begin{align*}
& \exp \left(r\left((\ln m) 1_{K}+(\ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right)\right)\right) \\
& \quad \leqslant \exp (r \ln m) 1_{K}+\exp (r \ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\exp \left(r \ln \left(A_{j}\right)\right)\right) \\
& \quad=m^{r} 1_{K}+M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right) \tag{8}
\end{align*}
$$

or

$$
\left[\tilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi})\right]^{r} \leqslant\left[\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi})\right]^{r} .
$$

Raising both sides to the power $-\frac{1}{r}\left(0<\frac{1}{r} \leqslant 1\right)$, it follows from Theorem C that

$$
\left[\tilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi})\right]^{-1} \leqslant\left[\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi})\right]^{-1}
$$

Hence, we have

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant \tilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi})
$$

(ii) Step 1: Suppose that $0<r<s<1$.

In the same way as in (i) Step 1 we obtain inequality (5). Observe that, since $m^{s} 1_{K} \leqslant$ $\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right) \leqslant M^{s} 1_{K}$, it follows that $m^{s} 1_{K} \leqslant m^{s} 1_{K}+M^{s} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right) \leqslant M^{s} 1_{K}$. Raising both sides of (5) to the power $\frac{1}{s}\left(\frac{1}{s}>1\right)$, it follows from Theorem D (i) that

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant K\left(m^{s}, M^{s}, \frac{1}{s}\right) \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

Step 2: Suppose that $0=r<s<1$.
In the same way as in (i) Step 3 we obtain inequality (6). With the same observation as in (ii) Step I and raising both sides of (6) to the power $\frac{1}{s}\left(\frac{1}{s}>1\right)$, it follows from Theorem D (i) that

$$
\tilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant K\left(m^{s}, M^{s}, \frac{1}{s}\right) \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

Step 3: Suppose that $-1<r<s<0$.
Applying reversed inequality (1) to the concave function $f(t)=t^{\frac{s}{r}}$ (note that $0<\frac{s}{r}<1$ here) and replacing A_{j}, m and M with A_{j}^{r}, m^{r} and M^{r}, respectively, we obtain reversed inequality (5). Observe that, since $M^{s} 1_{K} \leqslant \sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right) \leqslant m^{s} 1_{K}$, it follows that $M^{s} 1_{K} \leqslant m^{s} 1_{K}+M^{s} 1_{K}-$ $\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right) \leqslant m^{s} 1_{K}$. Raising both sides of reversed (5) to the power $\frac{1}{s}\left(\frac{1}{s}<-1\right)$, it follows from Theorem D (ii) that

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant K\left(M^{s}, m^{s}, \frac{1}{s}\right) \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

Since $K(M, m, p)=K(m, M, p)$ (see [5, p. 77]), we have

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant K\left(m^{s}, M^{s}, \frac{1}{s}\right) \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

Step 4: Suppose that $-1<r<s=0$.
Applying the inequality (1) to the convex function $f(t)=\frac{1}{r} \ln t$ and replacing A_{j}, m and M with A_{j}^{r}, M^{r} and m^{r}, respectively, we obtain

$$
\frac{1}{r} \ln \left(m^{r} 1_{K}+M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right)\right) \leqslant(\ln m) 1_{K}+(\ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right.
$$

Observing that both sides have spectra in $[\ln m, \ln M]$, it follows from Theorem E that

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant \Delta(m, M, 0) \tilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

Step 5: Suppose that $-1<r<0<s<1$.
In the same way as in (i) Step 2 we obtain inequality (5). With the same observation as in (ii) Step I and raising both sides of (5) to the power $\frac{1}{s}\left(\frac{1}{s}>1\right)$, it follows from Theorem D (i) that

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant K\left(m^{s}, M^{s}, \frac{1}{s}\right) \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

If we use inequalities (2) instead of the inequality (1), then we have the following results:
Theorem 3. Let $r, s \in \mathbf{R}, r<s$.
(i) If $s \geqslant 1$, then

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(r, s, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

$$
\text { If } r \leqslant-1, \text { then }
$$

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(s, r, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

(ii) If $-1<r$ and $s<1$, then

$$
\frac{1}{\Delta(m, M, s)} \cdot \tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(r, s, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \Delta(m, M, s) \cdot \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

Proof. (i) Step 1: Suppose that $0<r<s$ and $s \geqslant 1$.
Applying inequalities (2) to the convex function $f(t)=t^{\frac{s}{r}}$ (note that $\frac{s}{r} \geqslant 1$ here) and replacing A_{j}, m and M with A_{j}^{r}, m^{r} and M^{r}, respectively, we have

$$
\begin{align*}
{\left[m^{r} 1_{K}+M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right)\right]^{\frac{s}{r}} } & \leqslant \frac{M^{r} 1_{K}-S_{r}}{M^{r}-m^{r}} \cdot M^{s}+\frac{S_{r}-m^{r} 1_{K}}{M^{r}-m^{r}} \cdot m^{s} \\
& \leqslant m^{s} 1_{K}+M^{s} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right) \tag{9}
\end{align*}
$$

Raising these inequalities to the power $\frac{1}{s}\left(0<\frac{1}{s} \leqslant 1\right)$, it follows from Theorem C that

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(r, s, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

Step 2: Suppose that $r<0$ and $s \geqslant 1$.
Applying inequalities (2) to the convex function $f(t)=t^{\frac{s}{r}}$ (note that $\frac{s}{r}<0$ here) and proceeding in the same way as in Step 1, we have

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(r, s, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

Step 3: Suppose that $r=0$ and $s \geqslant 1$.
Applying inequalities (2) to the convex function $f(t)=\exp (s \cdot t)$ and replacing A_{j}, m and M with $\ln \left(A_{j}\right), \ln m$ and $\ln M$, respectively, we have

$$
\begin{align*}
& \exp \left(s\left((\ln m) 1_{K}+(\ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right)\right)\right) \\
& \quad \leqslant \frac{(\ln M) 1_{K}-S_{0}}{\ln M-\ln m} \cdot \exp (s \ln M)+\frac{S_{0}-(\ln m) 1_{K}}{\ln M-\ln m} \cdot \exp (s \ln m) \\
& \quad \leqslant \exp (s \ln m) 1_{K}+\exp (s \ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\exp \left(s \ln \left(A_{j}\right)\right)\right) \\
& \quad=m^{s} 1_{K}+M^{s} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right) \tag{10}
\end{align*}
$$

or

$$
\left[\tilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi})\right]^{s} \leqslant[S(0, s, \mathbf{A}, \boldsymbol{\Phi})]^{s} \leqslant\left[\tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})\right]^{s}
$$

Raising these inequalities to the power $\frac{1}{s}\left(0<\frac{1}{s} \leqslant 1\right)$, it follows from Theorem C that

$$
\widetilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(0, s, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \widetilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

Step 4: Suppose that $r<s<0$ and $r \leqslant-1$.
Applying inequalities (2) to the convex function $f(t)=t^{\frac{r}{s}}$ (note that $\frac{r}{s} \geqslant 1$ here) and replacing A_{j}, m and M with A_{j}^{s}, m^{s} and M^{s}, respectively, we have

$$
\begin{aligned}
{\left[m^{s} 1_{K}+M^{s} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right)\right]^{\frac{r}{s}} } & \leqslant \frac{M^{s} 1_{K}-S_{r}}{M^{s}-m^{s}} \cdot M^{r}+\frac{S_{r}-m^{s} 1_{K}}{M^{s}-m^{s}} \cdot m^{r} \\
& \leqslant m^{r} 1_{K}+M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right)
\end{aligned}
$$

Raising these inequalities to the power $-\frac{1}{r}\left(0<-\frac{1}{r} \leqslant 1\right)$, it follows from Theorem C that

$$
\left[\tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})\right]^{-1} \leqslant[S(s, r, \mathbf{A}, \boldsymbol{\Phi})]^{-1} \leqslant\left[\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi})\right]^{-1}
$$

Hence, we have

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(s, r, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

Step 5: Suppose that $s>0$ and $r \leqslant-1$.
Applying inequalities (2) to the convex function $f(t)=t^{\frac{r}{s}}$ (note that $\frac{r}{s}<0$ here) and proceeding in the same way as in Step 4, we have

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(s, r, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

Step 6: Suppose that $s=0$ and $r \leqslant-1$.
Applying inequalities (2) to the convex function $f(t)=\exp (r \cdot t)$ and replacing A_{j}, m and M with $\ln \left(A_{j}\right), \ln m$ and $\ln M$, respectively, we have

$$
\begin{aligned}
& \exp \left(r\left((\ln m) 1_{K}+(\ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right)\right)\right) \\
& \quad \leqslant \frac{(\ln M) 1_{K}-S_{0}}{\ln M-\ln m} \cdot \exp (r \ln M)+\frac{S_{0}-(\ln m) 1_{K}}{\ln M-\ln m} \cdot \exp (r \ln m) \\
& \quad \leqslant \exp (r \ln m) 1_{K}+\exp (r \ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\exp \left(r \ln \left(A_{j}\right)\right)\right) \\
& \quad=m^{r} 1_{K}+M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right)
\end{aligned}
$$

or

$$
\left[\tilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi})\right]^{r} \leqslant[S(0, r, \mathbf{A}, \boldsymbol{\Phi})]^{r} \leqslant\left[\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi})\right]^{r}
$$

Raising these inequalities to the power $-\frac{1}{r}\left(0<\frac{1}{r} \leqslant 1\right)$, it follows from Theorem C that

$$
\left[\tilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi})\right]^{-1} \leqslant[S(0, r, \mathbf{A}, \boldsymbol{\Phi})]^{-1} \leqslant\left[\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi})\right]^{-1} .
$$

Hence, we have

$$
\tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(0, r, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \widetilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

(ii) Step 1: Suppose that $0<r<s<1$.

In the same way as in (i) Step 1 we obtain inequalities (9). Observe that, since $m^{r} 1_{K} \leqslant$ $\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right) \leqslant M^{r} 1_{K}$ and $m^{s} 1_{K} \leqslant \sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right) \leqslant M^{s} 1_{K}$, it follows that $m^{s} 1_{K} \leqslant\left[m^{r} 1_{K}+\right.$ $\left.M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right)\right]^{\frac{s}{r}} \leqslant M^{s} 1_{K}$ and $m^{s} 1_{K} \leqslant m^{s} 1_{K}+M^{s} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right) \leqslant M^{s} 1_{K}$. Raising inequalities (9) to the power $\frac{1}{s}\left(\frac{1}{s}>1\right)$, it follows from Theorem D (i) that

$$
\begin{aligned}
& K\left(m^{s}, M^{s}, \frac{1}{s}\right)^{-1}\left[m^{r} 1_{K}+M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right)\right]^{\frac{1}{r}} \\
& \quad \leqslant\left[\frac{M^{r} 1_{K}-S_{r}}{M^{r}-m^{r}} \cdot M^{s}+\frac{S_{r}-m^{r} 1_{K}}{M^{r}-m^{r}} \cdot m^{s}\right]^{\frac{1}{s}} \\
& \quad \leqslant K\left(m^{s}, M^{s}, \frac{1}{s}\right)\left[m^{s} 1_{K}+M^{s} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right)\right]^{\frac{1}{s}}
\end{aligned}
$$

or

$$
\Delta(m, M, s)^{-1} \tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(r, s, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \Delta(m, M, s) \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

Step 2: Suppose that $0=r<s<1$.
In the same way as in (i) Step 3 we obtain inequalities (10). Observe that, since $(\ln m) 1_{K} \leqslant$ $(\ln m) 1_{K}+(\ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right) \leqslant(\ln M) 1_{K}$ and $m^{s} 1_{K} \leqslant \sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right) \leqslant M^{s} 1_{K}$, it follows that

$$
m^{s} 1_{K} \leqslant \exp \left(s\left((\ln m) 1_{K}+(\ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right)\right)\right) \leqslant M^{s} 1_{K}
$$

and $m^{s} 1_{K} \leqslant m^{s} 1_{K}+M^{s} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{s}\right) \leqslant M^{s} 1_{K}$. Raising inequalities (10) to the power $\frac{1}{s}\left(\frac{1}{s}>1\right)$, it follows from Theorem D (i) that

$$
\Delta(m, M, s)^{-1} \tilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(0, s, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \Delta(m, M, s) \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

Step 3: Suppose that $-1<r<s<0$.
Applying reversed inequalities (2) to the concave function $f(t)=t^{\frac{s}{r}}$ (note that $0<\frac{s}{r}<1$ here) and replacing A_{j}, m and M with A_{j}^{r}, m^{r} and M^{r}, respectively, we obtain reversed (9). With the same observation as in Step 1 and raising reversed (9) to the power $\frac{1}{s}\left(\frac{1}{s}<-1\right)$, it follows from Theorem D (ii) that

$$
\Delta(m, M, s)^{-1} \tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(r, s, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \Delta(m, M, s) \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi}) .
$$

Step 4: Suppose that $-1<r<s=0$.
Applying inequalities (2) to the convex function $f(t)=\frac{1}{r} \ln t$ (note that $\frac{1}{r}<0$ here) and replacing A_{j}, m and M with A_{j}^{r}, m^{r} and M^{r}, respectively, we obtain

$$
\begin{aligned}
& \frac{1}{r} \ln \left(m^{r} 1_{K}+M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right)\right) \\
& \quad \leqslant \frac{M^{r} 1_{K}-S_{r}}{M^{r}-m^{r}} \cdot \ln M+\frac{S_{r}-m^{r}}{M^{r}-m^{r}} \cdot \ln m \\
& \quad \leqslant(\ln m) 1_{K}+(\ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right)
\end{aligned}
$$

Observe that, since $r<0, M^{r} 1_{K} \leqslant m^{r} 1_{K}+M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right) \leqslant m^{r} 1_{K}$ and $(\ln m) 1_{K} \leqslant$ $\sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right) \leqslant(\ln M) 1_{K}$, it follows that

$$
\ln m \leqslant \frac{1}{r} \ln \left(m^{r} 1_{K}+M^{r} 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(A_{j}^{r}\right)\right) \leqslant \ln M
$$

and $(\ln m) 1_{K} \leqslant(\ln m) 1_{K}+(\ln M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\ln \left(A_{j}\right)\right) \leqslant(\ln M) 1_{K}$. Now, it follows from Theorem E that

$$
S\left(\mathrm{e}^{\ln M-\ln m}\right)^{-1} \tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(r, 0, \mathbf{A}, \boldsymbol{\Phi}) \leqslant S\left(\mathrm{e}^{\ln M-\ln m}\right) \tilde{M}_{0}(\mathbf{A}, \boldsymbol{\Phi})
$$

Step 5: Suppose that $-1<r<0<s<1$.
Applying inequalities (2) to the convex function $f(t)=t^{\frac{s}{r}}$ (note that $\frac{s}{r}<0$ here) and replacing A_{j}, m and M with A_{j}^{r}, m^{r} and M^{r}, respectively, we obtain inequalities (9). Proceeding in the same way as in Step I, we have

$$
\Delta(m, M, s)^{-1} \tilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant S(r, s, \mathbf{A}, \boldsymbol{\Phi}) \leqslant \Delta(m, M, s) \tilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})
$$

Remark 1. Some considerations in Theorems 2 and 3 can be shortened using obvious properties $\widetilde{M}_{-s}\left(\mathbf{A}^{-1}, \boldsymbol{\Phi}\right)=\widetilde{M}_{s}(\mathbf{A}, \boldsymbol{\Phi})^{-1}$ and $S\left(-s,-r, \mathbf{A}^{-1}, \boldsymbol{\Phi}\right)=S(s, r, \mathbf{A}, \boldsymbol{\Phi})^{-1}$, where $\mathbf{A}^{-1}=$ $\left(A_{1}^{-1}, \ldots, A_{k}^{-1}\right)$.

Remark 2. Since obviously $S(r, r, \mathbf{A}, \boldsymbol{\Phi})=\widetilde{M}_{r}(\mathbf{A}, \boldsymbol{\Phi})$, inequalities in Theorem 3 (i) give us

$$
S(r, r, \mathbf{A}, \boldsymbol{\Phi}) \leqslant S(r, s, \mathbf{A}, \boldsymbol{\Phi}) \leqslant S(s, s, \mathbf{A}, \boldsymbol{\Phi}), r<s, s \geqslant 1
$$

and

$$
S(r, r, \mathbf{A}, \boldsymbol{\Phi}) \leqslant S(s, r, \mathbf{A}, \boldsymbol{\Phi}) \leqslant S(s, s, \mathbf{A}, \boldsymbol{\Phi}), r<s, r \leqslant-1
$$

An open problem is to give the list of inequalities comparing "mixed means" $S(r, s, \mathbf{A}, \boldsymbol{\Phi})$ in remaining cases.

4. Quasi-arithmetic means of Mercer's type

Let \mathbf{A} and $\boldsymbol{\Phi}$ be as in the previous section. Let $\varphi, \psi \in C([m, M])$ be strictly monotonic functions on an interval $[m, M]$. We define

$$
\tilde{M}_{\varphi}(\mathbf{A}, \boldsymbol{\Phi})=\varphi^{-1}\left(\varphi(m) 1_{K}+\varphi(M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\varphi\left(A_{j}\right)\right)\right)
$$

Observe that, since $m 1_{H} \leqslant A_{j} \leqslant M 1_{H}$, it follows that

- $\varphi(m) 1_{H} \leqslant \varphi\left(A_{j}\right) \leqslant \varphi(M) 1_{H}$ if φ is increasing,
- $\varphi(M) 1_{H} \leqslant \varphi\left(A_{j}\right) \leqslant \varphi(m) 1_{H}$ if φ is decreasing.

Applying positive linear maps Φ_{j} and summing, it follows that

- $\varphi(m) 1_{K} \leqslant \sum_{j=1}^{k} \Phi_{j}\left(\varphi\left(A_{j}\right)\right) \leqslant \varphi(M) 1_{K}$ if φ is increasing,
- $\varphi(M) 1_{K} \leqslant \sum_{j=1}^{k} \Phi_{j}\left(\varphi\left(A_{j}\right)\right) \leqslant \varphi(m) 1_{K}$ if φ is decreasing,
since $\sum_{j=1}^{k} \Phi_{j}\left(1_{H}\right)=1_{K}$. Hence, $\tilde{M}_{\varphi}(\mathbf{A}, \boldsymbol{\Phi})$ is well defined.
A function $f \in C([m, M])$ is said to be operator increasing if f is operator monotone, i.e., if $A \leqslant B$ implies $f(A) \leqslant f(B)$, for all selfadjoint operators A and B on a Hilbert space H with $S p(A), S p(B) \subseteq[m, M]$. A function $f \in C([m, M])$ is said to be operator decreasing if $-f$ is operator monotone.

Theorem 4. Under the above hypotheses, we have
(i) if either $\psi \circ \varphi^{-1}$ is convex and ψ^{-1} is operator increasing, or $\psi \circ \varphi^{-1}$ is concave and ψ^{-1} is operator decreasing, then

$$
\begin{equation*}
\tilde{M}_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}) \leqslant \tilde{M}_{\psi}(\mathbf{A}, \boldsymbol{\Phi}) \tag{11}
\end{equation*}
$$

In fact, to be more specific, we have the following series of inequalities

$$
\begin{align*}
& \tilde{M}_{\varphi}(\mathbf{A}, \boldsymbol{\Phi}) \\
& \leqslant \psi^{-1}\left(\frac{\varphi(M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\varphi\left(A_{j}\right)\right)}{\varphi(M)-\varphi(m)} \cdot \psi(M)\right. \\
& \left.\quad+\frac{\sum_{j=1}^{k} \Phi_{j}\left(\varphi\left(A_{j}\right)\right)-\varphi(m) 1_{K}}{\varphi(M)-\varphi(m)} \cdot \psi(m)\right) \\
& \leqslant \widetilde{M}_{\psi}(\mathbf{A}, \boldsymbol{\Phi}) \tag{12}
\end{align*}
$$

(ii) if either $\psi \circ \varphi^{-1}$ is concave and ψ^{-1} is operator increasing, or $\psi \circ \varphi^{-1}$ is convex and ψ^{-1} is operator decreasing, then inequalities (11) and (12) are reversed.

Proof. Suppose that $\psi \circ \varphi^{-1}$ is convex. If in Theorem 1 we let $f=\psi \circ \varphi^{-1}$ and replace A_{j}, m and M with $\varphi\left(A_{j}\right), \varphi(m)$ and $\varphi(M)$, respectively, then we obtain

$$
\begin{aligned}
& \left(\psi \circ \varphi^{-1}\right)\left(\varphi(m) 1_{K}+\varphi(M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\varphi\left(A_{j}\right)\right)\right) \\
& \quad \leqslant \frac{\varphi(M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\varphi\left(A_{j}\right)\right)}{\varphi(M)-\varphi(m)} \cdot\left(\psi \circ \varphi^{-1}\right)(\varphi(M)) \\
& \quad+\frac{\sum_{j=1}^{k} \Phi_{j}\left(\varphi\left(A_{j}\right)\right)-\varphi(m) 1_{K}}{\varphi(M)-\varphi(m)} \cdot\left(\psi \circ \varphi^{-1}\right)(\varphi(m)) \\
& \quad \leqslant\left(\psi \circ \varphi^{-1}\right)(\varphi(m)) 1_{K}+\left(\psi \circ \varphi^{-1}\right)(\varphi(M)) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\left(\psi \circ \varphi^{-1}\right)\left(\varphi\left(A_{j}\right)\right)\right)
\end{aligned}
$$

or

$$
\begin{align*}
& \psi\left(\varphi^{-1}\left(\varphi(m) 1_{K}+\varphi(M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\varphi\left(A_{j}\right)\right)\right)\right) \\
& \quad \leqslant \frac{\varphi(M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\varphi\left(A_{j}\right)\right)}{\varphi(M)-\varphi(m)} \cdot \psi(M)+\frac{\sum_{j=1}^{k} \Phi_{j}\left(\varphi\left(A_{j}\right)\right)-\varphi(m) 1_{K}}{\varphi(M)-\varphi(m)} \cdot \psi(m) \\
& \quad \leqslant \psi(m) 1_{K}+\psi(M) 1_{K}-\sum_{j=1}^{k} \Phi_{j}\left(\psi\left(A_{j}\right)\right) \tag{13}
\end{align*}
$$

If $\psi \circ \varphi^{-1}$ is concave then we obtain the reverse of inequalities (13).
If ψ^{-1} is operator increasing, then (13) implies (12). If ψ^{-1} is operator decreasing, then the reverse of (13) implies (12). Analogously, we get the reverse of (12) in the cases when $\psi \circ \varphi^{-1}$ is convex and ψ^{-1} is operator decreasing, or $\psi \circ \varphi^{-1}$ is concave and ψ^{-1} is operator increasing.

References

[1] M.D. Choi, A Schwarz inequality for positive linear maps on C^{*}-algebras, Illinois J. Math. 18 (1974) 565-574.
[2] C. Davis, Schwartz inequality for convex operator functions, Proc. Amer. Math. Soc. 8 (1957) 42-44.
[3] A.McD. Mercer, A variant of Jensen's inequality, JIPAM 4 (4) (2003), Article 73.
[4] A.McD. Mercer, A monotonicity property of power means, JIPAM 3 (3) (2002), Article 40.
[5] T. Furuta, J. Mićić-Hot, J. Pečarić, Y. Seo, Mond-Pečarić Method in Operator Inequalities, Element, Zagreb, 2005.
[6] J.E. Pečarić, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc., 1992.

[^0]: * Corresponding author.

 E-mail addresses: anita@pmfst.hr (A. Matković), pecaric@hazu.hr (J. Pečarić), iperic@pbf.hr (I. Perić).

