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Abstract

We estimate character sums with Catalan numbers and middle binomial coefficients modulo a prime p.
We use this bound to show that the first at most p13/2(log p)6 elements of each sequence already fall in
all residue classes modulo every sufficiently large p, which improves the previously known result requiring
pO(p) elements. We also study, using a different technique, similar questions for sequences satisfying
polynomial recurrence relations like the Apéry numbers. We show that such sequences form a finite additive
basis modulo p for every sufficiently large prime p.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let p be an odd prime. In this paper, we study the distribution modulo p of middle binomial
coefficients

bn =
(

2n

n

)
, n = 0, 1, . . .

and Catalan numbers

cn = 1

n + 1

(
2n

n

)
, n = 0, 1, . . . ,

where as usual we define 0! = 1.
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We estimate the number of solutions of certain congruences with middle binomial coefficients
and Catalan numbers. In particular, we show that both bn and cn take on all residue classes modulo
a sufficiently large p.

These results are used to estimate, both “individually” and “on average”, character sums

S(�; H, N) =
H+N∑

n=H+1

�(bn),

T (�; H, N) =
H+N∑

n=H+1

�(cn),

where � is a multiplicative character of Fp.
The method we use is similar to that of [8,9] to estimate character and exponential sums with

n!. Accordingly, our bounds look very similar. However, using the Lucas theorem

bn ≡
m−1∏
i=0

bti (mod p), (1)

where n = t0 + · · · + tm−1p
m−1 is the p-ary representation of n, we are able to get some results

for bn and cn that are not known for n! and are in fact not even likely to be true for n!. In
particular, it is shown in [1] that for infinitely many primes p, at least (log log p)1+o(1) residue
classes modulo p are not represented by n! (mod p) and it is conjectured in Section F11 in [11]
that about p/e residue classes are missing among the values n! (mod p). Here, we show that each
of the sequences bn and cn covers all residue classes modulo p even with n�p13/2(log p)6. This
substantially improves the previously known result of Berend and Harmse [2] where the same
statement is shown for integers n�pm with m of order p.

Our proof also implies that for 1�n�p7, the values of bn and cn fall in each nonzero residue
class modulo p asymptotically the same number of times, namely

(
2−7 + o(1)

)
p6 times.

We also study the number of distinct residue classes modulo p of a polynomially recurrence
sequence (PR-sequence for short). Recall that a PR-sequence (un)n�0 is a sequence of integers
such that there exist a positive integer � and � + 1 polynomials fi(X) ∈ Z[X] for i = 0, . . . , �,
not all zero, such that the recurrence relation

�∑
i=0

fi(n)un+�−i = 0 (2)

holds for all n�0. We also say that (un)n�0 is a PR-sequence of type (�, d) if it satisfies Eq. (2)
with

max{deg fi : i = 0, . . . , �}�d.

We show that if (un)n�0 is a PR-sequence of type (�, d) which is not a linear recurrence
sequence for all sufficiently large n, then for any large prime p the number of residue classes
modulo p represented by (un)n�0 exceeds cp�, where c > 0 is a constant depending on the
sequence and � > 0 is a constant depending only on � and d.

We say that (un)n�0 has the Lucas property if for every prime p,

un ≡
m−1∏
i=0

uti (mod p), (3)
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where

n = t0 + · · · + tm−1p
m−1, 0� t0, . . . , tm−1 �p − 1,

is the p-ary representation of n.
If (un)n�0 is a PR-sequence (which does not eventually become a linear recurrence sequence)

which has the Lucas property, then we combine the above bound on the value set of (un)n�0
modulo p with the ingenious result of Bourgain et al. [3] to study a variant of the Waring problem
modulo p for this sequence. We also show that these residue classes modulo p represented by
(un)n�0 are in some sense “densely” distributed.

In particular, we apply our results to study power sums of binomial coefficients

b�,n =
n∑

k=0

(
n

k

)�

, n = 0, 1, . . . ,

where ��2 is a fixed positive integer, as well as to the Apéry numbers

an =
n∑

k=0

(
n

k

)2 (
n + k

k

)2

, n = 0, 1, . . . ,

in residue classes modulo p. Note that b2,n = bn, so in a sense the study of the numbers b�,n
modulo p may be seen as an extension of the study of the numbers bn modulo p. We recall that both
(an)n�0 and power sums of binomial coefficients (b�,n)n�0 have the Lucas property. Indeed, for
the case of the Apéry sequence this is shown in [10]. For the sequence of binomial coefficients
(b�,n)n�0 this can easily be verified by using a more general form of (1), namely(

n

k

)
≡

m−1∏
i=0

(
ti
si

)
(mod p), (4)

where n = t0 + · · · + tm−1p
m−1 and k = s0 + · · · + sm−1p

m−1 are the p-ary representations of n
and k (here, we assume that m is large enough so that the above representations hold; in particular,
one of tm−1 or sm−1 may be zero). It can also be derived from the more general Theorem 3 of
McIntosh [15].

Furthermore, (an)n�0 satisfies the recurrence

ann
3 − an−1(34n3 − 51n2 + 27n − 5) + an−2(n − 1)3 = 0 (5)

for every n = 2, 3, . . . , with the initial values a0 = 1, a1 = 5. It is known that for a fixed �
the sequence (b�,n)n�0 satisfies a recurrence of the form (2) with � = �(� + 1)/2� (see [6,17]).
Unfortunately, no upper bound d for the degrees of the polynomials fi(X) for i = 0, . . . , � has
ever been worked out specifically, although it may be possible to deduce it by a closer examination
of the proofs in [6,17].

Our results apply also to the case when the sequence b�,n is replaced by

b̃�,n =
n∑

k=−n

(−1)k
(

2n

n + k

)�

,

again for a fixed ��2, as this sequence is both PR by the results from [14], and Lucas by the
results from [15].
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Throughout the paper, the implied constants in symbols ‘O’, ‘�’ and ‘�’ may occasionally,
where obvious, depend on some integer parameters m, r, s and � and also on the particular sequence
under consideration and are absolute otherwise. We recall that U � V , V � U and U = O(V )

are all equivalent to the inequality |U |�cV with some constant c > 0.

2. Catalan numbers

2.1. Bounds of character sums

Let X denote the set of multiplicative characters of the multiplicative group F∗
p and let X ∗ =

X \{�0} be the set of nonprincipal characters.
We start with estimating individual sums. It is clear that bncn /≡ 0 (mod p) for 0�n < p/2,

so we start with estimating character sums over this interval.

Theorem 1. Let H and N be integers with 0�H < H + N < p/2. Then the following bound
holds:

max
�∈X ∗{|S(�; H, N)|, |T (�; H, N)|}>N3/4p1/8(log p)1/4.

Proof. For any integer k�0, we have

S(�; H, N) =
H+N∑

n=H+1

� (bn+k) + O(k).

Therefore, for any integer K with 1�K < p/2, we have

S(�, H, N) = 1

K
W + O(K), (6)

where

W =
K−1∑
k=0

H+N∑
n=H+1

� (bn+k) =
H+N∑

n=H+1

K−1∑
k=0

�

(
2kbn

k∏
i=1

2n + 2i − 1

n + i

)

=
H+N∑

n=H+1

� (bn)

K−1∑
k=0

�

(
2k

k∏
i=1

2n + 2i − 1

n + i

)

(note that 1�H + 1 < H + N + K < p so the above product is well-defined modulo p).
We recall that |z|2 = zz for any complex number z, and that �(a) = �(a−1) holds for every

integer a /≡ 0 (mod p), where � is the conjugate character of �. Therefore, applying the Cauchy
inequality, we derive

|W |2 � N

H+N∑
n=H+1

∣∣∣∣∣
K−1∑
k=0

�

(
2k

k∏
i=1

2n + 2i − 1

n + i

)∣∣∣∣∣
2

= N

K−1∑
k,m=0

H+N∑
n=H+1

∗
�
(
�k,m(n)

)
, (7)
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where

�k,m(X) = 2k−m
k∏

i=1

2X + 2i − 1

X + i

m∏
j=1

X + j

2X + 2j − 1
(8)

and �∗ means that the poles of �k,m(X) are excluded from the summation.
Clearly, if K < p then, unless k = m, the rational function �k,m(X), has at least one simple

root or pole, and thus is not a power of any other rational function modulo p.
For the O(K) choices of 0�k = m�K − 1, we estimate the sum over n trivially as N.
For the other O(K2) choices of 0�k, m�K − 1, using the Weil bound given in Example 12

of Appendix 5 of [18] (see also [12, Theorem 3 of Chapter 6], or [13, Theorem 5.41 and the
comments to Chapter 5]), we see that, because � ∈ X ∗,

p−1∑
n=0

∗
�
(
�k,m(n)

)
e(n) = O(Kp1/2),

where e(z) = exp(2��z/p) with � = √−1, and as before �∗ means that the poles of �k,m(X)

are excluded from the summation. Therefore, by the standard reduction of incomplete sums to
complete ones (see [5]), we deduce

H+N∑
n=H+1

∗
�
(
�k,m(n)

) = O(Kp1/2 log p).

Putting everything together, we get

|W |2 � N
(
KN + K3p1/2 log p

)
.

Therefore, by (6), we derive

S(�, H, N) � NK−1/2 + K1/2N1/2p1/4(log p)1/2 + K.

Taking K = ⌊
N1/2p−1/4(log p)−1/2

⌋
, we obtain the desired bound for the sums S(�, H, N).

The sums T (�, H, N) can be estimated completely analogously. �

We remark that it trivially follows from (7) that

|W |2 �N

p−K∑
n=0

∣∣∣∣∣
K−1∑
k=0

�

(
2k

k∏
i=1

2n + 2i − 1

n + i

)∣∣∣∣∣
2

.

Hence, we apply the Weil bound for complete sums which leads us to the estimate

p−K∑
n=0

�
(
�k,m(n)

) =
p−1∑
n=0

∗
�
(
�k,m(n)

)+ O(K) = O(Kp1/2),

which in turn yields the bound

|W |2 � N
(
Kp + K3p1/2

)
.
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Taking K = ⌊
N1/2p−1/4

⌋
, we derive

max
�∈X ∗{|S(�; H, N)|, |T (�; H, N)|} � p7/8, (9)

which is a little better than the bound of Theorem 1 when N is of order close to p.
We also need some estimates “on average”.

Theorem 2. Let H and N be integers with 0�H < H + N < p/2. For any integer ��1 the
following bound holds:

max

⎧⎨⎩∑
�∈X

|S(�, H, N)|2�,
∑
�∈X

|T (�, H, N)|2�

⎫⎬⎭ � pN2�−1+2−�
.

Proof. We recall the identity∑
�∈X

�(u) =
{

0 if u /≡ 1 (mod p),

p − 1 if u ≡ 1 (mod p).
(10)

We remark that, by (10), we have∑
�∈X

|S(�, H, N)|2� = (p − 1)I�(H, N),

where I�(H, N) is the number of solutions to the congruence

�∏
i=1

bni
≡

2�∏
i=�+1

bni
(mod p), H + 1�n1, . . . , n2� �H + N.

We prove by induction on � that

I�(H, N) � N2�−1+2−�
.

The implied constant above depends on �. If � = 1, then arguing as in the proof of Theorem 1,
we derive that for any integer K with 1�K < p/2, we have

|S(�, H, N)|2 � K−2N

K−1∑
k,m=0

H+N∑
n=H+1

∗
�
(
�k,m(n)

)+ K2,

where �k,m(X) is given by (8) and as before �∗ means that the poles of �k,m(X) are excluded
from the summation. Therefore,

∑
�∈X

|S(�, H, N)|2 � K−2N

K−1∑
k,m=0

H+N∑
n=H+1

∗ ∑
�∈X

�
(
�k,m(n)

)+ pK2.

Then, from (10), we see that the sum over � vanishes, unless

�k,m(n) ≡ 1 (mod p), (11)
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in which case it equals p − 1. For the K pairs (k, m) with k = m there are N possible solutions
to (11), while for the other O(K2) pairs there are O(K) solutions to (11). Thus,∑

�∈X
|S(�, H, N)|2 � K−2N

(
K3 + KN

)
p + pK2

=
(
NK + N2K−1 + K2

)
p.

Taking K = ⌊
N1/2

⌋
, we deduce

I�(H, N) = 1

p − 1

∑
�∈X

|S(�, H, N)|2 � N3/2.

Assume now that ��2 and that

I�−1(H, N) � pN2�−3+2−�+1
.

We fix some K < N and note that by the Cauchy inequality, we have∣∣∣∣∣∣
H+N∑

n=H+1

�(bn)

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣

K∑
k=1

∑
H+(k−1)N/K<m�H+kN/K

�(bm)

∣∣∣∣∣∣
2

� K

K∑
k=1

∣∣∣∣∣∣
∑

H+(k−1)N/K<m�H+kN/K

�(bm)

∣∣∣∣∣∣
2

.

Therefore,

∑
�∈X

|S(�, H, N)|2� � K

K∑
k=1

∑
�∈X

∣∣∣∣∣∣
∑

H+(k−1)N/K<m�H+kN/K

�(bm)

∣∣∣∣∣∣
2

×
∣∣∣∣∣∣

H+N∑
n=H+1

�(bn)

∣∣∣∣∣∣
2�−2

= KĨ�(K, H, N),

where Ĩ�(K, H, N) is the number of solutions to the congruence

bm1

�−1∏
i=1

bni
≡ bm2

2�−2∏
i=�

bni
(mod p)

with H + 1�n1, . . . , n2�−2 �H + N , and H + (k − 1)N/K < m1, m2 �H + kN/K for some
k = 1, . . . , K . For each of the N pairs (m1, m2) with m1 = m2 there are exactly I�−1(H, N)

solutions. We also see that if n1, . . . , n2�−2 are given then for each fixed value of r = m1 − m2
there are no more than |r| solutions in m1, m2 (because at least one of m1 or m2 satisfies a
nontrivial polynomial congruence of degree |r|). Certainly, r = O(N/K). Putting everything
together and using the induction assumption, we obtain

Ĩ�(K, H, N) � NI�−1(H, N) + (N/K)2N2�−2 = N2�−2+2−�+1 + N2�K−2.
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Therefore I�(H, N) � KN2�−2+2−�+1 + N2�K−1. Choosing K =
⌈
N1−2−�

⌉
, we obtain the

desired bound for the sums S(�, H, N).
The sums T (�, H, N) can be estimated completely analogously. �

2.2. Distribution in residue classes

Theorem 3. For all sufficiently large primes p and every integer � there exist positive integers
r, s�p13/2(log p)6 such that br ≡ cs ≡ � (mod p).

Proof. If � ≡ 0 (mod p), we simply take r = s = (p + 1)/2.
We now assume that � /≡ 0 (mod p).
We put N = ⌊

p1/2(log p)6
⌋

and consider the set N of positive integers n whose p-ary repre-
sentation is of the form

n = n0 + · · · + n6p
6, 0�n0, . . . , n5 � p − 1

2
, 0�n6 �N. (12)

Let Q(N, �) be the number of solutions to the congruence

bn ≡ � (mod p), n ∈ N .

By (10), we have

Q(N, �) = 1

p − 1

∑
n∈N

∑
�∈X

�(�−1bn) = 1

p − 1

∑
�∈X

�(�−1)
∑
n∈N

�(bn).

Separating the term

#N
p − 1

= (N + 1)(p + 1)6

26(p − 1)
,

corresponding to the principal character �0, we obtain∣∣∣∣∣Q(N, �) − (N + 1)(p + 1)6

26(p − 1)

∣∣∣∣∣ � 1

p − 1

∑
�∈X ∗

∣∣∣∣∣∑
n∈N

�(bn)

∣∣∣∣∣ .
We now see that, by (1),∑

n∈N
�(bn) = (S(�; 0, (p − 1)/2) + 1)6 (S(�; 0, N) + 1)

(since �(b0) = �(1) = 1).
Hence, applying Theorem 1, and then Theorem 2 with � = 1, we obtain

1

p − 1

∑
�∈X ∗

∣∣∣∣∣∑
n∈N

�(bn)

∣∣∣∣∣
� 1

p − 1

∑
�∈X ∗

(|S(�; 0, (p − 1)/2)| + 1)6 (|S(�; 0, N)| + 1)
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� 1

p − 1
N3/4p1/8(log p)1/4

(
p7/8(log p)1/4

)4

×
∑

�∈X ∗

(
|S(�; 0, (p − 1)/2)|2 + 1

)

� 1

p − 1
N3/4p1/8(log p)1/4

(
p7/8(log p)1/4

)4
p5/2

= N3/4p41/8(log p)5/4.

Therefore,

Q(N, �) = (N + 1)(p + 1)5

26
+ O

(
N3/4p41/8(log p)5/4

)
= (N + 1)(p + 1)5

26

(
1 + O

(
N−1/4p1/8(log p)5/4

))
. (13)

Recalling the choice of N, we see that Q(N, �) > 0 for sufficiently large p. Therefore br ≡
� (mod p) for some positive integer r �p6N �p13/2(log p)6.

Similar arguments also show that cs ≡ � (mod p) for some positive integer s�p6N �p13/2

(log p)6. �

Since bn /≡ 0 (mod p) if and only if the p-ary digits of n are all less than p/2, we see from (13)
that for every � /≡ 0 (mod p) the number of solutions of each of the congruences

bn ≡ � (mod p) and cn ≡ � (mod p),

for 0�n�p7 − 1 is 2−7p6
(
1 + O

(
p−1/8(log p)5/4

))
. In fact, using (9), this can be slightly

improved to 2−7p6
(
1 + O

(
p−1/8

))
.

3. PR-sequences

3.1. The set of residues

We start with the following property of PR-sequences.

Lemma 4. Let (u
(j)
n )n�0, be PR-sequences of integers of type (�j , d), with �j �� for j =

1, . . . , m. Let

vn =
m∑

j=1

�j u
(j)
n , n = 0, 1, . . . ,

where �j are arbitrary integers. Then (vn)n�0 is a PR-sequence of integers of type (2m�, 2dm�).

Proof. Assume that the sequences (u
(j)
n )n�0 satisfy the recurrences

�j∑
i=0

f
(j)
i (n)u

(j)
n+�j −i = 0 (14)
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with f
j
i (X) ∈ Z[X] for i = 0, . . . , �j , and where for each j = 1, . . . , m not all polynomials

f
(j)
i (X), i = 0, . . . , �j , are zero. Furthermore, we assume that �j �� for j = 0, . . . , m, and that

the degrees of all the polynomials f
(j)
i are at most d.

Without loss of generality, we may assume that �j 	= 0 and that f
(j)

0 (X) is not the zero
polynomial for j = 1, . . . , m.

It is enough to show that for t = 2m� there exist t + 1 polynomials Fi(X) ∈ Z[X], not all zero
and of degrees at most D = 2dm�, such that

t∑
i=0

Fi(n)vn+t−i = 0, n = 0, 1, . . . .

By replacing the sequence (u
(j)
n )n�0 by the sequence (�j u

(j)
n )n�1, we may assume that �j = 1

for all j = 1, . . . , m. We now show that for each h�0, we have a relation of the form

u
(j)
n+h =

�j −1∑
i=0

gi,j,h(n)u
(j)
n+i , (15)

where gi,j,h(X) are rational functions with the same denominator such that both the numerator
and denominator have degrees at most max{0, (h − �j + 1)d}. Indeed, if h��j − 1, we set
gi,j,h(X) = 1 if i = j and we set gi,j,h(X) = 0 otherwise. Then relations (15) are fulfilled. If

h = �j , we simply set gi,j,�j
(X) = −f

(j)
�j −i (X)/f

(j)

0 (X) and relation (15) is then a consequence
of the recurrence (14). We now proceed by induction on h. Assuming that (15) holds for h,
then

u
(j)

n+h+1 =
�j −1∑
i=0

gi,j,h(n + 1)u
(j)

n+1+i

=
�j −2∑
i=0

gi,j,h(n + 1)u
(j)

n+1+i + g�j −1,j,h(n + 1)u
(j)
n+�j

= g�j −1,j,h(n + 1)g0,j,�j
(n)u

(j)
n

+
�j −1∑
i=1

(
gi−1,j,h(n + 1) + g�j −1,j,h(n + 1)gi,j,�j

(n)
)
u

(j)
n+i

and so (15) holds for h + 1 if we set

g0,j,h+1(X) = g�j −1,j,h(X + 1)g0,j,�j
(X)

and

gi,j,h+1(X) = gi−1,j,h(X + 1) + g�j −1,j,h(X + 1)gi,j,�j
(X), i = 1, . . . , �j − 1.

One can also see from the above formulas, that we may assume that for the same values of j and
h, the rational functions gi,j,�j

(X), i = 1, . . . , �j − 1 have the same denominator.
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The assertion about the degrees is now obvious.
Equipped with the representation (15), it follows that if Fi(X) ∈ Z[X] for i = 0, . . . , t are any

polynomials, then
n∑

i=0

Fi(n)vn+t−i =
t∑

h=0

vn+hFt−h(n)

=
m∑

j=1

�j −1∑
i=0

(
t∑

h=0

gi,j,h(n)Ft−h(n)

)
u

(j)
n+i .

In order for the above expression to be zero, it suffices that

t∑
h=0

gi,j,h(X)Ft−h(X) = 0 (16)

holds identically over Z[X], for all j = 1, . . . , m and i = 0, . . . , kj − 1.
Assume that Fi(X) ∈ Z[X], i = 0, . . . , t are polynomials of degree at most D. Then the left-

hand side of (16) is a rational function whose numerator is polynomial of degree at most td + D.
Thus, (16) leads to a homogeneous system of

(td + D + 1)

m∑
j=1

�j �(td + D + 1)m�

linear equations in t (D + 1) variables. This system has a nontrivial solution provided that

(t + 1)(D + 1) > (td + D + 1)m�.

Recalling that t = 2m� we see that D = td = 2dm� satisfies this inequality, which completes
the proof. �

Recall that (un)n�0 is a linear recurrence sequence if and only if (un)n�0 is a PR-sequence hav-
ing a recurrence whose coefficients are constant polynomials (not all zero). We say that (un)n�0
is a proper PR-sequence if it is a PR-sequence and there is no n0, such that (un)n�n0 is a linear
recurrence sequence.

Theorem 5. Let (un)n�0 be a proper PR-sequence of integers of type (�, d). For a prime number
p we put

V(p) = {un (mod p) : n = 0, 1, . . .}.
Then the estimate #V(p) � p� holds, where

� = 1

2d�(� + 1)2
.

Proof. Write

�∑
i=0

fi(n)un+�−i =
D∑

j=0

Lj (un, . . . , un+�)n
j ,
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where Lj (X0, . . . , X�) are linear forms with integer coefficients. Since at least one of the poly-
nomials fi(X) is nonzero, it follows that there exists j0 such that Lj0 is not the zero form. We
write vn = Lj0(un, . . . , un+�) and apply Lemma 4 to deduce that there exists a recurrence

t∑
i=1

gi(X)vn+t−i = 0, n = 0, 1, . . . , (17)

where gi(X) ∈ Z[X] are polynomials for i = 0, . . . , t �2�(�+ 1) of degrees not exceeding D =
2d�(� + 1). We assume, without loss of generality, that g0(X)gt (X), is not the zero polynomial.
Let n0 the largest positive integer root of g0(X)gt (X) (if this polynomial does not have positive
integer roots we take n0 = 0), and let � be such that the inequality n < �y1/D implies that
|gt (n)| < y holds for all y�n0 + 1. Put I = Z ∩ [n0 + 1, �p1/D − t], and assume that p is a
large enough prime so that I is not empty.

For each n ∈ I, the recurrence (2) gives a relation for n of the type

f0(n)w0 + · · · + f�(n)w� ≡ 0 (mod p), (18)

where the vector (w0, . . . , w�) ≡ (un+�, . . . , un) (mod p) is an element of V(p)�+1, so it can
take at most #V(p)�+1 values.

Whenever (w0, . . . , w�) is such that the above relation (18) is a nontrivial polynomial relation
modulo p for n, the number of values of n which satisfy (18) is at most D. Hence, there are at
most D#V(p)�+1 values of n ∈ I for which the above polynomial relation (18) is nontrivial.

If the relation (18) is trivial, then the polynomial

D∑
j=0

Lj (w0, . . . , w�)X
j ∈ Z[X]

is identically zero modulo p. In particular,

Lj0(un, . . . , un+�) ≡ 0 (mod p). (19)

Assume that (19) holds for t consecutive values of n ∈ I. Let those values of n be m +
1, . . . , m + t . Evaluating the formula (17) in n = m and reducing modulo p, we get

gt (m)vm ≡ 0 (mod p).

Since m ∈ I, it follows that |gt (m)| < p and gt (m) 	= 0. Hence, the above congruence implies
that vm ≡ 0 (mod p). Continuing in this way, we see that vi ≡ 0 (mod p), for all integers
n0 < i�m. In particular, assuming that p is large enough, we see that in this case vi = 0
for i = n0 + 1, . . . , n0 + t − 1. However, this implies that vi = 0 for all i > n0, which
means that (un)n�n0+1 is a linear recurrence sequence, contradicting our assumption. Thus, the
congruence (19) cannot hold for t consecutive values of n ∈ I. This shows that one out of every t
elements in I has the property that its associated congruence (18) is not trivial. In turn, this shows
that

D#V(p)�+1 �
⌊

#I
t

⌋
� p1/D,

giving the claimed result. �
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Remark 6. In some instances, one may deduce a better inequality. For instance, assume that
(un)n�0 satisfies the recurrence (2) where the polynomials f0(X), . . . , f�(X) are linearly inde-
pendent over Q. Here, we no longer assume that (un)n�0 is a proper PR-sequence. It is then clear
that they remain linearly independent over the finite field with p elements Zp if p is sufficiently
large. Furthermore, in this case the relation (18) cannot be trivial. The above argument now easily
yields a stronger and more general bound

#V(N; p)?(min{p, N})1/(�+1),

where

V(N; p) = {un (mod p) : n = 0, . . . , N − 1}.

Using recurrence (5) and observing that the three polynomials f0(X) = X3, f1(X) = 34X3 −
51X2 + 27X − 5, f2(X) = (X − 1)3 are linearly independent over Q, one uses the argument of
Remark 6 to derive the inequality

#V(p, N)�
(

N − 2

3

)1/3

if N �p for the case of the Apéry numbers.
In order to be able to deal with the sequences (b�,n)n�1 and (̃b�,n)n�0, it suffices to show

that they are not linear recurrence sequences from some point on. Note that we need that ��2,
otherwise b1,n = 2n and b̃1,n = 0. When � = 2, we have b2,n = bn, thus Remark 6 applies again
(in any case for this sequence, stronger results are obtained in Section 2). Assume now that ��3.

Since(
n

k

)
�
(

n

�n/2�
)

∼ 2n

n1/2
, k = 0, . . . , n,

it follows easily that

2�n

n�/2
>b�(n)>

2�n

n�/2−1
.

Furthermore,

b̃�,n ∼ (2 cos(�/2�))2n�+�−1

√
�2�−2(�n)(�−1)/2

if N �pfor ��2 (see [4]).
Now the fact that (b�,n)n�1 and (̃b�,n)n�0 are not linear recurrence sequences from some point

on follows immediately from Theorem 2.6 of Everest et al. [7].

3.2. The Waring problem and distribution of residues

As we have remarked, Apéry numbers (an)n�0 as well as sums of powers of binomial coef-
ficients (b�,n)n�1 and (̃b�,n)n�0 are proper PR-sequence which also have the Lucas property.
Here we show that all such sequences form a finite additive basis modulo p for every sufficiently
large prime p.
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Theorem 7. Let (un)n�0 be a proper PR-sequence of integers of type (�, d) with the Lucas
property. There exists an absolute constant c > 0 such that for m = �(d�)c
, s = �exp ((d�)c)
,
and every sufficiently large prime p, the congruence

un1 + · · · + uns ≡ � (mod p)

has a solution for any integer � in some nonnegative integers n1, . . . , ns < pm.

Proof. Let T be a set of the largest possible cardinality of positive integers t �p, such that ut

with t ∈ T are pairwise distinct. By Theorem 5, we have #T?p�, where � = 1/2d�(� + 1)2.
Therefore, by the result of Bourgain et al. [3], there are some positive constants, c1, c2, c3 such
that for any m >

⌈
�c1
⌉

and 	 = exp
(−c2�

−c3
)
, the bound

max
gcd(a,p)=1

∣∣∣∣∣∣
∑

t0,...,tm−1∈T
e(aut0 . . . utm−1)

∣∣∣∣∣∣ � (#T )mp−	,

holds, where, as before, e(z) = exp(2��z/p) and � = √−1.
Denoting by N the set of positive integers n whose p-ary expansion is of the form

n = t0 + · · · + tm−1p
m−1 with t0, . . . , tm−1 ∈ T , we see, by (3), that the previous bound is

equivalent to

max
gcd(c,p)=1

∣∣∣∣∣∑
n∈N

e(cun)

∣∣∣∣∣ � #Np−	. (20)

From the identity

p−1∑
c=0

e(cu) =
{

0 if u /≡ 0 (mod p),

p if u ≡ 0 (mod p),

we deduce that the number Q(�) of solutions of the congruence of the theorem with n1, . . . , ns ∈
N can be expressed as

Q(�) = 1

p

p−1∑
c=0

∑
n1,...,ns∈N

e(c(un1 + · · · + uns − �))

= 1

p

p−1∑
c=0

e(−c�)

(∑
n∈N

e(cun)

)m

.

Separating the term (#N )sp−1 corresponding to c = 0 and using (20) for the other terms, we
derive

Q(�) = (#N )sp−1 + O
(
(#N )sp−	s) .

Thus, for any s >
⌊
	−1

⌋ + 1, we see that Q(�) > 0 for all sufficiently large p. Since �−1 =
2d�(� + 1)2 �8d�3 �d4�3, we obtain the desired result for an appropriate value of c. �
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Very similar ideas also lead to the following result:

Theorem 8. Let (un)n�0 be a proper PR-sequence of integers of type (�, d) with the Lucas
property. There exists an absolute constant c > 0, such that for m = �(d�)c
, 
 = exp (−(d�)c),
and every sufficiently large prime p, the congruence

un ≡ � + � (mod p)

has a solution for every integer � in some nonnegative integers n < pm and ��p1−
.

Proof. The proof follows from (20) with any 
 < 	 by standard arguments relating exponential
sums and the uniformity of distribution properties of sequences (see, for example [16, Corol-
lary 3.11]). �

We see that both Theorems 7 and 8 apply to Apéry numbers (an)n�0 and sums of powers of
binomial coefficients (b�,n)n�1 and (̃b�,n)n�0.
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