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Abstract—For variational problems of the form
Inf {(f(Av)+g (o),

we propose a dual method which decouples the difficulties relative to the functionals f and g from the
possible ill-conditioning effects of the linear operator A.

The approach is based on the use of an Augmented Lagrangian functional and leads to an efficient and
simply implementable algorithm. We study also the finite element approximation of such problems,
compatible with the use of our algorithm. The method is finally applied to solve several problems of
continuum mechanics.

1. INTRODUCTION

Many problems, in Physics, Mechanics, and Mathematical Economics, can be formulated as the
following variational problem:

@) Inf {f(Av)+ g(v).

V and Y are two Hilbert spaces, endowed with the norm topology; A is a continuous linear
operator from V into Y; f and g are convex functions defined respectively on Y and V, and
taking their values in (—, +c]. This formulation, first used by Rockafellar[1] to extend Fenchel’s
duality theory, includes, in particular, the ordinary problems of convex programming. We call v*
the solution of (%), when it exists. Let

d=foA+g

A natural approach to solve (?) consists in searching directly for the minimum of ¢ (v) over
V. If ¢ is differentiable iterative techniques based on the use of its gradient are available to
construct a sequence of points in V, converging to v*. But the speed of convergence is slow if the
operator A is ill-conditioned[2].

This difficulty may disappear if we use the following device: in a first time, we introduce the
additional variable y € Y, linked to the original variable v € V by the constraint Av — y =0, and
consider the constrained problem (?.) on V X Y, obviously equivalent to (%):

(2 Inf{f(y)+g@)l(v,y)EV XY, Av—y =0}
We then eliminate the artificial constraint, just introduced, by a dual approach to solve (%.).
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In the following, (., .) and ((., .)} denote the scalar product on respectively Y and V, while |.|
and ||.| are the corresponding norms. V' and Y' are the dual spaces of V and Y. We denote the
duality between V and V' by (.,.), while we identify Y’ to Y.

The classu:al dual approach (P.) consists in mtroducmg a Lagrange multiplier A € Y’

matan frinntinnag 1 w AAG‘«AAA.‘I‘I\/V\\/V 1z
lull\./l,lUll(ll oLy UCHIIITU UIL L ¥V r)A 1 Wllll

L,y;A)=gw)+f(y)+ (A Av—y). (1.1

tells us that, if there exists a saddle point (v*, y*, A*) of ¥ on

1 UICTC CARISLS a SLLa:e Wy Yo, ATy Ol

!
b 4 J 1
(VX Y)+ Y’ ithen (v*, y*)issolutionof (2.). Inthis case, we have also the equality between

Inf {Sup L(v, y; A)},

(Ly)EVXY =y

where we recognize the primal problem (%.), and

() Sup{ Inf Z(v,y; 1)}

AEY’ (Ly)EVXY

which constitutes the dual problem.

In order to guarantee the existence of a unique solution to the inner minimization problem in
(%) under the same hypotheses that insure the existence and uniqueness of a solution of (%), it is
convenient, as originally proposed by Glowinski and Marrocco[4], to define the dual problem
with tha Avomontod T noranoinn intraducrod by ”nctemn [ 1 and Powasll TRl 1¢ nhtoinad hy add:

YWELLL LG AugrieerieCa LGgrbiigiir, et Ghulll Uy 11CtCnes [J] nh fUWEeL U], 15 VuldiiCu Uy uuulng
to the standard Lagrangian £(v, y; A), expressed in (1-1), a term, depending on a positive
parameter r, penalizing for the violation of the constraint; in our case

’
Lo, v A)=f(y)+g(w)+(A, Av — yH——|_A_J — vl (1.2)

s J 7 FARNT Ay 5 AY 2| S AY 2z

Thic farmunlatinn nmracoante alen the advontags avar tha ardinaory nonolty functinn (which
A L11D 1vliluiauivil Pl OV LILD aldvv |8 ¢ Lws auvaulas\, vUyvLl LIv wviuliiial lJ\/llCllL LULIvVLIVL \VV vl
corresponds to the case where A is maintained equal to 0) that a minimizing sequence {uv. } for (%)

can be generated without making r-> -+, thus avoiding the well-known ill-conditioning of
ordinary penalty methods. For any arbitrary fixed r >0, if (¢*, y*; A*) is a saddle point of
£ (v, y;A), then v* is solution of (P).

In practice, we must solve a sequence of unconstrained mintmization problems

Inf Z(v,y;A"), 1.3
(b,y)EV XY
where the multipliers A" form a maximizing sequence of the duai fuctional
4= Inf  F(v,y:A) (1.4)
(Ly)Evxy
T oot (0T I L bk cnliiting of (12 Tha crancauve fineticona e diffarantiakla and itg
L.CL \ VU 4 J UU LT SUIUUIVLH Ul (1.0). 1110 iivavo 1uu\.uuual uy 1Id utiviclivaviv atliu iws
gradient is given by
VA (A" = Ap"t! — ynt!
Vd, (A" = Ap y

We can use the gradient method to maximize d,(A) by generating the multipliers A" according to
the iteration

/\n+|: n+ ( “n+|_“n+l\ 1 <\

Av y
A subsequence of {A"} converges to A*, provided that the stepsize p is chosen 0 <p <2r[10].
F(v*, y* A% is a saddle point of ¥ iff

L* y DS LOENyEADS Lo A Yoy AE(VXY)XY
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This dual algorithm due to Uzawa[7], is mentioned in the pioneering paper of Hestenes with
p = r, and is used in [8] to solve the non-linear Dirichlet’s problem. The convergence results for
convex programming problems, in finite dimensional spaces, have been extended, by
Rockafellar[9] and Bertsekas[10, 11], to the case where the minimization in (1.3) is performed
approximately at each cycie and is only asymptoticaily exact.

An alternative formulation of the dual function (1.4), provided by Fortin[12], consists in

writing
a0 =1nt {g)+ 1nt [ v +p) +5 ol =0 |

It is then possible to explicit the problem in p with the proximation operator of Y relatively to
f[13]. The resulting problem is still non-linear in v and Av, and is of the same type as the original
problem (). This approach is particularly interesting when f is a support function of a closed
convex set of Y, since the non-differentiable unconstrained problem (%) is replaced by a
differentiable sup-inf problem. A classical dual method has been presented earlier for the same
type of situation in[14, 15]. Sce also[16] for an approach similar to[12].

We present, in this paper, a modification of Uzawa’s algorithm, hinted in[4], and
experimented in[8], without proof of convergence.

In this modification, the minimization in (1.3) is neither performed exactly nor subject to a
termination criterion like in [10, 9]. This proposal is based on the observation that problem (1.3)
involves a problem of minimization in v coupled with a problem in y by the term —r(y, Av). An
approximate solution (2", y"*") to (1.3} is therefore provided by the following algorithm:

a2 L a1,
uliven v o, y « A,

select v, solution of Inf {g(v)+§HAvH2+(/\" —ry", Av)}; (1.6)

. ( r R b
select y"*', solution of Inf ’[f(y) 3yl = (A" 4 rAvtT y>j; (1.7)

which we complete by iteration (1.5) for the multiplier A™"
The algorithm is interesting for computation only if problems (1.6) and (1.7) are relatively easy
to solve. If g(.) is a linear functional or a quadratic form, (1.6) becomes a quadratic problem. In

the finite dimensional case, it can be solved by direct methods of matrix inversion, which are less

concitivg ta tho itH_conditinnine offoct of A than oradient methode We ahearve aleg that {1 7Y ig a
Dot ve LU i e —LUnniUrnung ol Uy /71 uldall gialiClil HIVUIVUS. ¥FYL UUSTL VU dIdy uidatl (17510 a

non-linear problem in y which is not sensitive at all to the ill-conditioning of A. We have thus
achieved a decoupling of f and A which constitutes a serious improvement upon (%).

We have applied our algorithm to several problems of continuum mechanics, namely the
minimal hypersurfaces problem, the problem of visco-plastic flow in a cylindrical pipe, and two
problems of elasto-plasticity: torsion and equilibrium. All these problems are of the special form
(%) where g(.) is a linear functional, and to which we shall restrict our analysis in the following. In

§1 for examnle V ic taken ac the Soholev enace HYOY (cee TTTNY whare O ic a reonlar anen
J.a, 10T €Xamps€, vV 15 laken as in€ SCO0ICV §Pact faolazj (8€€ /), wilr€ 4/ 1§ a réguiar open

subset of RY (N =1,2 or 3). Y is taken as [L*(Q)]" and A is the gradient operator. Finally, the
convex function f can be represented by an integral over ().

Although our algorithm can be applied to problem (%) in this functional framework, numerical
computations must, in practice, be performed in finite dimensional spaces. We thus construct
internal approximations V., CV and Y. CY of finite dimension[18] via a finite element
method [19]. We introduce a regular triangulation 7, of () in a finite number of * triangles” T of

gize <h V. ic chocen far ingtanca ac a enace of continnione functiong which are niacewi
SILC =Tt Yh 19 VHUSVIL, 1UL 1ddalive, dd 4 spdvy Ul vuliunuvuo 1uuuuuuc VVlll\zll alrv l.}l\,\«leD\:

polynomial. Since we are not able, in general, to caiculate exactly the integral defining f, we must
use a formula for numerical integration with a certain number of integration nodes. Naturally, the
approximation A, of the operator A is defined by: the values taken by Av, at each integration
node. We thus choose for i a space of piecewise constant functions of dimension N' = N times
the number of integration nodes. We establish that the solution v*, of the approximate problem

Y, 1 1hih )}

EVy

(@) Inf {f(Awvn)— (b, v)}
th
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converges towards v* as h —0, if the numerical integration is precise enough. Using our dual
algorithm to solve (P, ), we benefit of a powerful decomposition property, [8], since each iteration
consists in a quadratic problem (1.6) in V,, and N non-linear problems (1.7) in R"™ independent of
each other. The iteration (1.5) can also be performed component by component.

The article is organized as follows: in Section 2, after a brief review of duality theory, we
study the properties of the augmented Lagrangian, and, in particular, the existence and
uniqueness of a saddle point. In Section 3, we state a dual algorithm to compute such a saddle
point, and we establish its convergence. In Section 4, we turn to the approximation of infinite
dimensional problems. A convergence result is given and applied to a finite element
approximation compatible with our dual approach. We use this approximation for several
problems of continuum mechanics, stated in Section 5, and apply our algorithm. Numerical
results are reported in Section 6, and compared with direct methods of solution.

2. CONVEXITY PROPERTIES AND THE AUGMENTED LAGRANGIAN
Duality theory and saddle-points
Duality theory has recently received an elegant formulation[1, 20], based on the consideration
of a family of perturbed problems (%, )associated to a problem (%): vlrelf/ ¢(v). We consider a
general bifunction ®:V x Y — (=, +o] such that

O(v,0) = ¢(v)
and the problem depending on a perturbation p € Y

@,)  Inf B, p).

In this framework, we define a Lagrangian function A: V X Y’ —» [, + ] associated to (%)
by the relation

A(v; 1) = Inf {®(2, p) = (A, p)}- VRY

We must immediatly observe that this is different from the classical Lagrangian function defined

for constrained minimization problem like (2. ), since this function A is directly associated to the

unconstrained problem (). A depends, however, on the choice of the perturbation bifunction ®.
We can verify that

Sup A{v; A) = D(v, 0);

AEY'

hence the problem

Inf Sup A(v; A)

VEVAEY’

is nothing else than problem (%) and is independent of ®. Parallel to the duality theory for convex
programming in terms of mini-max, we define a dual problem to (%)

(@) Sup Inf A(v; A).
AEY vEV

From now on, let

(@) Inf {f(Av)—(b,v)} with bEV".

We assume that f is the sum of two lower semi-continuous convex functions f, and f> from Y into
(=, + =],

f=fH+h 2.2)

£, is C'.Gateaux-differentiable and its gradient f| is weakly continuous on finite dimensional
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subspaces of V and strongly monotone: i.e. there exists y >0 such that
Vy,z € Y(fi(y)— fi(2).y ~2) = yly - z[. 2.3)

.the interiorin Y of dom f, is non empty. 2.4)
We assume moreover that
.the operator A’A is an isomorphism from V onto V’; i.e. there exists a >0 such that

212 [ %}
1“1 - \&-J)

The strict convexity of f°A follows.
We consider the specific perturbation bifunction

O(v,p)=f(Av +p)—(b,v).
The dual problem is defined by

Sup Inf {—{b, v}+ Inf [f(Av+p)—(A, p)}=Sup Inf {f(y)+(A, Av—y)—(b,v)}, (2.6)
AEY vEV peEY AEY (vy)EVXY
after the change of the variable y = Av + p. Inside the brackets, we recognize the expression (1.1)
of the standard Lagrangian functional £(v, y; A) corresponding to the constrained problem (%, ).
We have thus established the equivalence between the choice of the perturbation bifunction ®©
and the introduction of the artificial variable y in problem (%.).
We study, now, the existence of solutions to (?) and ().

ProrositionN 2.1 Under (2.3), (2.5), there exists a unique solution v* to (P).
Proof.Thereexists vo € V suchthat f2(Ave) = (f2° A )(vo) < +,0otherwise (? ) has nomeaning.
Let now z=Av, and ¢(t)=fi(z+t(y—2z)) for y€Y; using (2.3) and the equality

¢ (1) = ¢(0)+ [o '(t)dt, we deduce

)= F2) (@)Y =) 43 |y — 2 @7

Since f» is a proper convex function, even if (2.4) if not satisfied, it has a continuous affine fower
bound:
there exists y,€ Y and 8 € IR such that:

M=z, y)tB VyeY 2.8

Then, applying (2.5), we deduce the coercivity of (2): (¢(v)—> + = if |u| > + ), and then, the
existence of v*[20]. Uniqueness follows from strict convexity of fo AN

We now prove the existence of a saddle point of £(v, y; A). We recall first that the subgradient
of a function ¢: V —»(—=, + =] at a point u €V is the set (possibly empty)

pw)={ueV'VveV o@)-ow)=(u,v-u)l 2.9

THEOREM 2.1. Any saddle point (v¥, y*; A¥) of £(v, y; A) over (VxXY)XY' satisfies:

v* is ~olution of (P), y* = Av* and A* € df(Av*) with A'A* =b.t
Conversely, if (2.3), 2.4), (2.5), (2.10) hold, there exists at least one such saddle point.

(2.10)
Proof. We first assume that (v*, y*; A*) is a saddle point of
ZL(v,y; M) =f(y)+(A, Ao —y) = (b, v),
i.e. which satisfies
L,y A)<sZL* y* A% VAegEY (2.11)

tA' is the continuous linear operator from Y'—» V', dual of A.
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Fu*, y* AN s P(v,y;A%) Vo, ye VXY (2.12)
(2.11) implies immediately y* = Av*. Let v = v* in (2.10). We get
fM—f(Av ) =A%y - Av¥) Vyey,
hence the necessary condition
AFE of(Av¥). (2.13)
Let y = Av in (2.12). We get, this time,
f(Av)—(b,v)=f(Av*)—(b,v*) YvEV,
which shows that v* must be solution of (%). It can also be written

f(Av)— f(Av*)= (b, v — v¥),
which means that

bea(foA)v*). (2.14)

We now prove that such a triple (v*, y*; A *) exists. Proposition 2.1 concludes to the existence
of v* since (2.3), (2.5) hold. The qualification hypothesis (2.4) guarantees that there exists a point
of Y where f is finite and continuous. Then ([20] ch. 1, PR 5.7)

d(fe A)wv)=A"'af(Av) Yv eV,
Therefore (2.14) shows that df(Av*) is non empty; we can find a A* € f(Av*) such that
A'A*=b,

since A’ is an operator onto Y’ by (2.5). We verify easily that (v*, y*; A*) is actually a saddle
point of .=

Remark 1. Since f, is Gateaux-differentiable and because of the qualification hypothesis on
f», we have ([20], ch. 1, PR 5.6)

af = (9f1 + afz.
We can therefore replace the condition A € 3f(Av) by
A= fi(Av¥) € of.(Av™). (2.15)

Remark 2. In the general case where the convex function g(.) is not restricted to be a linear
functional, we can prove the existence of a saddle point of the Lagrangian A(v, A) and hence of
Z(v,y;A) under the stronger qualification hypothesis: there exists vo€ domg such that
Avs € intdom f. ([20], ch. 3)R

The augmented Langrangian

Although (%) has been shown to have a solution A*, the inner minimization problem in (2.6)
may not have a bounded solution for every A € Y'. For this reason, we switch to the augmented
Lagrangian. Like the standard Lagrangian was arising from the consideration of a particular
perturbation bifunction, we can derive the augmented Lagrangian from the class of
perturbations defined by[34, 12]

®, = ©(v,p)+7 |pf = g (o) + f(Av +p) +7 o (2.16)
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We define now

Awn=Int {ot p)+Sp - @17
the dual problem
Sup Inf A, (v; A) (2.18)
AEY veV

can be written, after the change of variable y = Av +p

(2.) Sup Inf {f(y)—(b,v)+(A,Av—y)+%[Av—y|2},

AEY (Ly)IEV XY

which agrees with % (v, y; A) of (1.2).

The virtues of the augmented Lagrangian result from the following properties.

TueoREM 2.2. If r >0, any saddle point of the augmented Lagrangian ¥, is saddle point of the
standard Lagrangian ¥ and conversely.

(Hence, if (2.3), (2.4), (2.5) hold, according to Theorem 2.1, there exists a saddle point (v*, y*;
A%) of &£).

Proof. By definition (1.2), %, differs from £ by a non-negative term; hence

Llu,y: V)<L (v,y54),

with equality if y = Av.
If (v*, y*; A*) is saddle point of ¥, we have y* = Av*. Therefore

F(v*, y =Ly S LOF y AT = L @H vy A< L0, y; AN < L(v, 5 4%)
(2.19)

and (v*, y*; A %) is also a saddle point of #,.. Conversely, if (v*, y*; A*) is a saddle point of %,
y* = Av*, then:

L y AN =L (v  y" A <sL(v.y: %) VY, y)eVXY.
Thus, returning to the definition (1.2) of %,:
O = (b, vF)y < f(y)—(b, v)+(A*, Av - Y)+§rlAv -yl (2.20)
Choosing, first, v = v™* in (2.20), we get, since y* = Av*:
r
f)=f+ A% y* =y +3 ]y —y* =0 VyeY; @21
Forany z € Y, we take vy = 0z + (1 — 6)y* with ¢ €10, 1[ in (2.21). We get, using the convexity of
f:
0(f(2)~f(y™) —0(A*, 2 —y%) +§r 6%z~ y**=0; 2.22)

Dividing by 6, and making 8 -0, we get:
FH=-A*yH=f(y)-(\*y) ¥YyeY. ‘ 2.23)

On the other hand, choosing y = y* in (2.20), we get, since y* = Av*:

§|A(v~v*)|2+()\*,A(v —v¥)~(b,v—v*)=0 VveV, (2.24)
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In the same way, taking v = 6w + (1 —0)v* in (2.24) with 0 €]0, 1[, we get, as § > 0:

(A%, Av®) = (b, v*) < (A*, Aw)—(b,w) VwEV; (2.25)

¥, yEBAF) = f(y*)— (b, vy < f(y)+(A*, Av —y)—(b,v)=F(v,y;: A*) V(v y)EV XY

the other inequality being obvious. Wl
The augmented Lagrangian is useful to evaluate the dual functional:

._

< Fn
&
S
pa
=
-
Z
-
)
b
A
£

THEOREM 2.3. Under (2.3), (2.5), for every A €Y', there exists a unique soiution (v, y.) to the
minimization problem in (2.24).
Proof. From (2.5), (2.7) and (2.8), we see that (v, y;A)>+xif vory

\; 20
IO R4.0), (&.0) aflltl 2.8 24y Lr Oy T,

problem (2.26) is coercive. Then, it has a solution for any AEY'.
Uniqueness follows from the strict convexity of ¥,, for r > 0.1

wulas

3. ADUAL ALGORITHM
Description
From now on, we assume that the hypotheses (2.2) to (2.5) hold. To solve (%,), we can
maximize the differentiable function d,(\) using a gradient algorithm. This forms the basis for
Uzawa’s algorithm[7}:

Uzawa’s Algorithm
Let A°€Y. By induction A" being given
Step 1 Find v**', y""' minimizing on VXY

Py oy AN = f = (b v+ (" Av—v)+ LAy — uP (.1
TAYsy Yyt J NYJ AWy ¥/ by, LAY J7 ! 2[“V Y| - sty
Step 2 Make
n+1 s AN+l n+ly -
AT = AT p(AVTT =y R

Because of the convexity of f, the problem in Step 1 is equivalent to the variational inequality:

FO) = fO Y+ A" +rAav"  Av—(y—y" " N—(bv)=0 YvEV, VyeY;
which decomposes itself into a variational equation in V
r(Av"", Av)=(ry™"' = A", Av)—(b,v) Yv EYV, (3.2)
and a variational inequality in Y, equivalent to

FG" Ny =y DT RG) - LTy T = AT —AN y =y =0 Yy EeY, (33)

............. o owa meiismla o oa

], is Gateaux-differentiable. s
( ', Av) in (3.2) and (Av""', y - ) in (3.3). A simple way to decouple these problems
consists in replacing, for instance, y"*' by y" in (3.2). The resulting system is much simpler to
solveand provides an approximationto the minimizationin Step 1. We state the new algorithm:

ML f o U At o o 4o
111C5C lWU PIUUIC I3 dlIC CLOUpIcu U Cactl ultncel Uy lllC LETITS
n+

(Ir

A modified dual algorithm (3.4)
Let (y*,AYEY XY'. By induction (Y",A") being given

Qi 1o L d PP ool 4la ote
olep 1. 1" v SULTIL triut.

HAV™ , AV)=(ay"— A" Av)~(b,v) VvEV. (3.5
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Step 2: Find y™' such that:
F D,y =Y R - ™)+ ay™ - AT -TAVT y -y =0 Wy €eY. (3.6)
Step 3: Make
)\n+l :/\n+p(AVn+‘—yn+l).. (37)
Remark 1. (3.5) is the variational formulation of the linear system
rA’Av" T =rA'y" —A'A" — b,
which is invertible by (2.5). At each iteration, Step 1 consists of the resolution of this system for a
different second member.
Remark 2. (3.6) is a non-linear variational problem in y independent of A. An interesting

decomposition occurs if Y is finite dimensional and can be viewed as the product of k spaces Y;
such that f separates itself in

fy) = ; fi(v), with y = (y1,...., y);

(3.6) is then equivalent to k variational problems

E" )y =y D fa ) — fa ) A (T = 85y~ 9T =0 Yy €Y
where s is the component on Y; of s" =A" +rAv" "W
Convergence

According to Theorem 2.2, there exists a saddle point (v*, y*; A *) satisfying (2.8). It verifies
also

r(Av*, Av)=(ry*—A* Av)—(b,v) Vv EYV, (3.8)
FiyH, y =y +fy)—fy*)+ (ry*—A*—rAv*,y—y*)=0 Vy€eY (3.9)
y*=Av*, (3.10)

Subtracting (3.8) from (3.5) yields:
A" =0, Ar) =" —y¥)— (A" — A%, Av) VvEV. (3.11)

We introduce the projection operator P from Y onto the range of A, R(A). Since R(A) is closed,
we have Y = R(A)PR(A)". Given any y €Y, Py is the unique element of R(A) such that

(Py, Av)=(y, Av) VveV.

This allows to write (3.11) under the explicit form
AW™ = 0¥ = Py =y} ~L PO - 1%, 3.12)

Adding (3.9) with y =y""' to (3.6) with y = y*, we get
F" D= FOH Y =y HG T =y - AT = AN = A" - 0%,y T -y 9 <0

where the terms in fo(y"”") and fo(y*) have cancelled out. Using the expression (3.12) of
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A(p""' —v*), we obtain

Fiy" )= filyH.y" " =y S+ iy =y
Sr(y"—y5 PO -y )+ AT =AU -P)y" T -y (3.13)

where I is the identity operator on Y. A majorant for the first term is given by Schwartz’
inequality:
n n+ n % n+ 1 n n+
(" =y PO =y = (PO =y, PO -y ) <5 {POT -y IPH PO -y (14)
We deduce from (3.7), (3.10), (3.12)
AT A=)t —A*—p[y"“—y*—P(y" —y*)+%P()\" —,\*)].

The projection of the equality of R(A) and R(A)" yields

P — A% = (1 —’f)P(A" AR —pP(y" =y, (3.15)
(I-PYA"" =A%) =(I=PYA" = A" = p(I—P)y""" = y¥% (3.16)
and squaring the norm of both members of (3.16)

(I=PYA " =A%) = [I-PYA" = A®[+p*[(I = P)y""" = y*)I
=2p(A" = A5, (I=P)y "' —y*). (.17

We now use the strong monotonicity of fi (2.3) to obtain
A= [Ny =y =y T -y (3.18)

Combining (3.14), (3.17), (3.18) with (3.13) gives
Yy =y (=B )= Pa" =y S IPGT P A

<SIPG" =y 51~ YA =A%) (3.19)

Adding up (3.19) for n =0,1,...,N:

R > la =P =y 5 =YW AR

<JIPG =y 40 (= PYA =A%) (3.20)

This shows that for any choice of p such that 0 < p <2r, and for any N, the series

Syt ye

remains bounded and so, converges; therefore

lim [y" —y*=0

which proves the strong convergence of {y"} to y* in Y.
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Squaring the norm of (3.15) and setting 8 = (p/r), we get

[PA™" =A% =(1=0F[PA" =A%)+ p’ PG =y )= 2p(1 = O)(P(A" =A%), P(y" "' = y")).
(3.21)

We use Schwartz’ inequality under the form
PO —A*),P(y"“-y"))S%{dP()\" —A*)I2+EIP(y"“—y")l2}
where € is an arbitrary small positive number; (3.21) gives
PO = A9 < (1= 07+ pel1 = 0DPA" = A0 + (p* +11- 012 | PG —ynyp. G2

Consider the sequence of positive scalars u, defined by

Up+1 = AUy + bW, (3.23)

o N
with0<a <1,b>0,w,>0and £ w, <+, Itiseasy to verify that for any N, = u. <+ and

n=0 n=0
u. —»0. We observe that the sequence

W, = |P(yn+l _yn)tz

satisfies the previous condition since
2w 2P -y <2 " -y
which has been shown to be bounded. We choose b =[p”>+|1—8|(p/e)] and p such that
p 2
a= <1 -“;) + pe

It is easy to check that, if uo = [P(A° = A®)]", |P(A" — A*)]’ < u, for every n and |P(A" — A %)|>0.
Since € is arbitrary, the inequality (3-24) is satisfied for all 0 < p <2r.

(3.12) allows us to conclude that |A(v""' —0*)|>0 and, applying (2.5), we see that
o™ = v¥ 0.

We have thus established that the sequence {v"}, constructed by algorithm (3.4), converges
strongly to v* in V. However, we have only proved that |[P(A" — A*)]—0; we can deduce from
(3.20) that |(I — P)(A" — A*)| remains bounded. In fact A* may not be unique.

1—§\<1. (3.24)

TueoreM 3.1. For every stepsize p such that 0<p <2r, the sequence {(Vv",y")},
constructed by algorithm (3.4), converges strongly in V XY to (v¥, Av¥*) where v* is the unique
solution of (P). The sequence {A"} remains bounded in Y.R

Remark 1. Assuming only the monotonicity of f1 instead of (2.3), we obtain a modification of
(3.20):

™ +1 2 N+1 2 1 N+1 2
(r=5) S 10 = Pay ™t =y + 51PN =y 0 - PYAY =%

1 0_ %2 i _ 0__ 1y oxy|2.
<3[P(y°=y*) +2p|(1 PYA = A®)

thus, for all 0 <p <2r, the sequence {y"} generated by algorithm (3.4) remains bounded.
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To prove theorem 3.1, it is therefore enough to assume the strong monotonicity of fi on every
bounded set of Y.l

Remark 2. Convergence of the algorithm can be shown for p =r under the weaker
hypothesis on fi: suppose that for all C positive, there exists a family of forcing functions 8¢
R™—R" strictly monotone increasing with 8-(0) =0 such that

(Fiy)—fiz),y—2z)=8c(ly—z|) Vy,z €Y with |y|<C and |z{<C (3.25)

We can still prove that y" — y*; for p = r. (3.12) and (3.15) give immediately the convergence
of v" = v*

This assumption is satisfied in the important case where Y is finite dimensional and f, strictly
convex[21]. 1

Remark 3. For a differentiable problem (f, = 0), we have the existence and uniqueness of \*.
Moreover A" - A *. 1l

4. APPROXIMATION VIA FINITE ELEMENTS

It is in practice convenient to approximate the infinite dimensional problem (%) by a finite
dimensional one.
Let V, CV be a family of internal approximation of V:

Vv € V, thereexists v, € Vi suchthat v, - vwhenh >0

(In fact, it is sufficient to check it for a dense subset of V).

In the same way, we shall approximate Y by Y, CY.

Since A(v.) may not be included in Y,, we must approximate A by a continuous linear
operator A,: V, - Y, We assume that A, satisfies:
() a'llow]|<|Awvn| < Mllv| You € Vi
(ii) If vo—v weakly in V, then Ayv.— Av weaklyin Y “4.1)
(iii) If vn » v strongly in V, then Awv, = Av strongly Y
(iv) |Anvn — Ave| =0 when ||v.|| < Cand h 0.

We restrict, from now on, our analysis to the simplified case where

F0) =5 9P+ £ (42

f> must be compatible with the approximation in the following sense:
Vv e V, 3vn € Viwithv, — v andfz(AhUh)—)fz(AU) (4.3)
we verify that the hypothesis (2.3) is satisfied in this case. According to proposition (2.1), there

exists a unique solution v* of ().
We approximate () by the following problem:

(Py) Inf {f(Awvn)— (b, va)}

tp, EVy
We now establish the convergence of the approximation in the following sense:

THEOREM 4.1 Under the hypothesis (4.1), (4.2), (4.3), there is a unique solution v*, to (Py)
which converges to the solution v* of (P):

v¥*,— v¥in Vi, strongly.
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Proof. (4.1) (i) shows the existence and uniqueness of v¥. Moreover v} satisfies the
variational inequality (equivalent to (%))

(Anv¥, An(vn — 0B + f(Arvn) — (A ) = (b, v —v}) Vor €E Vi 4.4
for v, =0, we obtain
|Aw [ < f(Awv ) = f2(0) + (b, v ). (4.5)
Applying (2.8) and (4.1) (i) to (4.5), we deduce that
oot < (Mlyz| +[[bllv Mo Hl + B — £2(0);
hence || < C.
Thus, we can extract, from v¥, a subsequence (which we still call v}) converging weakly to

w € V,as h - 0. From (4.1) (ii) and (4.4) we have, choosing, forany v € V, v, € V,, asin (4.3):

|Aw[* + f-(Aw) < liminf |Awv k] + f2(An0})
" (4.7)
< fy(Av)+(Aw, Av)+(b,w —v) VvEV

which shows that w = v* solution of (#). Thus, vi—v* in V weakly (without extraction of any
subsequence). In fact, it converges strongly: by (4.1) (i)

o'l —v¥<|A(vE—v¥)| <|Avi— Aw}] +]|AwE — Av¥| 4.8)

(4.1) (iv) implies that the first term tends to zero. On the other hand, (4.4) implies that, for any
v €V with v, > v in V strongly:

X = |Anvt — Av*f = |AwE] - 2(Awv ¥, Av*)+|Av*)
< (Anv¥, Anvr) + fo(Anvn) — (At ) — (b, vn — v —2(Anv %, Av*)+ IAU*IZ.

Since f is convex l.s.c., we know that f.(Av*) <liminf f2(A,v}) and choosing v, as in (4.3), we
have:

f2(Anvn) = f2(Av).
Then, taking the lim sup of both members in (4.9), we get:
lim sup X, < (Av*, Av)+ f2(Av) = fo(Av*) = (b, v — v*)—|Av¥|". (4.10)

Choosing v = v*, we get:

X, =0 4.11)

which, by (4.8) implies the strong convergence of v% toward f*. 1

Remark 1. If f, has finite values, it is continuous (see [20]). Then, applying (4.1) (iv), we see
that (4.3) holds.H

2. Suppose that f, = 8k, the indicator function of some closed convex set K CY:

_[0if yEK
dx(y) = { + o otherwise @4.12)
Let us define Ko and K,,:
Ko={v € V|Av €K}, (4.13)

Kiw={v € Vu]Awn EK}; 4.14)
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Hypothesis (4.3) can be formulated as in[18]:

Vv € Ko,3vw € K suchthat v, — vin Vstrongly. B 4.15)

Remark 3. One could think of approximating problem (?) by

Inf % lAhUh |2 + fz(BhU;.) - <b, Uh>

vRE V)

where A, and B, are two approximations of A, satisfying (4.1). We see that, in order to apply the
penalty-duality algorithm (3.4), it is necessary that Ax = By Thus, when f; is the indicator
function of some convex K of Y corresponding to a convex K, of V asin (4.13), the choice of Ax
automatically determines K, by (4.14), and we have

6Kh(Uh) = 61( (Ahv;.)..

Finite element approximation
We consider now a open set Q in R and specify

V =H,(Q), Y=[L(Q"
and

S dv
(Av) =, @Gy~— (4.16)
=1 0x

where the coefficients a; are smooth functions.

We introduce a triangulation J,, of € consisting of a finite family of “triangles” T C{Q,
sufficiently regular, and of size less or equal to the positive parameter h [22]. Let P, denote the
space of polynomials of degree less or equal to k and define the following spaces: V. is the space
of continuous functions on { which are equal to polynomials of Pi on each triangle of 7, C» is the
space of vectorial functions, continuous on each triangle of 7,, and Z, CC, is the space of
vectorial functions, the restriction of which belongs to (P.—,)~ on each triangle of F,,

Vi={tn €C'Q)  wn|r EP forall TE T}, 417

Co= [ «c(my™,

TeE ),

Zh:{Zh EYl Zhl-rE(Pk._l)N for all TE%,}

We notice that A(V,) CC.. But C, is not finite dimensional. If the functions a; are constant,
A(V,)CZ, and the approximation defined by (V,, Z., A) is convergent, according to theorem
4.1. If the a; are not constant, A(V,)Z Z,; we now need an approximation formula for the
numerical integration of

J’ lAvhlzdx.
«Q

Such a formula is also necessary in any case, if the function f> is defined by an integral over Q.

This formula is defined by L integration nodes d; on a reference element T of J,; then, for
any triangle T € 9,, we consider the affine mapping J+ on Q, transforming T into T. To the
reference nodes & correspond on T the integration nodes ar; = Jr(d). We thus approximate the
integral [o ¢(x)dx by

TEZ |det J¢| Z:l o (ars).

We suppose that the formula is exact for the polynomials of Py, k’=0. The use of this
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integration formula can be interpreted as the introduction of an approximate scalar product (.,.).
on C. defined in the following way: for any y,, y.€ C.

(}’1. yz);. = z |det J-r| 2 C?):Yl(arl))’z(aTl) (418)

TETy

£
[¢]
[¢]
]
=
=
]
=
-
=g
=}
=
3
5
=
Q
=
il
—
r
w
=
(2]
=
o~
(=N
]
=

L
U T,=1T, 4 €T, measure (T)) = o

We extend this partitioning on every triangle T of 7, defining
T, =J(T). 1=1,...,L.
We are now able to define
Yo={m€Y| ylne@®)fori=1,....,LandallTETF,}. (4.19)

Even though Y. C,, we can easily extend the scalar product (.,.), on Y, and moreover

Vy, y2€EYn (31, y2h = (¥1, ¥2).

We now construct the mapping pn: C. > Ya, defined for any z, € C, by the restrictions of
pr{zs) to each T:
Vz. €Cy  pu(z)ln = zular) forl=1,..., L andall T € J,. (4.20)
We obviously have
Vi 2n €ECh (I 20 ) = (Pu(¥n), Pr(zn)).
We finally define
Ah = Dn ° A, (421)
Which is an operator from V, (4-17) into Y,(4-19), such that
Vvh, wr € Vj, (Al)h, AWh)h = (Ahvh, Ahwh)~ (4-22)

We now show the convergence of this approximation in the sense of theorem 4.1. This results
from the following proposition:

ProrosiTion 4.1. If k' > 2k — 3, the operator A, defined in (4.21) satisfies (4.1) and provides

us with a converging approximation.
o o ol of

Proof. Following Nédelec[23], we show that:

[Avi]: —|AvE < C R o kiP, (4.23)
and, for all z, € Z,,
|(AU );l:,Zh)h - (Avf, Zh)i = Czhk' 2k B}HU;lHiZh i (424)
Then, if k' >2k —3, (4.23) implies (4.1) (i) for h sufficiently small.
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To prove (4.1) (ii), suppose that v,— v, we want to prove that (Anvs, )= (Av, y) Yy € Y. But y
being given, since 7, is a regular family of triangulations, we can choose a particular z, € Z,
such that z, is constant on each T € 7, and z, ~ y in Y strongly. (In fact, z, € Yx too). Since
Zn = pn{(zn), (Anbn, zn) = (Avw, z» )n. Then, we can write:

|(Ahvh, y)— (Av, )’)‘ = |(Ahvha y— Zh)‘ + |(AUh, Zn)n — (An, Zh)i + l(AU;., Zn) — (Av, Y)‘

Since v,—v, |Anti| is bounded and the first term tends to zero. It is the same for the second term
applying (4.24), and for the third one, since A is continuous; (4.1) (ii) is then established.
Taking into account (4.23), (4.1) (iii) and (iv) follow immediately. M

5. APPLICATION TO SOME PROBLEMS IN CONTINUUM MECHANICS
In the following, Q is a regular open bounded set of R™ of boundary I'. (N =1, 2, 3).

5.1 Bingham fluids

We consider, following Mossolov-Miasnikov[24] and Duvaut-Lions[25], the flow of a
visco-plastic fluid in a cylindrical pipe of cross section €. Let u denote the component of the
velocity of the fluid parallel to the axis, and b be the pressure drop per unit length of the pipe. The
problem is to find the function u(x) € Ho'(Q) minimizing

%f lgrad v|*dx +gj lgrad v|dx —j bv dx (5.1)
0 Q Q2

where v is the viscosity of the material in the fluid regions and g is the plasticity threshold.
This is a non-differentiable problem of the form (%), where V = Ho'(Q), Y = (L)Y,

A =grad, fi(y)=@/2) [a|y(x)Fdx and fi(y) = g [ajy{x)|dx. We check that (2.2) to (2.5) hold.
The algorithm. Algorithm (3.4) can be made explicit as follows:

By induction, y°, A" being given

_ n+1 . n_am
Step 1: Find v**' solution of{ Vnrﬁ\v _Jd“’ (ry"=\")=bon Q
L=

Step 2: Find y™' solution of the variational inequality
o [y =y [ dyi-ly™hax
> j A" +rgrad vy -y dx VY ELAQE  (5.3)
Q

Step 3: Make
AM = A"+ p(grad vt -y ). 1 (5.4)

In fact, (5.3) is equivalent to

(+r)y" " =s" €df(y"") ae. in Q, (5.5)

where s” = A" +r grad v""". Since almost everywhere:

8y if y#0
fAY)= { Iyl (5.6
gB(0; )T ify=0
(5.3) can be solved explicitly;
R+l _ s" -
y ———V+rMax (0, 1 15"0 a.e. 5.7

The algorithm reduces to a sequence of Dirichlet problems (5.2), accompanied by the updating
B0, )={z€Rz <1}
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formulae (5.7), (5.4) for y**'and A" *". Since (2.2) to (2.5) hold, the sequence {v. }, constructed by
this algorithm, converges to the unique solution v* of (5.1).

Approximation. We approximate (P) by (%, ) as described in Section 4. Since Y, is a space of
piecewise constant functions, formulae (5.5) to (5.7) are still valid, and the algorithm applied to
problem (%) still consists of iterations formed by (5.2), (5.7), (5.4). Proposition 4.1 shows that, if
k'>2k -3, vi—>v*as h—0.

5.2. Minimal hypersurfaces problem

We want to minimize the area of an hypersurface supported by a given contour inR™"". Given
Q CR" and a function g defined on T (the contour being {(x, y) €T x R|y = g(x)}), the problem is
to find a solution u to:

Inf V(14 |grad v[*) dx. (5.8)

vy

With a slight modification due to the presence of the non-homogeneous boundary condition, this
can be formalized as a problem (?) with V =W."'(Q}), Y =[L'QI", A =grad, fi(y)=
JavV(A+|y(x)Pdx, f-=0, b =0.

We see that V and Y are non-reflexive Banach spaces, and we cannot apply the theory we
have developed so far. We refer to [20] for the study of the existence of solutions or generalized
solutions to (5.8).

Approximation. Formulated in a finite dimensional space V., these difficulties disappear: f} is
strongly monotone, there exists a unique bounded solution v# to (%) and the algorithm (3.4) is
convergent. We use to this purpose an approximation of the problem in the functional
framework, by piecewise linear finite elements. We refer to [25] for further details and for
convergence results on the approximation.

Algorithm. Algorithm (3.4) can be made explict as previously. We notice that Step 2
decomposes itself into N variational inequalities in y" ™' where y." ™' is the component of y"*' on
the ith element T,. Each of these problems is equivalent to

| ) el . fori=1,..., &
N A = 8i

t T et N
(r Vv for y""' €R",

i

n+1

where 5" is, as before, given by s” = A" + r grad "™, This system of N equations in N variables
can be reduced to a system of N equations in one variable § =0

<r +ﬁ)0 =|s"|fori=1,... A

This non-linear equation can be solved efficiently by Newton’s method. Finally, the algorithm is
as follows:

Choose y", X°. By induction, y", X" being given
Step 1: Find v""" solution in V., of the non-homogeneous Dirichlet problem

{ —rAv"" +div(ry" -\ =0 on Q 5.9)
vn+l|l — g .

Step 2. For l=1,..., L and for T € Ty, solve the non-linear equation

1 n

<r+\/(1+03))9 =l

with o = (A" +rgrad v"™ )|y,
and set y"''lr,=0. o".
|o"

Step 3: Make
)\nH :/\“‘*‘p(AVnH—yrﬁl)..
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5.3. Elasto-plastic torsion of a cylindrical bar
We consider a cylindrical pipe of section (. We are led to the following minimization
problem[25]:

Inf 1J lgrad v|2—J bvdx (5.10)
193 9]

veKa 2
where K, is the closed convex set:
Ko={v € H,'(O)| |grad v| <1a.e}, (5.11)
Let Y = (L*Q)"; V = H,'(); A =grad and
K={ye@L*"||yl=lael. (5.12)

We see that, if 8x is the indicator function of K (see (4.12)), (5.10) can be written;

Infl lgrad v|*dx + 8 (grad v) — (b, v). (5.13)

UEV2 [¢]

It is a particular case of (P) with fi(y)o=12|y|" and f. = 6x. We check that (2.3) and (2.5) hold, but
K being empty in Y, f, is not continuous in any point, and (2.4) is not satisfied.

We approximate (5.10) by finite elements, and to prove convergence, we must check that
(4.14) holds. This is performed in [18] for the particular case of piecewise linear finite elements
k=1.

We then use algorithm (3.4) to solve the approximate problem (%4 ). It converges to the unique
solution of (5.10). Step 1 is again a Dirichlet problem while step 2 is

(1+r)(y"+',z—y"”)—()\" +I’AU"H,Z—yn+I)?0 VzeK (412)

which can be solved explicitly in Y,: in each integration node, we have;

A+l _ n ,rtl . ] 1 >
y"=(A"+rAv" )min <1+r’|)\"+rAv"+']R~ (4.13)

5.4. Elasto-plastic displacement problem
Hencky’s law results in displacement problem[25, 26], which is, again, a particular case of (%)
with

V={veH Q) lv=0onapart T, of I'}
Y :{e,‘j S LZ(Q)]l,] = 1, Caey N|€,’j = e,'i}
with the scalar product (e, 7): i Jao mie; dx

ij=1
.A =€ “Strain operator”, where, by definition,

%Jr%) (5.14)

ox;  oxi

fii(U)E% <

.Finally f> =0, and f, is defined in the following way. (We suppose for the sake of simplicity
that the matrix of the elasticity coefficients is equal to identity; otherwise, see [26])

file) = sup(ne)—%irIZ (5.15)

where K is the plasticity convex set

K={r€Y|#(z)<0 ae} (5.16)

and % is a convex function on R called plasticity criterion (it may be Von Misgs, or
Tresca Criterion).
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It can be checked that f; is differentiable and its gradient is fi(e) = Px(e). Hypothesis (2.3)
does not hold. In fact, f, is not even strictly convex.

We refer to[27] where approximation by piecewise linear finite elements has been studied,
and convergence has been proved using the dual preblem (Stress problem) which is coercive.
Algorithm (3.4) can again be used to solve the approximate problem. Step 2 of the algorithm can
be solved explicitly, element by element, and the algorithm is then reduced to the solution of a
sequence of elastic problems (linear systems, the matrix of which is fixed). The method is
particularly performing in this case, as we can see in the numerical results, for which we refer
to[27], because the elasticity matrix is ill-conditioned.

5.5. Non-linear Dirichlet problem [4]
This is the following problem: find u € W,'*(Q) such that

32 (,Vu|p—zﬂ> -b (.17)

=1 Ix; x:

Once again, algorithm (3.4) can be applied, with A = grad and f(y) = +fa|y|* dx: this has been
performed by Glowinski-Marrocco[28], to which we refer for details and numerical results.

6. NUMERICAL RESULTS
Let € = (1/r) in the following

6.1. Mossolov problem
We treat a 2-dimensional example, the exact solution of which is known[18]; €2 is the disk

Q={x, y}ERx*+y>’<R?.

We used a triangulation with 512 triangles and 225 internal nodes (Fig. 1) corresponding to
piecewise linear finite elements.

The exact solution is constant on a disk of radius R /2 and its value is 0-25. The value of the
approximate solution is 0-2506 = 5. 10™°. With € = 1 and p = 1, this value is reached already at the
second iteration of the algorithm.

However, the convergence of the algorithm is much slower with respect to the multiplier A (in
fact, it is not proved). This can be seen on the quantity |[y" "'~ Av""'| which tends to zero quite
slowly (Tables 1 and 2).

Little improvements can be obtained by a variation of p (Table 1). The choice of € is more
important, even though it is easy: taking € < 1 accelerates slightly the convergence in A, but gives

SR
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D ),
WEAVEAVAVEL) /1)1, 1 AN NN
NEAVAVEAVZA /)1 /1 1) AN
WEAVZAVAVA"// /) 1),/ AN AN
'ﬁ(""‘l”" S OWYAVAV,

B

/|
N

il
L

Fig. 1. Triangulation chosen for the unit disk [18] (512 nodes, 225 internal nodes). (dard regions are plastic).
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Table 1. Influence of p on the speed of convergence. € = 1, 225 independent variables. (1} Norm chosen for
the stopping test (2) n: number of performed iterations (3) U: value of the solution at the center of the disk (4)

s *: number of iterations necessary for the convergence of U

[« z ‘]y¥-Av¥[ n U n*
TE‘éh
0.33 0.7 5 0.467
0.66 0.1 5 €.2725
S A 0.03______l___s____|___ 0.2506___|__ 2_
1.1 0.0022 10 0.2506 7
1.2 0.0020 10 0.2505 8
1.3 0.0018 10 0.2505 9
1.33 0.05 5 0.2574
1.66 0.5 5 0.4093

Table 2. Influence of ¢ on the speed of convergence. p = (1/¢). (Columns as for Table 1)

n
€ z IyT-AVTI n U n*
1eT
h
0.5 4,107 20 0.2505 19
1 7.10°7 20 0.2506 2
1.5 1.2 1077 20 0.2506 10

reverse effect on u. (This can be seen on Table 2, where n * is the number of iterations from which
p" =02506=5.107°). Conversely, when e >1, both convergence in A and u are
slower.

A good compromise seems € = | and p = 1. For this value, the computing time is 2 sec on IBM
370/168. Comparison with duality methods [18] or direct non-differentiable methods of Dav1don

type[29, 30] shows the cfficiency of the algorithm (5.2), (5.3), (5.4). For quadratic app

with numerical integrations, it would be interesting to compare with Bristeau[31].

6.2. Minimal surface problem
We treat, as[32], a 2-dimensional example where Q is the circular crown bounded by two
concentrical circles T'; and I';, of radius 1 and 4 (Fig. 2). We take g =0 on 1, and g = C (constant)

on I'1. As noted by [32], for C =2.07, the solution has some vertical parts and is no more in W'
NN
1zj.

We used, first, a regular triangulation with 192 triangles and 72 internal nodes. Then, dividing
each triangle in 4 triangles, we got a new triangulation with 768 triangles and 336 variables (Fig. 3).
At last, as the solution is irregular near I',, we also used a triangulation, isomorphic to the

previous one, but refined around I'y (Fig. 4).

Fig. 2. Domain for the minimal surface problem.
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Fig. 4. Refined triangulation. 768 triangles, 336 variables.

The stopping test, chosen for the algorithm, is

E.= > |y~ Avr'|<a;

TE7,

For a = 10~*and 72 variables, the variation of the number of iterations (n) with respect to € is
small (Fig. 5).

For € = 1.8, little improvements can be obtained by a variation of p (Table 3).

For 336 variables, the number of iterations increases within reasonable proportions for the
regular triangulation, but more for the refined one (Table 4).

The computing time is 6 sec, for 72 variables, and 20 sec, for 336 variables (IBM 370/168),
which is reasonable compared to more classical methods like non linear successive over
relaxation[32] or non-linear conjugate gradient[28).

For another finite element approximation, see Jouron[33].

6.3. Elasto-plastic torsion
We treat, for the sake of simplicity, a one-dimensional example: 0 = [0, 1] and a discretization
by piecewise linear finite elements on a regular mesh, the step of which is A.
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Fig. 5. Variation of n (number of iterations) with respectto €. a = 107°, 72 variables.

Table 3. Variation of n with respectto p. a = 1077, 72 variables for € = 1-8

p.€ n
1 27
1.1 26
1.2 27
1.3 27

Table 4. Results with 336 variables

type of the e C E n
triangulation n
1.8 2 1077 43
-7
normal 2 2 10 39
2.2 | L2 N S N 36_(121)
2.2 3 2.107° 66

r
l 1.8 2 2.107" 46
refined 2.2 2 3.107" 26
L 2.2 3 1077 140 (45™)

X

Fig. 6. Radial section of the solution (minimal surface) 1. 72 variables. 2. 336 variables (normal triangulation)
3. 336 (refined triangulation) 4. exact[32].
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When b = constant, we have an exact solution which is parabolic on the elastic zone
J5—%,5+3[ and linear elsewhere on .

Numerical results show that for b = 10, starting from y° =0 and A° = 0, the best choice for e
is the biggest one, limited, however, by the appearance of round-off errors when e is to big (Table
5). For p, a good choice seems to be p = (1/¢) (Table 6).

In that case, results are quite independent on b, even when b <2, which corresponds to a
quadratic problem.

A theorical study of the speed of convergence would show that starting from A° =0, it is
better to take e very big, this resulting from the fact that A°— A * is eigenvector of A(A'A) 'A’.

On the contrary, if we start from A°=(1,1,..., 1), when b is small (quadratic problem), a
good choice is € = 1 (Table 7).

Table 5. Choice of € for the elasto-plastic torsion with & = (1/20), b = 10and A° = 0

€ n E
nb of iterations stopping test

2 10 1074
3 10 1073
10 10 7. 10 7?2
102 7 1071
102 5 10710
104 10711
10° 4 10713
1010 4 10713
1012 4 10711
1020 10{round- off-errors) 103

Table 6. Choice of p withh = (1/10),b =2,A°=0,e =20

0 n E_ UE) (Uex=0.25)
0.5 10 0.2 0.26
0.9 10 10°7 0.25
ST T U A 0.25__
1.1 10 10-7 0.25
1.8 10 12 -0.35

2 10 90.9 -4.29

€ n En
1072 10 Cv.very slow
0.7 10 1.6 10°2
1 10 9. 10-3
10 3 10 7.5 ) no Cv
1012 10 7.5
CONCLUSION

From the numerical point of view, we can summarize the properties of the penalty-duality
algorithm.

It is very easy to implement, the main part of the algorithm being common to every problem
and consisting of the solution of a linear system, the matrix of which can be factorized once for
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all, at the beginning. The only change, from one problem to another, is relative to step 2 of the
algorithm, which consists in solving ' non-linear equations, generally in one variable.

To select p and ¢, the best is to choose p = (1/¢), and to try € = 1 or 2 at the beginning then,
other values of € may be tried.

It is better to start from y°=0 and A° =0, at least at the beginning.

The algorithm has revealed to be very efficient, and the comparison with other classical
methods[18, 30] shows that it is particularly useful when the matrix A'A is ill-conditioned.

Acknowledgements—The authors are greatly indebted to Professor Glowinski, who originates the method, for his friendly
encouragements and for very stimulating discussions during the research.
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