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Abstract

We estimate character sums with Catalan numbers and middle binomial coefficients modulo a prime p.
We use this bound to show that the first at most p13/ 2 (log p)6 elements of each sequence already fall in
all residue classes modulo every sufficiently large p, which improves the previously known result requiring
pO(P) elements. We also study, using a different technique, similar questions for sequences satisfying
polynomial recurrence relations like the Apéry numbers. We show that such sequences form a finite additive
basis modulo p for every sufficiently large prime p.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let p be an odd prime. In this paper, we study the distribution modulo p of middle binomial
coefficients

2n
b"=<n)’ n=0,1,...

and Catalan numbers

1
cp = <2n> n=0,1,...,
n+1\ n

where as usual we define 0! = 1.
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We estimate the number of solutions of certain congruences with middle binomial coefficients
and Catalan numbers. In particular, we show that both b, and ¢, take on all residue classes modulo
a sufficiently large p.

These results are used to estimate, both “individually” and “on average”, character sums

H+N
S H.N) =Y 1bw).
n=H+1
H+N
T(:H.N)= > zlcw),
n=H+1
where y is a multiplicative character of [ .

The method we use is similar to that of [8,9] to estimate character and exponential sums with

n!l. Accordingly, our bounds look very similar. However, using the Lucas theorem

m—1

b, = ]_[ by, (mod p), 1)

i=0

wheren = to + -+ + t—1 p’"’1 is the p-ary representation of n, we are able to get some results
for b, and ¢, that are not known for n! and are in fact not even likely to be true for n!. In
particular, it is shown in [1] that for infinitely many primes p, at least (loglog p)!*°() residue
classes modulo p are not represented by n! (mod p) and it is conjectured in Section F11 in [11]
that about p/e residue classes are missing among the values n! (mod p). Here, we show that each
of the sequences b, and ¢, covers all residue classes modulo p even with n < p'3/2(log p)°. This
substantially improves the previously known result of Berend and Harmse [2] where the same
statement is shown for integers n < p™ with m of order p.

Our proof also implies that for 1 <n < p7, the values of b, and ¢, fall in each nonzero residue
class modulo p asymptotically the same number of times, namely (2_7 + 0(1)) p® times.

We also study the number of distinct residue classes modulo p of a polynomially recurrence
sequence (PR-sequence for short). Recall that a PR-sequence (u,), >0 is a sequence of integers
such that there exist a positive integer £ and £ 4 1 polynomials f;(X) € Z[X] fori =0, ...,¢,
not all zero, such that the recurrence relation

¢
> fiMunge—i =0 )
i=0
holds for all n > 0. We also say that (u,), >0 is a PR-sequence of type (¢, d) if it satisfies Eq. (2)
with

max{deg f; : i =0,...,£}<d.

We show that if (u,),>0 is a PR-sequence of type (¢, d) which is not a linear recurrence
sequence for all sufficiently large n, then for any large prime p the number of residue classes
modulo p represented by (u,),>0 exceeds cpP, where ¢ > 0 is a constant depending on the
sequence and f§ > 0 is a constant depending only on £ and d.

We say that (1), >0 has the Lucas property if for every prime p,

m—1

Uy = ]_[ iy, (mod p), (3)

i=0
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where

n=t0+~-~+tm_1pm_1, 0y, ..., ty—1<p—1,
is the p-ary representation of 7.

If (u,)n >0 is a PR-sequence (which does not eventually become a linear recurrence sequence)
which has the Lucas property, then we combine the above bound on the value set of (u,), >0
modulo p with the ingenious result of Bourgain et al. [3] to study a variant of the Waring problem
modulo p for this sequence. We also show that these residue classes modulo p represented by
(n)n >0 are in some sense “densely” distributed.

In particular, we apply our results to study power sums of binomial coefficients

n Vv
bv,n=z<’,’j) L on=0,1..,

k=0

where v>2 is a fixed positive integer, as well as to the Apéry numbers

a,,_Z< ) <”+k> L on=0,1,...,

in residue classes modulo p. Note that b , = b,, so in a sense the study of the numbers by,
modulo p may be seen as an extension of the study of the numbers b,, modulo p. We recall that both
(an)n >0 and power sums of binomial coefficients (b, ,), >0 have the Lucas property. Indeed, for
the case of the Apéry sequence this is shown in [10]. For the sequence of binomial coefficients
(bv.n)n>o0 this can easily be verified by using a more general form of (1), namely

m—1
(Z) =11 (Z) (mod p), )
i=0

wheren =g+ -+t pm_1 andk =so+---+5m_1 p’"‘l are the p-ary representations of n

and k (here, we assume that m is large enough so that the above representations hold; in particular,
one of #,_1 or s,,—1 may be zero). It can also be derived from the more general Theorem 3 of
Mclntosh [15].

Furthermore, (a,), > ¢ satisfies the recurrence

ann® — ap_1(34n> = 510> +27n —5) + ayo(n — 1> =0 (5)

for every n = 2,3, ..., with the initial values ag = 1, a; = 5. It is known that for a fixed v
the sequence (b, ), >0 satisfies a recurrence of the form (2) with £ = [ (v 4 1)/2] (see [6,17]).
Unfortunately, no upper bound d for the degrees of the polynomials f;(X) fori =0, ..., £ has
ever been worked out specifically, although it may be possible to deduce it by a closer examination
of the proofs in [6,17].

Our results apply also to the case when the sequence b, , is replaced by

Fo= 3 1)"( 2 )
k=—n

again for a fixed v>2, as this sequence is both PR by the results from [14], and Lucas by the
results from [15].
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Throughout the paper, the implied constants in symbols ‘O’, ‘&’ and ‘>’ may occasionally,
where obvious, depend on some integer parameters m, r, s and v and also on the particular sequence
under consideration and are absolute otherwise. We recall that U < V,V > U and U = O (V)
are all equivalent to the inequality |U|< ¢V with some constant ¢ > 0.

2. Catalan numbers
2.1. Bounds of character sums

Let & denote the set of multiplicative characters of the multiplicative group [F; and let X* =
X\{yo} be the set of nonprincipal characters.

We start with estimating individual sums. It is clear that b,c, % 0 (mod p) for 0<n < p/2,
so we start with estimating character sums over this interval.

Theorem 1. Let H and N be integers with OK H < H + N < p/2. Then the following bound
holds:

max{1SGz H. NI, | (z: H, N)I} <N/ p! /S (log p) 4.

Proof. For any integer k >0, we have

H+N

S H NY =Y 1 (basr) + OK).
n=H+1

Therefore, for any integer K with 1 <K < p/2, we have

1
S( H.N) = W+ 0(K), (6)
where
—1 H+N H+N K-1 n+2i —
V=SS st= Y zy(zkbn = )
k=0 n=H+1 n= H-H k=0
H+N
2n+21—1
= 2K
> oy (* 1)
n=H+1

(note that I<H + 1 < H + N + K < p so the above product is well-defined modulo p).

We recall that |z|> = zZ for any complex number z, and that 7(a) = y(a~") holds for every
integer a % 0 (mod p), where 7 is the conjugate character of y. Therefore, applying the Cauchy
inequality, we derive

2
H+N |K-1
2n+2i —1
SR Er|
nH—HkO i=1
- H+N

=NZ Z (Prm(m)), @)

k,m=0 n=H+1
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where

2X +2i —1 X+
H / @®)

k—m
P (X0 =2 H X +i 2X +2j—1

and 2* means that the poles of W ,, (X) are excluded from the summation.

Clearly, if K < p then, unless k = m, the rational function ¥y ,, (X), has at least one simple
root or pole, and thus is not a power of any other rational function modulo p.

For the O(K) choices of 0 <k = m <K — 1, we estimate the sum over n trivially as N.

For the other O (K 2) choices of 0<<k, m < K — 1, using the Weil bound given in Example 12
of Appendix 5 of [18] (see also [12, Theorem 3 of Chapter 6], or [13, Theorem 5.41 and the
comments to Chapter 5]), we see that, because y € X'*,

Z (Wem(m) e(n) = O(Kp'’?),

where e(z) = exp(2miz/p) with 1 = +/—1, and as before 2* means that the poles of Wy, (X)
are excluded from the summation. Therefore, by the standard reduction of incomplete sums to
complete ones (see [5]), we deduce

H+N

37 (Fem ) = O(Kp'log p).
n=H+1

Putting everything together, we get
W2 < N (KN + K32 10g p) .
Therefore, by (6), we derive
S(r, H,N) <« NK™'2 4 K'2NY2p1 4 (10g p)/2 + K.

Taking K = |_N1/2p_1/4(10g p)_l/zj, we obtain the desired bound for the sums S(y, H, N).
The sums 7 (y, H, N) can be estimated completely analogously. [

We remark that it trivially follows from (7) that

|W|2<Ni

Hence, we apply the Weil bound for complete sums which leads us to the estimate

K—

)

r—K -

> 1 (Pemm) =Z (Wim(m) + O(K) = O(Kp'/?),

n=0 n=0

which in turn yields the bound

W2 < N (Kp + K3p‘/2) .
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Taking K = | N'/2p~1/4], we derive

max (IS H, N1 1T (i H Nl < p™7% ©)

which is a little better than the bound of Theorem 1 when N is of order close to p.
We also need some estimates “on average”.

Theorem 2. Let H and N be integers with 0OXH < H 4+ N < p/2. For any integer v>1 the
following bound holds:

max { Y [SG H NP, D T HON)P ¢ < pN'~1H2
1E€X reX

Proof. We recall the identity

o if u # 1 (mod p),
;A(u)—{p_1 if u = 1 (mod p). "
JE

We remark that, by (10), we have

D ISGL H NP = (p — DIy(H, N),
yEX

where I,(H, N) is the number of solutions to the congruence

v 2v
[[bw= ] bw(modp). H+1<ni,....ny<H+N.
i=l1 i=v+1

We prove by induction on v that
I,(H,N) < N»71+27

The implied constant above depends on v. If v = 1, then arguing as in the proof of Theorem 1,
we derive that for any integer K with 1 <K < p/2, we have

K—1 H+N
*

1SGLH NP < KN Y 3 5 (Pem) + K2,
k,m=0 n=H+1

where Wy, (X) is given by (8) and as before 2* means that the poles of W, (X) are excluded
from the summation. Therefore,

K—-1 H+N*
SIS H NP <KTN Y STy (Wkm ) + pK2
reX k,m=0 n=H+1 yeX

Then, from (10), we see that the sum over y vanishes, unless

Wim(n) =1 (mod p), (1)
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in which case it equals p — 1. For the K pairs (k, m) with k = m there are N possible solutions
to (11), while for the other O (K ?) pairs there are O (K) solutions to (11). Thus,

> IS HNP < K72N (K2 + KN) p + pK?
reX

- (NK F N2 K 4 K2) p.
Taking K = | N'/?], we deduce
L N) = —— 37 [5G0 H, ) < N2,
P I JEX
Assume now that v>2 and that
o=+l

I,_1(H,N) « pN?'73*

We fix some K < N and note that by the Cauchy inequality, we have

H+N 2 K 2
Yoo =) > 1)
n=H+1 k=1 H4+(k—1)N/K<m < H+kN/K

2

K
<Ky > 7(bm)

k=1 |H+(k—1)N/K <m < H+kN/K

Therefore,
I% 2
DS H NP <KY Y > 1(bm)
1eX k=1 yeX |H+(k—1)N/K <m < H+kN/K
H+N =2
X Z 7(bn)
n=H+1
= KI,(K, H, N),

where INV(K , H, N) is the number of solutions to the congruence

v—1 2v—2
bml 1_[ bni = bmz 1_[ bn,- (mod p)

i=l1 i=v
with H + 1<ny,...,n3y2<H+ N,and H + (k— )N/K <my,my<H + kN /K for some
k = 1,..., K. For each of the N pairs (m, my) with m; = m, there are exactly I,_1(H, N)
solutions. We also see that if ny, ..., no,_o are given then for each fixed value of r = m| — m
there are no more than |r| solutions in my, my (because at least one of m| or my satisfies a
nontrivial polynomial congruence of degree |r|). Certainly, r = O(N/K). Putting everything
together and using the induction assumption, we obtain

TV(K, H, N) < NIV_](H, N) + (N/K)2N2V—2 — N2V—2+2_v+1 + szK—z.
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Therefore I,(H, N) « KN2=2+27" 4 N2vg-1, Choosing K = {NI’TV—I, we obtain the

desired bound for the sums S(y, H, N).
The sums 7 (x, H, N) can be estimated completely analogously. [J

2.2. Distribution in residue classes

Theorem 3. For all sufficiently large primes p and every integer A there exist positive integers
r, s < p13/2(log p)® such that b, = ¢y = J.(mod p).

Proof. If 1 = 0 (mod p), we simply take r = s = (p + 1)/2.

We now assume that A = 0 (mod p).

Weput N = L p/%(log p)6J and consider the set N of positive integers n whose p-ary repre-
sentation is of the form

N
e
N
S

[o)}

N
=

n=no+~-+n6p6, 0<ng, ..., ns (12)

Let Q(N, 4) be the number of solutions to the congruence
b, = A(mod p), n e N.
By (10), we have
ON. = —— 33 10 b = —— 3 107 Y 4tb.
p—1 neN yeX p—1 1eX neN
Separating the term

#N N+ D(p+1D°
p=1— 20(p-1

s

corresponding to the principal character y,, we obtain

1
<5 >

JEX*

(N +D(p+1°
20(p—1)

> 2w

neN

Q(N, 4) —

We now see that, by (1),

D aba) = (S 0, (p — 1)/2) + DO (S(x: 0, N) + 1)
neN

(since y(bo) = x(1) = 1).
Hence, applying Theorem 1, and then Theorem 2 with v = 1, we obtain

ﬁ DD 2w

1€X* lneN

1
<—— Y (SG 0. (p— 1)/ + DO (IS(2: 0. )| + 1)
p—1 JEX*
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L 34 18 14 (778 174}
< NP oz ) (57 t0g ) )

x > (15620, (p = /2P +1)

reX*
1 4
< FN3/4pl/8aog XA <p7/8(10g p)1/4) ok

— N34 pH8(log p)S/A.

Therefore,

5
o, =N+ 1)2(6” AL (N33 pH175 tog p)*F4)

5
_ (NH)z# (1 ) <N71/4p1/8(10g p)5/4)> _ (13)

Recalling the choice of N, we see that Q(N, 1) > 0 for sufficiently large p. Therefore b, =
J.(mod p) for some positive integer r < p® N < p'3/?(log p)°.

Similar arguments also show that ¢, = A (mod p) for some positive integer s < poN < p
(log p)°. O

13/2

Since b, % 0 (mod p) if and only if the p-ary digits of n are all less than p/2, we see from (13)
that for every 4 # 0 (mod p) the number of solutions of each of the congruences

b, = Z(mod p) and ¢, = A (mod p),

for 0<n<p” — 1is 277 p® (1 + O (p~'/3(log p)¥/*)). In fact, using (9), this can be slightly
improved to 277 p® (1 4+ 0 (p~'/%)).

3. PR-sequences
3.1. The set of residues

We start with the following property of PR-sequences.

Lemma 4. Let (M;j))n >0, be PR-sequences of integers of type (£;,d), with £; <L for j =
1,...,m. Let

vn—Z}u(J) n=0,1,...,

where A are arbitrary integers. Then (v,), >0 is a PR-sequence of integers of type (2m&, 2dmJ?).

Proof. Assume that the sequences (u(] ))n >0 satisfy the recurrences

Z £l = (14)
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with fj(X) e Z[X] fori = 0,. £;, and where for each j = 1,..., m not all polynomials
f & )(X ),i =0,. £, are zero. Furthermore we assume that £; <€ for j =0, ..., m, and that

the degrees of all the polynomials fl.(] ) are at most d.

Without loss of generality, we may assume that 4; # 0 and that f (/)

polynomial for j =1, ..., m.
It is enough to show that for r = 2m{ there exist # + 1 polynomials F; (X) € Z[X], not all zero
and of degrees at most D = 2dm/, such that

(X) is not the zero

t
> Fimvnp—i =0, n=0,1,....
i=0

By replacing the sequence (u )n >0 by the sequence (4; u,, )n >1, we may assume that ; = 1
forall j =1, ..., m. We now show that for each & >0, we have a relation of the form

;-1
u)y = Z gijnmull);. (15)

where g; ; ,(X) are rational functions with the same denominator such that both the numerator
and denominator have degrees at most max{0, (2 — £; + 1)d}. Indeed, if h<{; — 1, we set
gi.jn(X) = 1ifi = j and we set g; j »(X) = 0 otherwise. Then relations (15) are fulfilled. If
h = ¢, we simply set g; j¢;(X) = —fl(j]li (X)/fo(])(X) and relation (15) is then a consequence
of the recurrence (14). We now proceed by induction on A. Assuming that (15) holds for A,
then

;-1
(J) )
Upntne1 = Z 8i.j, n(n + 1)un+l+i
i=0
£;-2
=3 g+ D)+ e+ Dl
i=0

=8e;—1,j,h(n +1)goj.¢; myuy

ej—1
+ 3 (gimtjn @+ D+ gem1 i+ Dgije, ) ul);
i=1

and so (15) holds for & + 1 if we set
80,j,h+1(X) = g¢;—1,j,n (X + 1)go,j.¢; (X)
and
i, jht1(X) = gi—1,jn (X + 1)+ ge;—1,j,n (X + 1Dgije,(X), i=1,...,¢;—1

One can also see from the above formulas, that we may assume that for the same values of j and
h, the rational functions g; ;¢ ; (X),i =1,...,£¢; — I have the same denominator.
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The assertion about the degrees is now obvious.

Equipped with the representation (15), it follows that if F;(X) € Z[X]fori =0, ..., t are any
polynomials, then

n t
Z Fi(n)vyyy—i = Z Vntn Fr—pn(n)

i=0 h=0
m ej*1 t
_ o ()
=> > gijn) Froa(n) | ul),.
j=1 i=0 \h=0

In order for the above expression to be zero, it suffices that

1
> i (X Fp(X) =0 (16)
h=0

holds identically over Z[X], forall j =1,...,mandi =0,...,k; — 1.

Assume that F;(X) € Z[X],i =0, ..., t are polynomials of degree at most D. Then the left-
hand side of (16) is a rational function whose numerator is polynomial of degree at most td + D.
Thus, (16) leads to a homogeneous system of

m
(td+D+1))_ £;<(td+ D + l)mt
j=1

linear equations in 7 (D + 1) variables. This system has a nontrivial solution provided that
t+D(D+1)> (@td+ D+ 1)md.

Recalling that r = 2m¥ we see that D = td = 2dm¢ satisfies this inequality, which completes

the proof. [J

Recall that (1), > ¢ is alinear recurrence sequence if and only if («,), > o is aPR-sequence hav-
ing a recurrence whose coefficients are constant polynomials (not all zero). We say that (u,), >0
is a proper PR-sequence if it is a PR-sequence and there is no n, such that (), > s, is a linear
recurrence sequence.

Theorem 5. Let (1), >0 be a proper PR-sequence of integers of type (£, d). For a prime number
p we put

V(p) ={u,(modp) : n=0,1,...}.
Then the estimate #)(p) > pﬁ holds, where

1

b= 2de(t + 1)2

Proof. Write

4 D
" fiunei =Y Liltn. ... unio)n’,
i=0 Jj=0
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where L;(Xo, ..., Xy) are linear forms with integer coefficients. Since at least one of the poly-
nomials f;(X) is nonzero, it follows that there exists jo such that L ;; is not the zero form. We
write v, = L jy(uy, ..., uyy¢) and apply Lemma 4 to deduce that there exists a recurrence

t
> (X vpi =0, n=0,1,..., (17)
i=1

where g;(X) € Z[X] are polynomials fori =0, ..., <2¢(£ + 1) of degrees not exceeding D =
2d¢(€ + 1). We assume, without loss of generality, that go(X)g;(X), is not the zero polynomial.
Let ng the largest positive integer root of go(X)g,(X) (if this polynomial does not have positive
integer roots we take ng = 0), and let § be such that the inequality n < Jdy'/P implies that
|g:(n)| < y holds for all y>ng + 1. PutZ = Z N [ng + 1, 5pl/D — t], and assume that p is a
large enough prime so that Z is not empty.

For each n € Z, the recurrence (2) gives a relation for n of the type

Jomwo + -+ -+ fe(m)wg = 0 (mod p), (18)
where the vector (wy, ..., wy) = (Upte, ..., Uy) (Mod p) is an element of V(p)”‘, SO it can
take at most #V(p)‘*! values.

Whenever (wy, ..., wg) is such that the above relation (18) is a nontrivial polynomial relation

modulo p for n, the number of values of n which satisfy (18) is at most D. Hence, there are at
most D#V(p)t*! values of n € Z for which the above polynomial relation (18) is nontrivial.
If the relation (18) is trivial, then the polynomial

D
> Lj(wo, ..., w) X/ € Z[X]
j=0

is identically zero modulo p. In particular,
Ljy(up, ..., upqe) =0 (mod p). (19)

Assume that (19) holds for ¢ consecutive values of n € Z. Let those values of n be m +
1, ..., m + t. Evaluating the formula (17) in n = m and reducing modulo p, we get

gr(m)vy, = 0 (mod p).

Since m € Z, it follows that |g;(m)| < p and g,(m) # 0. Hence, the above congruence implies

that v, = 0 (mod p). Continuing in this way, we see that v; = 0 (mod p), for all integers
nog < i<m. In particular, assuming that p is large enough, we see that in this case v; = 0
fori = no+1,...,n0 +t — 1. However, this implies that v; = 0 for all i > ng, which

means that (¢,), > n,+1 1S a linear recurrence sequence, contradicting our assumption. Thus, the
congruence (19) cannot hold for ¢ consecutive values of n € Z. This shows that one out of every ¢
elements in Z has the property that its associated congruence (18) is not trivial. In turn, this shows
that

#7
D#V(p) > LTJ > pl/P,

giving the claimed result. [
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Remark 6. In some instances, one may deduce a better inequality. For instance, assume that
(un)n >0 satisfies the recurrence (2) where the polynomials fo(X), ..., f¢(X) are linearly inde-
pendent over (). Here, we no longer assume that (u,), >0 is a proper PR-sequence. It is then clear
that they remain linearly independent over the finite field with p elements Z,, if p is sufficiently
large. Furthermore, in this case the relation (18) cannot be trivial. The above argument now easily
yields a stronger and more general bound

#V(N; p)> (min{p, N}/ D,
where

V(N; p) = {u, (modp) : n=0,...,N —1}.

Using recurrence (5) and observing that the three polynomials fo(X) = X 3 A(X) =34X3 —
51X2 427X — 5, fo(X) = (X — 1)3 are linearly independent over (, one uses the argument of
Remark 6 to derive the inequality

N —2\!/3
#V(p, N) > <T>

if N < p for the case of the Apéry numbers. _

In order to be able to deal with the sequences (by ), >1 and (by ), >0, it suffices to show
that they are not linear recurrence sequences from some point on. Note that we need that v>2,
otherwise by , = 2" and b1 , = 0. When v = 2, we have by , = b, thus Remark 6 applies again
(in any case for this sequence, stronger results are obtained in Section 2). Assume now that v > 3.

Since

n n 2"

it follows easily that
vn vn

2
m <bv(”)<m.

Furthermore,

7 (2 cos(m/2v))>+v-1
v.n \/;21'72(7,:”)(»*71)/2
if N < pfor v>2 (see [4]).

Now the fact that (by ), >1 and (5“”) » >0 are not linear recurrence sequences from some point
on follows immediately from Theorem 2.6 of Everest et al. [7].

3.2. The Waring problem and distribution of residues

As we have remarked, Apéry numbers (an)n >0 as well as sums of powers of binomial coef-
ficients (by n)n>1 and (by )n>0 are proper PR-sequence which also have the Lucas property.
Here we show that all such sequences form a finite additive basis modulo p for every sufficiently
large prime p.
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Theorem 7. Let (u,),>0 be a proper PR-sequence of integers of type (£,d) with the Lucas
property. There exists an absolute constant ¢ > 0 such that for m = [(d€)“], s = [exp ((d£)°)],
and every sufficiently large prime p, the congruence

Up, + -+ uy, = A(mod p)
has a solution for any integer A in some nonnegative integers ny, ...,ng < p™.

Proof. Let 7 be a set of the largest possible cardinality of positive integers # < p, such that u;,
with € T are pairwise distinct. By Theorem 5, we have #7 > pP, where B = 1/2de(L + 1)%.
Therefore, by the result of Bourgain et al. [3], there are some positive constants, c1, ¢z, ¢3 such
that for any m > [ '] and y = exp (—c2~*), the bound

max Z e(auy ...u,, | << #H#ND"p~7,
ged(a, p)=1
10t 1€T

holds, where, as before, e(z) = exp(2miz/p) and 1 = /—1.

Denoting by N the set of positive integers n whose p-ary expansion is of the form
n=ty+- -+ tm_lpm_l with 19, ..., t,—1 € T, we see, by (3), that the previous bound is
equivalent to

max <K #Np. (20

ged(c, p)=1

Z e(cuy)

neN

From the identity

p—1 .
Z e(cu) = {0 if u % 0 (mod p),

p ifu=0(@mod p),
c=0

we deduce that the number Q (1) of solutions of the congruence of the theorem with ny, ..., ng €
N can be expressed as

T,
Q(M=;Z > elclun + ottt — 7))

Separating the term (#A\)* p~! corresponding to ¢ = 0 and using (20) for the other terms, we
derive

Q) = N p~ + 0 (BN p 7).

Thus, for any s > Ly_lj + 1, we see that Q(4) > O for all sufficiently large p. Since gl =
2d0(¢ + 1)2<8d03 <d*¢3, we obtain the desired result for an appropriate value of ¢. [
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Very similar ideas also lead to the following result:

Theorem 8. Let (un)n>0 be a proper PR-sequence of integers of type (€,d) with the Lucas
property. There exists an absolute constant ¢ > 0, such that for m = [(d€)], o = exp (—(d£)),
and every sufficiently large prime p, the congruence

up = A+ n(mod p)

has a solution for every integer /. in some nonnegative integers n < p™ and n<p'~*.

Proof. The proof follows from (20) with any & < y by standard arguments relating exponential
sums and the uniformity of distribution properties of sequences (see, for example [16, Corol-
lary 3.11]). O

We see that both Theorems 7 and 8 apply to Apéry numbers (a,), >0 and sums of powers of
binomial coefficients (by ), >1 and (by.n)n>0-
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