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Abstract

A variant of Jensen’s operator inequality for convex functions, which is a generalization of Mercer’s
result, is proved. Obtained result is used to prove a monotonicity property for Mercer’s power means for
operators, and a comparison theorem for quasi-arithmetic means for operators.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For a givena < b, let x = (x1,...,xx) besuchthata < x; < xp < <xpy < band w =
(w1, ..., wg) be nonnegative weights such that ZI;:1 w; = 1. Mercer [3] proved the following
variant of Jensen’s inequality.
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Theorem A. Iffis a convex function on [a, b] then

k k
fla+b=> wix; | < fl@)+ fb) =Y w;fx).
j=1 j=1

For a > 0 the (weighted) power means M, (x, w) are defined as
1

k T
(Z wjx;> : r#0,
My (x, w) = § V=t

k
exp wilnx; ), r=0.
j=1

In [4] Mercer defined the family of functions

[a" +b" — MI(x, w)]7, 10,
Q(a,b,x) = ab
_ r=0
Mo(x, w)
and proved the following.

Theorem B. Forr < s, Q,(a,b,x) < Qs(a, b, x).

In this paper we consider similar inequalities in a more general setting. To do this we need
some well known results. The first one is Lowner—Heinz inequality (see for example [5, p. 9]).

Theorem C. Let A and B be positive operators on a Hilbert space H. If A > B, then AP > B?
forall p € [0, 1].

In [5, p. 220, 232, 250] the following theorems are also proved.

Theorem D. Let A, B be positive operators on a Hilbert space H with Sp(A) C [m1, M1], and
Sp(B) C [ma, M3] for some scalars Mj >m; >0 (j =1,2). If A > B, then the following
inequalities hold:

@) forall p > 1:

K@mi, M, p)A
K(my, Mp, p)A

S B

(i) forall p < —1:

p

)

K(my, My, p)B? >
P

A
K(m21M23 p)Bp Ap’
where a generalized Kantorovich constant K (m, M, p) is defined by
(mMP — MmP) (p -1 MP —m? )p

(p—DWM —m) p mMP — MmP

K(@m, M, p) =

forall p € R.
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Theorem E. Let A, B be selfadjoint operators on a Hilbert space H with Sp(B) C [m, M] for
some scalars M > m. If A > B, then

S(eM_m)eA 2 eB’
1
where the Specht ratio S(h) for h > 0 is defined by S(h) = =D (b # 1) and S(1) = 1.

In Section 2 we give the main result of our paper which is an extension of Theorem A to
selfadjoint operators and positive linear maps. This variant of Jensen’s inequality for operators
holds for arbitrary convex functions, while Davis—Choi—Jensen’s inequality asserts that

F(@(A)) < P(f(A))

holds for an operator convex function fdefined on an interval (—a, a), where @ : Z(H) — %(K)
is a normalized positive linear map and A is a selfadjoint operator with spectrum in (—a, a) (see
(1,2D.

In Section 3 we use that result to prove a monotonicity property of power means of Mercer’s
type for operators. In the final section we consider related quasi-arithmetic means for operators.

2. Main result

In what follows we assume that H and K are Hilbert spaces, #(H) and #(K) are C*-algebras
of all bounded operators on the appropriate Hilbert space and P[#(H), #(K)] is the set of all
positive linear maps from Z(H) to #(K). We denote by C([m, M]) the set of all real valued
continuous functions on an interval [m, M].

We show a variant of Jensen’s operator inequality which is an extension of Theorem A to
selfadjoint operators and positive linear maps.

Theorem 1. Let Ay, ..., Ay € #B(H) be selfadjoint operators with spectra in [m, M] for some
scalars m < M and @1, ..., Py € P[B(H), B(K)] positive linear maps with Z];':I ®i(lp) =
1. If f € C(Im, M]) is convex on [m, M], then

k k
flmlx +Mig =) @;A) | < fm)lg + F(M)1g — D Bi(f(A)). (1)

j=1 J=1

In fact, to be more specific, the following series of inequalities holds

Mig —Y5_ ®j(A))

k
flmix+Mig =) @A) ] <

. e - f(M)
j=1
Y @A) —mlg
+ M —m - fm)
k
< fm)lg + f(M)1x =Y ®i(f(A))). )
j=1

If a function fis concave, then inequalities (1) and (2) are reversed.
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Proof. Since fis continuous and convex, the same is also true for the function g : [m, M] — R
defined by g(¢) = f(m + M —t), t € [m, M]. Hence, the following inequalities hold for every
t € [m, M] (see for example [6, p. 2]):

t— M —
f(f)\ﬂ f )+M

M+M
- g(M) A7 —

- f(m),

8() < - g(m).

Since mly <

Aj<Mly for j=1,.. . kand Y5_ &;(1y) = I, it follows that m1g <
Yh_ @A) <

i<
M 1k . Now, using the functional calculus we have

Yh @A) —mlg Mig — Y5 ®i(A))

Dj(Aj) | < ' .g(M .
g ; j(A)) - g(M) + T g(m)
or
k
flmlg+Mig =) ®i(A))
j=1
Y1 ®j(A) —mig Mig =Yk ®;(A)
< : M
T fm) + e L f(M)
= fm)lg + f(M)1k
Mig —Y5_ ®j(A)) Yh @A) —mlg
— = . = fM) . 3
[ i fm) + == f (M) 3)
On the other hand, using the functional calculus we also have
A-—mlH MIH—A'
A <f—. M S, .
FA) € S f M) + )

Applying positive linear maps ¢; and summing, it follows that

Yo @A) —mlk Mig =Y ®;(A)
e L FM)+ e

Z‘I’ (f(A;)<

j=1

< f(m).  (4)

Using inequalities (3) and (4), we obtain desired inequalities (1) and (2).
The last statement follows immediately from the fact that if ¢ is concave then —¢ is convex. [

3. Applications to Mercer’s power means
We suppose that:
(i) A= (Ay,..., Ay), where A; € #(H) are positive invertible operators with Sp(A;) C

[m, M] for some scalars 0 < m < M.
(i) ® = (Py, ..., Pr), where P; e P[#(H), Z#(K)] are positive linear maps with

Yh_ @i(ln) = k.
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1
P P 1— _ Kl
Gii) AGm, M, p) = K (P, M7, 1) = FE s (CopOimm)? - for 0 <m <M

and peR, p#0. Set: A(m, M,0)=limp_oA(m, M, p)=5(%)=M=r_

exp (m(l—Hn M) _1’:1/1(1+1nm)>

We define, for any r € R

[m" 1K+M’1K—Z‘P (A% Or, r#0,
~ ) j=1

Mr (A’ (D) -
exp((lnm)1K+(lnM)1K— Y ®;(n(A; ))) r=0.
J_
Observe that, since 0 < mly < Aj < M1y, it follows that:

o0 <mly gA; < M" 1y holds for all » > 0,
o0 < Mly <A§. < m"1g holds for all » < 0,
e(Inm)ly <In(A)) <(InM)ly (j=1,...,k).

Applying positive linear maps @; and summing, it follows that:
e0<m'lg < ZI;':I ®;(A") < M"lg, forall r > 0,
0«0 < Mg < Z'}=1 ®;(A") <m"lg, forall r <0,
o (nm)lx < Y5, @;(In(4)) < (n M),

since 21;21 ®;(1p) = 1k. Hence, 1\7, (A, @) is well defined.
Furthermore, we define, for any r, s € R
1

[MM}K 5. M‘—i——S ml’(-m“]E, r#0,s #0,

S(r, s, A, @) = exp(M 1k =5r lnM+M lnm) r#0,s=0,
1

[(1nM>1K—so M+ So=nmig .ms]:" r=0,5%0,

InM—Inm InM—Inm

where S, = Zf‘:l <I>j(A;) and Sy = ZI;=1 @;(In(Aj)). Itis easy to see that S(r, s, A, @) is also
well defined.

Theorem 2. Letr,s e R, r < s.

() Ifeitherr < —1ors > 1, then
M, (A, ®) < M,(A, D).
) If—1 <rands < 1, then
My (A, ®) < A(m, M, s) - Mg(A, ®).

Proof. (i) Step 1: Suppose that0 <r < sands > 1
Applying the inequality (1) to the convex function f(t) =t (note that ¥ > 1 here) and
replacing A ;, m and M with A;, m” and M”", respectively, we have
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k r k
mr1K+Mr1K—Z<1>,-(A;) <m51K+MSlK—Z(Pj(A;).
j=1 j=1
Raising both sides to the power % 0 < % < 1), it follows from Theorem C that

M, (A, ®) < Ms(A, D).

Step 2: Suppose thatr < Oand s > 1.

Applying the inequality (1) to the convex function f(¢) = t7 (note that + < 0 here) and

proceeding in the same way as in Step I, we have

M, (A, ®) < Ms(A, D).

Step 3: Suppose thatr =0 and s > 1.

Applying the inequality (1) to the convex function f () = exp(s - #) and replacing A ;, m and

M with In(A ), Inm and In M, respectively, we have

k
exp|s | nm)lg + (nM)lg — > @;(In(A)))
j=1
k
<exp(slnm)lg +exp(sin M)lg — Z D;(exp(sIn(A;)))
j=1
k
—m'lg + M*1g — Z(D,-(Aj)
j=1
or
[Mo(A, ®))° < [M;(A, D).
Raising both sides to the power % 0 < % < 1), it follows from Theorem C that

Mo(A, @) < My(A, D).

Step 4: Suppose thatr < s <Oandr < —1.

(6)

Applying the inequality (1) to the convex function f(¢) = 15 (note that © > 1 here) and

replacing A j, m and M with Aj., m® and M*, respectively, we have

k § k
mle—i—Mle—Z(I)j(A‘})) gm’1K+Mr1K—Zq5j(A;).
Jj=1 j=I1
1

Raising both sides to the power —% (0 < =+ < 1), it follows from Theorem C that

[M (A, @) < [M, (A, ®)]".
Hence, we have

M, (A, ®) < My(A, ®).

Step 5: Suppose that s > O and r < —1.

@)
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Applying the inequality (1) to the convex function f(¢) = t5 (note that £ <0 here) and
proceeding in the same way as in Step 4, we have

M, (A, ®) < M(A, D).

Step 6: Suppose thats = 0 and r < —1.
Applying the inequality (1) to the convex function f(¢) = exp(r - t) and replacing A ;, m and
M with In(A ;), Inm and In M, respectively, we have

k
exp|r | Qnm)lg +An M) 1x — Z ®;(In(A;))
j=1
k
L exp(rlnm)lg +exp(rin M)l g — Z @ (exp(rin(A;)))
j=1
k
=m'lg+Mlg =Y ®;(A) (8)
j=1
or
[Mo(A, ®)]" < [M, (A, D).
Raising both sides to the power —} 0 < } < 1), it follows from Theorem C that
[Mo(A, ®)]7" < [M,(A, ®)]".
Hence, we have
M, (A, ®) < My(A, D).

(ii) Step 1: Suppose that) <r < s < 1.

In the same way as in (i) Step I we obtain inequality (5). Observe that, since m*1g <
Yh_  @j(A%) < M¥ 1k, itfollowsthatm®1x < m®lg + M*1x — Y5_, ®;(A%) < M*1k.Rais-
ing both sides of (5) to the power % (% > 1), it follows from Theorem D (i) that

~ 1\ ~
Mr(A, (D) < K (mS’ MS’ _> MS(Av (I))
N

Step 2: Suppose that 0 =r < 5 < 1.
In the same way as in (i) Step 3 we obtain inequality (6). With the same observation as in (ii)
Step I and raising both sides of (6) to the power % (% > 1), it follows from Theorem D (i) that

~ 1\ ~
Mo(A, D) < K <ms, M*, —) M (A, @).
S

Step 3: Suppose that —1 <r < s < 0. ,
Applying reversed inequality (1) to the concave function f () = ¢ (note that 0 < < 1 here)

and replacing A ;, m and M with A;., m” and M", respectively, we obtain reversed inequality (5).
Observe that, since M*1g < Zl;zl eDj(Ajl) <mflg, it follows that MS1x < m’1g + M1 —
21;:1 CDJ-(Aj.) < m’1k. Raising both sides of reversed (5) to the power %(% < —1), it follows
from Theorem D (ii) that
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~ 1\ ~
Mr(A7 (I)) g K (Msa msv _> MS(Aa q))
N

Since K (M, m, p) = K(m, M, p) (see [5, p. 77]), we have

~ 1\ ~
M, (A, ®) <K (ms, M*, —) M;(A, D).
S

Step 4: Suppose that —1 <r < s =0.

Applying the inequality (1) to the convex function f(z) = % Int and replacing A, m and M
with A;., M" and m", respectively, we obtain

k k
1
~In m' g +M1g =Y &;(A) | <(nm)lg + (nM)lg — Y &;(In(A)).
j=1 j=1
Observing that both sides have spectra in [In mz, In M], it follows from Theorem E that
M (A, ®) < Am, M, O)MO(A D).

Step 5: Suppose that —1 <r <0 < s < 1.

In the same way as in (i) Step 2 we obtain inequality (5). With the same observation as in (ii)
Step 1 and raising both sides of (5) to the power % (% > 1), it follows from Theorem D (i) that

~ 1 ~
M.(A, ®) < K (m M°, -) M,A, ®). O
S

If we use inequalities (2) instead of the inequality (1), then we have the following results

Theorem 3. Letr,s € R, r < s.

1) If s > 1, then

M, (A, ®) < S(r, 5, A, ®) < My(A, D).
Ifr < —1, then

M(A(I)) S(s,r, A, @) < M(A(I))
) If—1 <rands < 1, then
1

mM(A(D) < S, s, A, @) < A(mMS)M(A(I))

Proof. (i) Step 1: Suppose that0 < r < s and s >
Applying inequalities (2) to the convex function f ) = tr (note that

t % > 1here) and replacing
Aj, mand M with A;, m” and M", respectively, we have
k Mg -, S, —m" g
r r r S N
milH MOl = D @A) | < S M S
Jj=1

k
<m'lg + Mg =) @;(A).
j=1

©)
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Raising these inequalities to the power %(O < % < 1), it follows from Theorem C that

M, (A, ®) < S(r, 5, A, ®) < Ms(A, D).

Step 2: Suppose thatr < Oand s > 1.
Applying inequalities (2) to the convex function f(¢) =t (note that § < 0 here) and pro-
ceeding in the same way as in Step I, we have

M (A, ®) < S(r, s, A, ®) < M(A, D).

Step 3: Suppose thatr =0 and s > 1.
Applying inequalities (2) to the convex function f () = exp(s - t) and replacing A, m and M

with In(A;), Inm and In M, respectively, we have

k
exp | s (lnm)1K+(lnM)1K—Z®j(ln(Aj))
j=1
_ (nM)ig — So So — (Inm)1g

. In M
InM —1Inm exp(sIn M) + InM —1Inm

k

<exp(slnm)lg +exp(sin M)l g — Z @ (exp(s1n(A})))
j=1

- exp(s Inm)

k
=mS1K+MS1K—Z(pj(A‘;) (10)
j=1
or
[Mo(A, @)1 < [S0,s,A, @) < [M(A, D).

Raising these inequalities to the power %(O < % < 1), it follows from Theorem C that

Mo(A, ®) < SO0, s, A, ®) < M(A, D).

Step 4: Suppose thatr < s < Oandr < —1.
Applying inequalities (2) to the convex function f (t) = ¢+ (note that ¢ > 1 here) and replacing

Aj, mand M with Aj., m?® and M*, respectively, we have

k s
MS1g — S, S, —mflg
S ) N r r
le-i—MlK—Z(Pj(Aj) QW-M +W'm
j=1
k
<m'lg +Mr1K—Z@j(A;).
j=1

Raising these inequalities to the power —% 0 < —% < 1), it follows from Theorem C that
[My(A, @)1 <SG, r, A, @) < [M, (A, @)

Hence, we have
M, (A, @) < S(s, 7, A, ®) < M(A, D).



560 A. Matkovié et al. / Linear Algebra and its Applications 418 (2006) 551-564

Step 5: Suppose that s > O and r < —1.
Applying inequalities (2) to the convex function f(¢) = ¢ (note that £ < 0 here) and pro-
ceeding in the same way as in Step 4, we have

M, (A, ®) < S(s,r, A, @) < M(A, D).

Step 6: Suppose that s =0 and r < —1.
Applying inequalities (2) to the convex function f(¢) = exp(r - t) and replacing A ;, m and M
with In(A;), Inm and In M, respectively, we have

k
exp | r (lnm)1K+(lnM)1K—Zcbj(ln(Aj))
j=1
InM)lg — S So — (Inm)1
<—(n )k 0-exp(rlnM)—i——O (nm)lg
InM —1nm InM —1nm
k

Lexp(rinm)lg +exp(rin M)l g — Z @ (exp(rIn(A})))
j=1

-exp(r Inm)

k
=m'lg + M 1g — Y ®;(A])
j=l1

or

[Mo(A, @)1 < [SO, 7, A, D) < [M, (A, D).
Raising these inequalities to the power —% 0 < % < 1), it follows from Theorem C that

[Mo(A, ®)]" <[SO,r, A, @) < [M(A, @],
Hence, we have

M, (A, ®) < SO0,r, A, ®) < My(A, D).

(ii) Step 1: Suppose that 0 < r < s < 1.
In the same way as in (i) Step I we obtain inequalities (9). Observe that, since m"1g <

21}21 ®;(A") < M"Ig andm®1g < lezl ®;(A%) < M*1g, itfollows thatm* 1x < [m" 1 +

Mg — Z’;Zl dsj(A;)]% <MS1g and m*lx <mlg + MS1g — Z'}=1 Bj(A%) < M*lg.
Raising inequalities (9) to the power % (% > 1), it follows from Theorem D (i) that

1

1 —1 k
K(ms,MS,§> mrlK—l—MrlK—Z(Pj(A;)
j=1
M 1g — S, s Sr—m'lg NE
NS —_— . —.m
M" —m” M" —m"

1
k s
1
<K(ms,M‘,;> m'lg + M 1g — > ®i(A%) |
: i
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or

A(m, M, s) "M, (A, ®) < S(r, s, A, ®) < A(m, M, )M (A, ®).

Step 2: Suppose that) =r < s < 1.

In the same way as in (i) Step 3 we obtain inequalities (10). Observe that, since (Inm)1g <
(Inm)lg + (In M)1g — le‘-:l @;(In(A;)) < (nM)lg and m*1g < le‘:l q3j(A‘}) < Mflg,
it follows that

mlg <expls (lnm)lK—l—(lnM)lK—Z(P (In(Aj)) <M1k
j=1
and m*lg <m’lg + M1k — ZI;'=1 (Dj(Aj.) < M* 1. Raising inequalities (10) to the power
%(% > 1), it follows from Theorem D (i) that

A(m, M, s)""My(A, ®) < S0, s, A, ®) < A(m, M, s)M,(A, D).

Step 3: Suppose that —1 <r < s < 0.
Applying reversed inequalities (2) to the concave function f(r) = (note that 0 < ¥ <1
here) and replacing A ;, m and M with A;, m” and M", respectively, we obtain reversed (9). With

the same observation as in Step [ and raising reversed (9) to the power Al (Al, < —1), it follows
from Theorem D (ii) that

Am, M, s)" "M, (A, ®) < S(r, s, A, ®) < A(m, M, s) M (A, ®).

Step 4: Suppose that —1 <r < s =0.
Applying inequalities (2) to the convex function f(r) = %lnt (note that % < 0 here) and
replacing A ;, m and M with A;., m” and M”, respectively, we obtain

k
1
~In m g+ Mg =) (A
j=1
Mg — —m"
\K—S’ In M+S—m.1nm
M’ —m" r—m"
k
§(lnm)lK+(lnM)1K—Z@l-(ln(Aj)).

j=1
Observe that,sincer < O, M"1x <m'lg + M"1g — Zl;:l Qﬁj(A;.) <m'lgand(Inm)lg <
Z'}=1 ®;(In(A;)) < (In M)1g, it follows that
k

Inm < ln m'lg+Mlg =Y &;(A) ]| <InM
j=1

and (Inm)lg < (Inm)lg + InM)1g — 21;21 @;(In(A;)) < (In M)1g. Now, it follows from
Theorem E that

S( InM— lnm) M (A (D) S(r O A (D) S(elnM_lnm)MO(A, (D)
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Step 5: Suppose that —1 <r <0 < s < 1.

Applying inequalities (2) to the convex function f(¢) = tr (note that - < O here) and replacing
Aj, m and M with A", m" and M", respectively, we obtain inequalities (9). Proceeding in the
same way as in Step 1, we have

A(m, M, s)_ll\zr(A, D) < S, s,A, D) < A(m, M, s)M (A, ©). U

Remark 1. Some considerations in Theorems 2 and 3 can be shortened using obvious prop-
erties M_g(A~!, ®) = M, (A, ®)~! and S(—s, —r, A=, ®) = S(s,r, A, ®)~!, where A~! =
A7l .ah.

Remark 2. Since obviously S(r,r, A, ®) = ]Vlr (A, @), inequalities in Theorem 3 (i) give us
Sr,r, A, ®) < Sr,s,A, D) <SG6,5,A,D),r<s,s>1

and
Sr,r,A,®) < S, A, D) <S6,5,A,D),r <s,r <—1.

An open problem is to give the list of inequalities comparing “mixed means” S(r, s, A, ®) in
remaining cases.

4. Quasi-arithmetic means of Mercer’s type

Let A and @ be as in the previous section. Let ¢, ¥ € C([m, M]) be strictly monotonic
functions on an interval [m, M]. We define

k
My(A, @) =9~ [ pm)1x + (M)l — > D;(p(A)))
j=1

Observe that, since mly < A; < M1y, it follows that

e p(m)ly < @(Aj) < o(M)lp if ¢ is increasing,
o p(M)ly < @(Aj) < ¢(m)ly if ¢ is decreasing.

Applying positive linear maps @; and summing, it follows that

Yo Di(p(A))
Yh_ Bi(p(A))

e p(m)lg @ (M)1g if ¢ is increasing,

o p(M)lg

NN
NN

¢(m)1g if ¢ is decreasing,

since Zﬁ:l @;(1g) = k. Hence, AA/i(p(A, @) is well defined.

A function f € C([m, M]) is said to be operator increasing if f is operator monotone, i.e.,
if A < B implies f(A) < f(B), for all selfadjoint operators A and B on a Hilbert space H with
Sp(A), Sp(B) C [m, M]. A function f € C([m, M]) is said to be operator decreasing if — f is
operator monotone.
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Theorem 4. Under the above hypotheses, we have

1

Q) if either ¥ o @' is convex and =" is operator increasing, or W o ¢~ is concave and

v~ is operator decreasing, then
My(A, ®) < My (A, D). (11)

In fact, to be more specific, we have the following series of inequalities

My(A, D)
M)k — Y 5_ @i(p(A))
<y J UM
v ( (M) — p(m) v
kL Pi(p(A))) — 1
Yo Pi(p(A)) — @(m) L
o(M) — ¢(m)
< My (A, ®) (12)

1

(ii) if either ¥ o ¢~ is concave and Yy~ is operator increasing, or ¥ o ™' is convex and

Vv~ is operator decreasing, then inequalities (11) and (12) are reversed.

1 1

Proof. Suppose that 1 o ¢~ is convex. If in Theorem 1 we let f = o ¢~
and M with ¢ (A ), ¢(m) and ¢ (M), respectively, then we obtain

and replace A, m

k
Wogp ™) [emik + o)k = @;(p(A))
j=1
P(M)1x — Y 5_ ®(p(A))
¢(M) — p(m)
Y51 @i (e(A)) — e(m)1g
¢(M) — p(m)

(Y oo H(p(M))

(¥ 0o H(g(m))

k
< W o™ N(@m)1g + W og M) 1k — > @;((Y 0 9~ (@A)
j=1
or

k
Yo' o)k + (M)l = @;(p(A))
j=1
L DL~ o 204D L T 254 — ek
o(M) — ¢(m) o(M) — ¢(m)

Y (m)

k
SYm)lg + ¥ (M)g =D ;W (A))). (13)

j=1
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If ¥ o ¢~ is concave then we obtain the reverse of inequalities (13).
If 1//‘1 is operator increasing, then (13) implies (12). If 1//_1 is operator decreasing, then
the reverse of (13) implies (12). Analogously, we get the reverse of (12) in the cases when

¥ o ¢! is convex and ¥ ! is operator decreasing, or 1 o ¢! is concave and ! is operator
increasing. [
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