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The recognition of pathogen associatedmolecular patterns (PAMPs) by pattern recognition receptors (PRR) dur-
ing viral infection initiates the induction of antiviral signaling pathways, including activation of the Interferon
Regulator Factor 3 (IRF3). We identified small molecule compounds that activate IRF3 through MAVS, thereby
inhibiting infection by viruses of the families Flaviviridae (West Nile virus, dengue virus and hepatitis C virus),
Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus) and Paramyxoviridae
(respiratory syncytial virus, Nipah virus) (1). In this study, we tested a lead compound along with medicinal
chemistry-derived analogs to compare the gene transcriptional profiles induced by these molecules to that of
other known MAVS-dependent IRF3 agonists. Transcriptional analysis of these small molecules revealed the in-
duction of specific antiviral genes and identified a novelmodule of host driven immune regulated genes that sup-
press infection of a range of RNA viruses.Microarray data can be found inGene ExpressionOmnibus (GSE74047).

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2. Experimental Design, Materials and Methods

2.1. Design

THP-1 cellswere differentiated intomacrophages in 40 nMphorbol 12-
myristate 13-acetate (PMA) for 30 h and treated with the following con-
trols for 20 h in complete RPMI (cRPMI) supplemented with 0.5% (v/v)
DMSO: 0.5% DMSO alone, Sendai virus (SeV) (100 HAU/mL) or interferon
β (IFNβ; 100 IU/mL). Alternatively, cells were treated in the samemanner
with the compounds KIN1400, KIN1408, or KIN1409 at doses of 10 μM,
2.5 μM, and 0.625 μM. As an additional control, another set of cells were
transfected with 2 μg/mL RIG-I agonist hepatitis C virus (HCV) polyU/UC
RNA (pU/UC) or control HCV RNA XRNA in cRPMI without DMSO.

2.2. Compounds

Compounds were synthesized by Life Chemicals Inc. and KINETA,
Inc. and were solubilized in 100% DMSO and kept frozen as 10 mM
stocks. The compounds were stored in small aliquots to prevent multi-
ple freeze-thaws and were step-wise diluted to reach the desired con-
centration in 0.5% DMSO for all treatments [2].

2.3. Cell lines and viruses

THP-1 (human monocytic) cell line was cultured in complete RPMI
(Invitrogen) supplemented with 10% heat-inactivated FBS. THP-1 cells
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Genomics analysis of KIN1400, KIN1408 and KIN1409 treatment. PMA differentiated THP-1 cells were treated with 10, 2.5 and 0.625 μM of compounds KIN1400, KIN1408 and
KIN1409 for 20 h. (A) Heat map of the union of differentially expressed genes across treatments. Differential gene expression was defined as at least a 2-fold change in expression and
a Benjamini-Hochberg corrected p-value b0.01 as compared to the appropriate negative control (XRNA for pU/UC RNA and DMSO for all other samples). Expression levels not meeting
the cutoff thresholds were set to zero for visual identification of differential expression. Gene clusters identified by hierarchical clustering using spearman correlation as a distance
measure and then classified by the most highly enriched gene ontology biological process meeting a Benjamini-Hochberg corrected p-value b0.05. (B) Heat map of genes whose
promoters are predicted by the UCSC Genome Browser database to contain IRF7 binding sites. (C) Heatmap of genes mapping to the Reactome interferon alpha/beta signaling
pathway (R-852 HAS-909,733). (D) Two-dimensional principle components analysis shows patterns among gene expression profiles across SeV, IFNβ, HCV pU/UC RNA, KIN1400,
KIN1408 and KIN1409 treatments.
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were differentiated into macrophages in complete RPMI supplemented
with 40 nM PMA for 24 h prior to their use in experiments.
2.4. Microarray analysis

Differentiated THP-1 cells treated with complete RPMI supplement-
ed with 0.5% (v/v) DMSO with small molecule (KIN1400, KIN1408 and
KIN1409 at 10, 2.5 or 0.625 μM), IFNβ 100 U/mL, SeV (Sendai virus)
100 HAU/mL or 0.5% DMSO alone. Additional cells were transfected
with HCV polyU/UC RNA (2.

μg/ml) or XRNA (2 μg/mL) using the TransIT®-mRNA Transfection
reagent (Mirus Bio LLC). Cells were harvested 20 h later in RLT buffer.
RNA was purified using Qiagen RNeasy kits and submitted to Labcorp,
Seattle, WA for microarray analysis using Agilent SurePrint G3 Human
Genome Microarrays (version 2).
Microarray data has been uploaded to Gene Expression Omnibus
(GSE74047) [3]. All downstream analysis was performed by the Gale
lab using R (version 3.2.1)/Bioconductor (version 3.1) and R studio
(Version 0.99.486). The analysis was captured in a reproducible data re-
port using RMarkdown [4] and can be found at http://ciiid.washington.
edu/r_markdown/data_in_brief_012916/. Raw data was downloaded,
background corrected and quantile normalized. Controls and low
expressing probes were filtered and then applied to a linear model
using the limma package (version 3.24.15) [5,6]. Genes with significant
expression changes following treatment were defined by those with
a N 2-fold increase or decrease over DMSO (for small molecule
compounds, IFNβ and SeV) or XRNA (for pU/UC PAMP RNA) controls
with a Benjamini-Hochberg corrected (adjusted p-value) b 0.01. The
gene expression heat map (Fig. 1) was clustered in R using Spearman
correlation distances and Gene Ontology Biological Processes enriched
in lists of genes mapping to clusters by DAVID 6.7 [7,8]. Genes with
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predicted IRF7 binding sites according to theUCSCGenomeBrowser da-
tabase were identified using Enrichr [9]. Finally, genes mapping to the
Reactome Homo sapiens interferon alpha/beta signaling pathway
(R-HAS-909,733) were identified using InnateDb [10].

3. Conclusion

Transcriptional analysis of the parental small molecule KIN1400
compared to its medicinal chemistry-derived analogs showed that all
three family members induced comparable gene expression profiles.
The 1408 and 1409 analogs are, if anything, slightly more selective in
their induction and repression of specific gene sets while retaining
antiviral potency [1], suggesting that medicinal chemical modifications
may lead to the design of small molecules with fewer off-target effects.
We also compared our IRF3 activating molecules to several control
compounds. SeV infection is recognized by the cytoplasmic pathogen
recognition receptor RIG-I, leading to activation of IRF-3 through
MAVS. We included transcriptional analysis of THP-1 cells infected
with SeV to identify the gene sets triggered during a natural infection.
We also transfected the cells with the HCV polyU/UC RNA, which is
known to directly engage RIG-I to signal to IRF-3 specifically through
MAVS [11], and compared the result to transfection with signaling-
deficient HCV XRNA as a control. Finally, IFNβ was added to the cells
to identify genes induced through JAK/STAT signaling by the type I in-
terferon (IFN) receptor. We found that our small molecules were able
to activate IRF7-dependent genes (whose binding site highly overlaps
with that of IRF3) and type-I IFN signaling molecules in similar overall
patterns to that of the controls. Additionally, our small molecules in-
duced new modules of genes that are distinct from the traditional
IRF3-activating controls, indicating that there may be additional factors
involved. Further studies will be conducted to identify the mechanisms
underlying these signatures.

The demand for broad-spectrum antivirals increases as new RNA
viruses emerge or re-emerge to cause disease and impact public health.
Our transcriptional analysis of the hydroxyquinoline family of
compounds showed that it activates IRF signaling and promotes cellular
antiviral responses. Additional analysis of these gene signatures could
aid in the development of new antiviral therapies and further refine
the mechanisms that enhance host-driven antiviral immune responses
against a variety of RNA viruses.
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