

Available online at www.sciencedirect.com

Journal of Combinatorial Theory, Series A 113 (2006) 851-865

Combinatorial Theory Series A

www.elsevier.com/locate/jcta

Journal of

Catalan and Apéry numbers in residue classes

Moubariz Z. Garaev^a, Florian Luca^a, Igor E. Shparlinski^b

^aInstituto de Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México ^bDepartment of Computing, Macquarie University, Sydney, NSW 2109, Australia

> Received 24 November 2004 Available online 3 October 2005

Abstract

We estimate character sums with Catalan numbers and middle binomial coefficients modulo a prime p. We use this bound to show that the first at most $p^{13/2}(\log p)^6$ elements of each sequence already fall in all residue classes modulo every sufficiently large p, which improves the previously known result requiring $p^{O(p)}$ elements. We also study, using a different technique, similar questions for sequences satisfying polynomial recurrence relations like the Apéry numbers. We show that such sequences form a finite additive basis modulo *p* for every sufficiently large prime *p*. © 2005 Elsevier Inc. All rights reserved.

Keywords: Catalan numbers; Apéry numbers; Congruences; Bounds for character sums

1. Introduction

Let p be an odd prime. In this paper, we study the distribution modulo p of *middle binomial* coefficients

$$b_n = \begin{pmatrix} 2n \\ n \end{pmatrix}, \quad n = 0, 1, \dots$$

and Catalan numbers

$$c_n = \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix}, \quad n = 0, 1, \dots,$$

where as usual we define 0! = 1.

0097-3165/\$ - see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jcta.2005.08.003

E-mail addresses: garaev@matmor.unam.mx (M.Z. Garaev), fluca@matmor.unam.mx (F. Luca), igor@ics.mq.edu.au (I.E. Shparlinski).

We estimate the number of solutions of certain congruences with middle binomial coefficients and Catalan numbers. In particular, we show that both b_n and c_n take on all residue classes modulo a sufficiently large p.

These results are used to estimate, both "individually" and "on average", character sums

$$S(\chi; H, N) = \sum_{n=H+1}^{H+N} \chi(b_n),$$

$$T(\chi; H, N) = \sum_{n=H+1}^{H+N} \chi(c_n),$$

 $\mathbf{H} + \mathbf{N}$

where χ is a multiplicative character of \mathbb{F}_p .

The method we use is similar to that of [8,9] to estimate character and exponential sums with *n*!. Accordingly, our bounds look very similar. However, using the *Lucas theorem*

$$b_n \equiv \prod_{i=0}^{m-1} b_{t_i} \pmod{p},\tag{1}$$

where $n = t_0 + \cdots + t_{m-1}p^{m-1}$ is the *p*-ary representation of *n*, we are able to get some results for b_n and c_n that are not known for *n*! and are in fact not even likely to be true for *n*!. In particular, it is shown in [1] that for infinitely many primes *p*, at least $(\log \log p)^{1+o(1)}$ residue classes modulo *p* are not represented by *n*! (mod *p*) and it is conjectured in Section **F11** in [11] that about *p/e* residue classes are missing among the values *n*! (mod *p*). Here, we show that each of the sequences b_n and c_n covers all residue classes modulo *p* even with $n \le p^{13/2} (\log p)^6$. This substantially improves the previously known result of Berend and Harmse [2] where the same statement is shown for integers $n \le p^m$ with *m* of order *p*.

Our proof also implies that for $1 \le n \le p^7$, the values of b_n and c_n fall in each nonzero residue class modulo p asymptotically the same number of times, namely $(2^{-7} + o(1)) p^6$ times.

We also study the number of distinct residue classes modulo p of a *polynomially recurrence* sequence (**PR**-sequence for short). Recall that a **PR**-sequence $(u_n)_{n \ge 0}$ is a sequence of integers such that there exist a positive integer ℓ and $\ell + 1$ polynomials $f_i(X) \in \mathbb{Z}[X]$ for $i = 0, ..., \ell$, not all zero, such that the recurrence relation

$$\sum_{i=0}^{\ell} f_i(n) u_{n+\ell-i} = 0$$
(2)

holds for all $n \ge 0$. We also say that $(u_n)_{n \ge 0}$ is a **PR**-sequence of type (ℓ, d) if it satisfies Eq. (2) with

 $\max\{\deg f_i : i = 0, \dots, \ell\} \leq d.$

We show that if $(u_n)_{n \ge 0}$ is a **PR**-sequence of type (ℓ, d) which is not a linear recurrence sequence for all sufficiently large *n*, then for any large prime *p* the number of residue classes modulo *p* represented by $(u_n)_{n \ge 0}$ exceeds cp^{β} , where c > 0 is a constant depending on the sequence and $\beta > 0$ is a constant depending only on ℓ and *d*.

We say that $(u_n)_{n \ge 0}$ has the *Lucas property* if for every prime *p*,

$$u_n \equiv \prod_{i=0}^{m-1} u_{t_i} \pmod{p},\tag{3}$$

where

$$n = t_0 + \dots + t_{m-1} p^{m-1}, \quad 0 \leq t_0, \dots, t_{m-1} \leq p-1,$$

is the *p*-ary representation of *n*.

If $(u_n)_{n \ge 0}$ is a **PR**-sequence (which does not eventually become a linear recurrence sequence) which has the *Lucas property*, then we combine the above bound on the value set of $(u_n)_{n \ge 0}$ modulo *p* with the ingenious result of Bourgain et al. [3] to study a variant of the *Waring problem* modulo *p* for this sequence. We also show that these residue classes modulo *p* represented by $(u_n)_{n \ge 0}$ are in some sense "densely" distributed.

In particular, we apply our results to study power sums of binomial coefficients

$$b_{\nu,n} = \sum_{k=0}^{n} {\binom{n}{k}}^{\nu}, \quad n = 0, 1, \dots,$$

where $v \ge 2$ is a fixed positive integer, as well as to the *Apéry numbers*

$$a_n = \sum_{k=0}^n {\binom{n}{k}}^2 {\binom{n+k}{k}}^2, \quad n = 0, 1, \dots,$$

in residue classes modulo p. Note that $b_{2,n} = b_n$, so in a sense the study of the numbers $b_{v,n}$ modulo p may be seen as an extension of the study of the numbers b_n modulo p. We recall that both $(a_n)_{n \ge 0}$ and power sums of binomial coefficients $(b_{v,n})_{n \ge 0}$ have the Lucas property. Indeed, for the case of the Apéry sequence this is shown in [10]. For the sequence of binomial coefficients $(b_{v,n})_{n \ge 0}$ this can easily be verified by using a more general form of (1), namely

$$\binom{n}{k} \equiv \prod_{i=0}^{m-1} \binom{t_i}{s_i} \pmod{p},\tag{4}$$

where $n = t_0 + \cdots + t_{m-1}p^{m-1}$ and $k = s_0 + \cdots + s_{m-1}p^{m-1}$ are the *p*-ary representations of *n* and *k* (here, we assume that *m* is large enough so that the above representations hold; in particular, one of t_{m-1} or s_{m-1} may be zero). It can also be derived from the more general Theorem 3 of McIntosh [15].

Furthermore, $(a_n)_{n \ge 0}$ satisfies the recurrence

$$a_n n^3 - a_{n-1} (34n^3 - 51n^2 + 27n - 5) + a_{n-2} (n-1)^3 = 0$$
⁽⁵⁾

for every n = 2, 3, ..., with the initial values $a_0 = 1$, $a_1 = 5$. It is known that for a fixed v the sequence $(b_{v,n})_{n \ge 0}$ satisfies a recurrence of the form (2) with $\ell = \lfloor (v+1)/2 \rfloor$ (see [6,17]). Unfortunately, no upper bound d for the degrees of the polynomials $f_i(X)$ for $i = 0, ..., \ell$ has ever been worked out specifically, although it may be possible to deduce it by a closer examination of the proofs in [6,17].

Our results apply also to the case when the sequence $b_{v,n}$ is replaced by

$$\widetilde{b}_{\nu,n} = \sum_{k=-n}^{n} (-1)^k \left(\frac{2n}{n+k}\right)^{\nu},$$

again for a fixed $v \ge 2$, as this sequence is both **PR** by the results from [14], and Lucas by the results from [15].

Throughout the paper, the implied constants in symbols 'O', ' \ll ' and ' \gg ' may occasionally, where obvious, depend on some integer parameters *m*, *r*, *s* and *v* and also on the particular sequence under consideration and are absolute otherwise. We recall that $U \ll V, V \gg U$ and U = O(V) are all equivalent to the inequality $|U| \leq cV$ with some constant c > 0.

2. Catalan numbers

2.1. Bounds of character sums

Let \mathcal{X} denote the set of multiplicative characters of the multiplicative group \mathbb{F}_p^* and let $\mathcal{X}^* = \mathcal{X} \setminus \{\chi_0\}$ be the set of nonprincipal characters.

We start with estimating individual sums. It is clear that $b_n c_n \neq 0 \pmod{p}$ for $0 \leq n < p/2$, so we start with estimating character sums over this interval.

Theorem 1. Let H and N be integers with $0 \le H < H + N < p/2$. Then the following bound holds:

$$\max_{\chi \in \mathcal{X}^*} \{ |S(\chi; H, N)|, |T(\chi; H, N)| \} \ll N^{3/4} p^{1/8} (\log p)^{1/4}.$$

Proof. For any integer $k \ge 0$, we have

$$S(\chi; H, N) = \sum_{n=H+1}^{H+N} \chi(b_{n+k}) + O(k).$$

Therefore, for any integer *K* with $1 \leq K < p/2$, we have

$$S(\chi, H, N) = \frac{1}{K}W + O(K), \tag{6}$$

where

$$W = \sum_{k=0}^{K-1} \sum_{n=H+1}^{H+N} \chi(b_{n+k}) = \sum_{n=H+1}^{H+N} \sum_{k=0}^{K-1} \chi\left(2^k b_n \prod_{i=1}^k \frac{2n+2i-1}{n+i}\right)$$
$$= \sum_{n=H+1}^{H+N} \chi(b_n) \sum_{k=0}^{K-1} \chi\left(2^k \prod_{i=1}^k \frac{2n+2i-1}{n+i}\right)$$

(note that $1 \leq H + 1 < H + N + K < p$ so the above product is well-defined modulo *p*).

We recall that $|z|^2 = z\overline{z}$ for any complex number z, and that $\overline{\chi}(a) = \chi(a^{-1})$ holds for every integer $a \neq 0 \pmod{p}$, where $\overline{\chi}$ is the conjugate character of χ . Therefore, applying the Cauchy inequality, we derive

$$|W|^{2} \leq N \sum_{n=H+1}^{H+N} \left| \sum_{k=0}^{K-1} \chi \left(2^{k} \prod_{i=1}^{k} \frac{2n+2i-1}{n+i} \right) \right|^{2}$$

= $N \sum_{k,m=0}^{K-1} \sum_{n=H+1}^{H+N} \chi \left(\Psi_{k,m}(n) \right),$ (7)

where

$$\Psi_{k,m}(X) = 2^{k-m} \prod_{i=1}^{k} \frac{2X+2i-1}{X+i} \prod_{j=1}^{m} \frac{X+j}{2X+2j-1}$$
(8)

and Σ^* means that the poles of $\Psi_{k,m}(X)$ are excluded from the summation.

Clearly, if K < p then, unless k = m, the rational function $\Psi_{k,m}(X)$, has at least one simple root or pole, and thus is not a power of any other rational function modulo p.

For the O(K) choices of $0 \le k = m \le K - 1$, we estimate the sum over *n* trivially as *N*.

For the other $O(K^2)$ choices of $0 \le k, m \le K - 1$, using the Weil bound given in Example 12 of Appendix 5 of [18] (see also [12, Theorem 3 of Chapter 6], or [13, Theorem 5.41 and the comments to Chapter 5]), we see that, because $\chi \in \mathcal{X}^*$,

$$\sum_{n=0}^{p-1} \chi \left(\Psi_{k,m}(n) \right) \mathbf{e}(n) = O(Kp^{1/2}),$$

where $\mathbf{e}(z) = \exp(2\pi i z/p)$ with $i = \sqrt{-1}$, and as before Σ^* means that the poles of $\Psi_{k,m}(X)$ are excluded from the summation. Therefore, by the standard reduction of incomplete sums to complete ones (see [5]), we deduce

$$\sum_{n=H+1}^{H+N} \chi \left(\Psi_{k,m}(n) \right) = O(K p^{1/2} \log p).$$

Putting everything together, we get

$$|W|^2 \ll N\left(KN + K^3 p^{1/2} \log p\right).$$

Therefore, by (6), we derive

$$S(\chi, H, N) \ll NK^{-1/2} + K^{1/2}N^{1/2}p^{1/4}(\log p)^{1/2} + K.$$

Taking $K = \lfloor N^{1/2} p^{-1/4} (\log p)^{-1/2} \rfloor$, we obtain the desired bound for the sums $S(\chi, H, N)$. The sums $T(\chi, H, N)$ can be estimated completely analogously. \Box

We remark that it trivially follows from (7) that

$$|W|^2 \leq N \sum_{n=0}^{p-K} \left| \sum_{k=0}^{K-1} \chi \left(2^k \prod_{i=1}^k \frac{2n+2i-1}{n+i} \right) \right|^2.$$

Hence, we apply the Weil bound for complete sums which leads us to the estimate

$$\sum_{n=0}^{p-K} \chi \left(\Psi_{k,m}(n) \right) = \sum_{n=0}^{p-1} \chi \left(\Psi_{k,m}(n) \right) + O(K) = O(Kp^{1/2}),$$

which in turn yields the bound

$$|W|^2 \ll N\left(Kp + K^3 p^{1/2}\right).$$

Taking $K = |N^{1/2}p^{-1/4}|$, we derive

$$\max_{\chi \in \mathcal{X}^*} \{ |S(\chi; H, N)|, |T(\chi; H, N)| \} \ll p^{7/8},$$
(9)

which is a little better than the bound of Theorem 1 when N is of order close to p.

We also need some estimates "on average".

Theorem 2. Let H and N be integers with $0 \le H < H + N < p/2$. For any integer $v \ge 1$ the following bound holds:

$$\max\left\{\sum_{\chi\in\mathcal{X}}|S(\chi,H,N)|^{2\nu}, \sum_{\chi\in\mathcal{X}}|T(\chi,H,N)|^{2\nu}\right\}\ll pN^{2\nu-1+2^{-\nu}}.$$

Proof. We recall the identity

1

$$\sum_{\chi \in \mathcal{X}} \chi(u) = \begin{cases} 0 & \text{if } u \not\equiv 1 \pmod{p}, \\ p - 1 & \text{if } u \equiv 1 \pmod{p}. \end{cases}$$
(10)

We remark that, by (10), we have

$$\sum_{\chi \in \mathcal{X}} |S(\chi, H, N)|^{2\nu} = (p-1)I_{\nu}(H, N),$$

where $I_{\nu}(H, N)$ is the number of solutions to the congruence

$$\prod_{i=1}^{\nu} b_{n_i} \equiv \prod_{i=\nu+1}^{2\nu} b_{n_i} \pmod{p}, \quad H+1 \leqslant n_1, \dots, n_{2\nu} \leqslant H+N.$$

We prove by induction on *v* that

$$I_{\nu}(H, N) \ll N^{2\nu - 1 + 2^{-\nu}}$$

The implied constant above depends on v. If v = 1, then arguing as in the proof of Theorem 1, we derive that for any integer *K* with $1 \leq K < p/2$, we have

$$|S(\chi, H, N)|^2 \ll K^{-2}N \sum_{k,m=0}^{K-1} \sum_{n=H+1}^{H+N} \chi\left(\Psi_{k,m}(n)\right) + K^2,$$

where $\Psi_{k,m}(X)$ is given by (8) and as before Σ^* means that the poles of $\Psi_{k,m}(X)$ are excluded from the summation. Therefore,

$$\sum_{\chi \in \mathcal{X}} |S(\chi, H, N)|^2 \ll K^{-2}N \sum_{k,m=0}^{K-1} \sum_{n=H+1}^{H+N} \sum_{\chi \in \mathcal{X}} \chi \left(\Psi_{k,m}(n) \right) + pK^2.$$

Then, from (10), we see that the sum over χ vanishes, unless

$$\Psi_{k,m}(n) \equiv 1 \pmod{p},\tag{11}$$

856

in which case it equals p - 1. For the K pairs (k, m) with k = m there are N possible solutions to (11), while for the other $O(K^2)$ pairs there are O(K) solutions to (11). Thus,

$$\sum_{\chi \in \mathcal{X}} |S(\chi, H, N)|^2 \ll K^{-2} N \left(K^3 + KN\right) p + pK^2$$

$$= \left(NK + N^2K^{-1} + K^2 \right) p.$$

Taking $K = \lfloor N^{1/2} \rfloor$, we deduce

$$I_{\nu}(H, N) = \frac{1}{p-1} \sum_{\chi \in \mathcal{X}} |S(\chi, H, N)|^2 \ll N^{3/2}.$$

Assume now that $v \ge 2$ and that

$$I_{\nu-1}(H,N) \ll p N^{2\nu-3+2^{-\nu+1}}.$$

We fix some K < N and note that by the Cauchy inequality, we have

$$\left| \sum_{n=H+1}^{H+N} \chi(b_n) \right|^2 = \left| \sum_{k=1}^K \sum_{H+(k-1)N/K < m \leqslant H+kN/K} \chi(b_m) \right|^2$$
$$\leqslant K \sum_{k=1}^K \left| \sum_{H+(k-1)N/K < m \leqslant H+kN/K} \chi(b_m) \right|^2.$$

Therefore,

$$\sum_{\chi \in \mathcal{X}} |S(\chi, H, N)|^{2\nu} \leq K \sum_{k=1}^{K} \sum_{\chi \in \mathcal{X}} \left| \sum_{H+(k-1)N/K < m \leq H+kN/K} \chi(b_m) \right|^2 \times \left| \sum_{n=H+1}^{H+N} \chi(b_n) \right|^{2\nu-2} = K \widetilde{I}_{\nu}(K, H, N),$$

where $\widetilde{I}_{v}(K, H, N)$ is the number of solutions to the congruence

$$b_{m_1} \prod_{i=1}^{\nu-1} b_{n_i} \equiv b_{m_2} \prod_{i=\nu}^{2\nu-2} b_{n_i} \pmod{p}$$

with $H + 1 \le n_1, \ldots, n_{2\nu-2} \le H + N$, and $H + (k-1)N/K < m_1, m_2 \le H + kN/K$ for some $k = 1, \ldots, K$. For each of the N pairs (m_1, m_2) with $m_1 = m_2$ there are exactly $I_{\nu-1}(H, N)$ solutions. We also see that if $n_1, \ldots, n_{2\nu-2}$ are given then for each fixed value of $r = m_1 - m_2$ there are no more than |r| solutions in m_1, m_2 (because at least one of m_1 or m_2 satisfies a nontrivial polynomial congruence of degree |r|). Certainly, r = O(N/K). Putting everything together and using the induction assumption, we obtain

$$\widetilde{I}_{\nu}(K, H, N) \ll N I_{\nu-1}(H, N) + (N/K)^2 N^{2\nu-2} = N^{2\nu-2+2^{-\nu+1}} + N^{2\nu} K^{-2}$$

Therefore $I_{\nu}(H, N) \ll K N^{2\nu - 2 + 2^{-\nu + 1}} + N^{2\nu} K^{-1}$. Choosing $K = \lceil N^{1 - 2^{-\nu}} \rceil$, we obtain the desired bound for the sums $S(\chi, H, N)$.

The sums $T(\chi, H, N)$ can be estimated completely analogously. \Box

2.2. Distribution in residue classes

Theorem 3. For all sufficiently large primes p and every integer λ there exist positive integers $r, s \leq p^{13/2} (\log p)^6$ such that $b_r \equiv c_s \equiv \lambda \pmod{p}$.

Proof. If $\lambda \equiv 0 \pmod{p}$, we simply take r = s = (p+1)/2.

We now assume that $\lambda \not\equiv 0 \pmod{p}$.

We put $N = \lfloor p^{1/2} (\log p)^6 \rfloor$ and consider the set N of positive integers *n* whose *p*-ary representation is of the form

$$n = n_0 + \dots + n_6 p^6, \quad 0 \le n_0, \dots, n_5 \le \frac{p-1}{2}, \quad 0 \le n_6 \le N.$$
 (12)

Let $Q(N, \lambda)$ be the number of solutions to the congruence

 $b_n \equiv \lambda \pmod{p}, \quad n \in \mathcal{N}.$

By (10), we have

$$Q(N,\lambda) = \frac{1}{p-1} \sum_{n \in \mathcal{N}} \sum_{\chi \in \mathcal{X}} \chi(\lambda^{-1}b_n) = \frac{1}{p-1} \sum_{\chi \in \mathcal{X}} \chi(\lambda^{-1}) \sum_{n \in \mathcal{N}} \chi(b_n).$$

Separating the term

$$\frac{\#\mathcal{N}}{p-1} = \frac{(N+1)(p+1)^6}{2^6(p-1)},$$

corresponding to the principal character χ_0 , we obtain

$$\left| \mathcal{Q}(N,\lambda) - \frac{(N+1)(p+1)^6}{2^6(p-1)} \right| \leq \frac{1}{p-1} \sum_{\chi \in \mathcal{X}^*} \left| \sum_{n \in \mathcal{N}} \chi(b_n) \right|.$$

We now see that, by (1),

$$\sum_{n \in \mathcal{N}} \chi(b_n) = (S(\chi; 0, (p-1)/2) + 1)^6 (S(\chi; 0, N) + 1)$$

(since $\chi(b_0) = \chi(1) = 1$).

Hence, applying Theorem 1, and then Theorem 2 with v = 1, we obtain

$$\frac{1}{p-1} \sum_{\chi \in \mathcal{X}^*} \left| \sum_{n \in \mathcal{N}} \chi(b_n) \right|$$

$$\leq \frac{1}{p-1} \sum_{\chi \in \mathcal{X}^*} (|S(\chi; 0, (p-1)/2)| + 1)^6 (|S(\chi; 0, N)| + 1)$$

$$\ll \frac{1}{p-1} N^{3/4} p^{1/8} (\log p)^{1/4} \left(p^{7/8} (\log p)^{1/4} \right)^4$$

$$\times \sum_{\chi \in \mathcal{X}^*} \left(|S(\chi; 0, (p-1)/2)|^2 + 1 \right)$$

$$\ll \frac{1}{p-1} N^{3/4} p^{1/8} (\log p)^{1/4} \left(p^{7/8} (\log p)^{1/4} \right)^4 p^{5/2}$$

$$= N^{3/4} p^{41/8} (\log p)^{5/4}.$$

Therefore,

$$Q(N, \lambda) = \frac{(N+1)(p+1)^5}{2^6} + O\left(N^{3/4}p^{41/8}(\log p)^{5/4}\right)$$
$$= \frac{(N+1)(p+1)^5}{2^6}\left(1 + O\left(N^{-1/4}p^{1/8}(\log p)^{5/4}\right)\right).$$
(13)

Recalling the choice of N, we see that $Q(N, \lambda) > 0$ for sufficiently large p. Therefore $b_r \equiv \lambda \pmod{p}$ for some positive integer $r \leq p^6 N \leq p^{13/2} (\log p)^6$.

Similar arguments also show that $c_s \equiv \lambda \pmod{p}$ for some positive integer $s \leq p^6 N \leq p^{13/2}$ (log p)⁶. \Box

Since $b_n \neq 0 \pmod{p}$ if and only if the *p*-ary digits of *n* are all less than p/2, we see from (13) that for every $\lambda \neq 0 \pmod{p}$ the number of solutions of each of the congruences

$$b_n \equiv \lambda \pmod{p}$$
 and $c_n \equiv \lambda \pmod{p}$,

for $0 \le n \le p^7 - 1$ is $2^{-7} p^6 (1 + O(p^{-1/8}(\log p)^{5/4}))$. In fact, using (9), this can be slightly improved to $2^{-7} p^6 (1 + O(p^{-1/8}))$.

3. PR-sequences

3.1. The set of residues

We start with the following property of **PR**-sequences.

Lemma 4. Let $(u_n^{(j)})_{n \ge 0}$, be **PR**-sequences of integers of type (ℓ_j, d) , with $\ell_j \le \ell$ for $j = 1, \ldots, m$. Let

$$v_n = \sum_{j=1}^m \lambda_j u_n^{(j)}, \quad n = 0, 1, \dots,$$

where λ_j are arbitrary integers. Then $(v_n)_{n \ge 0}$ is a **PR**-sequence of integers of type $(2m\ell, 2dm\ell)$.

Proof. Assume that the sequences $(u_n^{(j)})_{n \ge 0}$ satisfy the recurrences

$$\sum_{i=0}^{\ell_j} f_i^{(j)}(n) u_{n+\ell_j-i}^{(j)} = 0$$
(14)

859

with $f_i^j(X) \in \mathbb{Z}[X]$ for $i = 0, ..., \ell_j$, and where for each j = 1, ..., m not all polynomials $f_i^{(j)}(X), i = 0, ..., \ell_j$, are zero. Furthermore, we assume that $\ell_j \leq \ell$ for j = 0, ..., m, and that the degrees of all the polynomials $f_i^{(j)}$ are at most d.

Without loss of generality, we may assume that $\lambda_j \neq 0$ and that $f_0^{(j)}(X)$ is not the zero polynomial for j = 1, ..., m.

It is enough to show that for $t = 2m\ell$ there exist t + 1 polynomials $F_i(X) \in \mathbb{Z}[X]$, not all zero and of degrees at most $D = 2dm\ell$, such that

$$\sum_{i=0}^{l} F_i(n)v_{n+t-i} = 0, \quad n = 0, 1, \dots$$

By replacing the sequence $(u_n^{(j)})_{n \ge 0}$ by the sequence $(\lambda_j u_n^{(j)})_{n \ge 1}$, we may assume that $\lambda_j = 1$ for all j = 1, ..., m. We now show that for each $h \ge 0$, we have a relation of the form

$$u_{n+h}^{(j)} = \sum_{i=0}^{\ell_j - 1} g_{i,j,h}(n) u_{n+i}^{(j)},$$
(15)

where $g_{i,j,h}(X)$ are rational functions with the same denominator such that both the numerator and denominator have degrees at most max $\{0, (h - \ell_j + 1)d\}$. Indeed, if $h \leq \ell_j - 1$, we set $g_{i,j,h}(X) = 1$ if i = j and we set $g_{i,j,h}(X) = 0$ otherwise. Then relations (15) are fulfilled. If $h = \ell_j$, we simply set $g_{i,j,\ell_j}(X) = -f_{\ell_j-i}^{(j)}(X)/f_0^{(j)}(X)$ and relation (15) is then a consequence of the recurrence (14). We now proceed by induction on h. Assuming that (15) holds for h, then

$$u_{n+h+1}^{(j)} = \sum_{i=0}^{\ell_j - 1} g_{i,j,h}(n+1)u_{n+1+i}^{(j)}$$

= $\sum_{i=0}^{\ell_j - 2} g_{i,j,h}(n+1)u_{n+1+i}^{(j)} + g_{\ell_j - 1,j,h}(n+1)u_{n+\ell_j}^{(j)}$
= $g_{\ell_j - 1,j,h}(n+1)g_{0,j,\ell_j}(n)u_n^{(j)}$
+ $\sum_{i=1}^{\ell_j - 1} \left(g_{i-1,j,h}(n+1) + g_{\ell_j - 1,j,h}(n+1)g_{i,j,\ell_j}(n)\right)u_{n+i}^{(j)}$

and so (15) holds for h + 1 if we set

$$g_{0,j,h+1}(X) = g_{\ell_j-1,j,h}(X+1)g_{0,j,\ell_j}(X)$$

and

$$g_{i,j,h+1}(X) = g_{i-1,j,h}(X+1) + g_{\ell_j-1,j,h}(X+1)g_{i,j,\ell_j}(X), \quad i = 1, \dots, \ell_j - 1.$$

One can also see from the above formulas, that we may assume that for the same values of *j* and *h*, the rational functions $g_{i,j,\ell_j}(X)$, $i = 1, ..., \ell_j - 1$ have the same denominator.

860

The assertion about the degrees is now obvious.

Equipped with the representation (15), it follows that if $F_i(X) \in \mathbb{Z}[X]$ for i = 0, ..., t are any polynomials, then

$$\sum_{i=0}^{n} F_{i}(n)v_{n+t-i} = \sum_{h=0}^{t} v_{n+h}F_{t-h}(n)$$
$$= \sum_{j=1}^{m} \sum_{i=0}^{\ell_{j}-1} \left(\sum_{h=0}^{t} g_{i,j,h}(n)F_{t-h}(n)\right) u_{n+i}^{(j)}.$$

In order for the above expression to be zero, it suffices that

$$\sum_{h=0}^{t} g_{i,j,h}(X) F_{t-h}(X) = 0$$
(16)

holds identically over $\mathbb{Z}[X]$, for all j = 1, ..., m and $i = 0, ..., k_j - 1$.

Assume that $F_i(X) \in \mathbb{Z}[X]$, i = 0, ..., t are polynomials of degree at most D. Then the lefthand side of (16) is a rational function whose numerator is polynomial of degree at most td + D. Thus, (16) leads to a homogeneous system of

$$(td+D+1)\sum_{j=1}^m \ell_j \leqslant (td+D+1)m\ell$$

linear equations in t(D + 1) variables. This system has a nontrivial solution provided that

$$(t+1)(D+1) > (td+D+1)m\ell.$$

Recalling that $t = 2m\ell$ we see that $D = td = 2dm\ell$ satisfies this inequality, which completes the proof. \Box

Recall that $(u_n)_{n \ge 0}$ is a linear recurrence sequence if and only if $(u_n)_{n \ge 0}$ is a **PR**-sequence having a recurrence whose coefficients are constant polynomials (not all zero). We say that $(u_n)_{n \ge 0}$ is a *proper* **PR**-sequence if it is a **PR**-sequence and there is no n_0 , such that $(u_n)_{n \ge n_0}$ is a linear recurrence sequence.

Theorem 5. Let $(u_n)_{n \ge 0}$ be a proper **PR**-sequence of integers of type (ℓ, d) . For a prime number *p* we put

$$\mathcal{V}(p) = \{u_n \pmod{p} : n = 0, 1, \ldots\}.$$

Then the estimate $\#\mathcal{V}(p) \gg p^{\beta}$ holds, where

$$\beta = \frac{1}{2d\ell(\ell+1)^2}.$$

Proof. Write

$$\sum_{i=0}^{\ell} f_i(n) u_{n+\ell-i} = \sum_{j=0}^{D} L_j(u_n, \dots, u_{n+\ell}) n^j,$$

where $L_j(X_0, ..., X_\ell)$ are linear forms with integer coefficients. Since at least one of the polynomials $f_i(X)$ is nonzero, it follows that there exists j_0 such that L_{j_0} is not the zero form. We write $v_n = L_{j_0}(u_n, ..., u_{n+\ell})$ and apply Lemma 4 to deduce that there exists a recurrence

$$\sum_{i=1}^{t} g_i(X)v_{n+t-i} = 0, \quad n = 0, 1, \dots,$$
(17)

where $g_i(X) \in \mathbb{Z}[X]$ are polynomials for $i = 0, ..., t \leq 2\ell(\ell + 1)$ of degrees not exceeding $D = 2d\ell(\ell + 1)$. We assume, without loss of generality, that $g_0(X)g_t(X)$, is not the zero polynomial. Let n_0 the largest positive integer root of $g_0(X)g_t(X)$ (if this polynomial does not have positive integer roots we take $n_0 = 0$), and let δ be such that the inequality $n < \delta y^{1/D}$ implies that $|g_t(n)| < y$ holds for all $y \ge n_0 + 1$. Put $\mathcal{I} = \mathbb{Z} \cap [n_0 + 1, \delta p^{1/D} - t]$, and assume that p is a large enough prime so that \mathcal{I} is not empty.

For each $n \in \mathcal{I}$, the recurrence (2) gives a relation for *n* of the type

$$f_0(n)w_0 + \dots + f_\ell(n)w_\ell \equiv 0 \pmod{p},\tag{18}$$

where the vector $(w_0, \ldots, w_\ell) \equiv (u_{n+\ell}, \ldots, u_n) \pmod{p}$ is an element of $\mathcal{V}(p)^{\ell+1}$, so it can take at most $\#\mathcal{V}(p)^{\ell+1}$ values.

Whenever (w_0, \ldots, w_ℓ) is such that the above relation (18) is a nontrivial polynomial relation modulo p for n, the number of values of n which satisfy (18) is at most D. Hence, there are at most $D#\mathcal{V}(p)^{\ell+1}$ values of $n \in \mathcal{I}$ for which the above polynomial relation (18) is nontrivial.

If the relation (18) is trivial, then the polynomial

$$\sum_{j=0}^{D} L_j(w_0, \dots, w_\ell) X^j \in \mathbb{Z}[X]$$

is identically zero modulo p. In particular,

$$L_{j_0}(u_n,\ldots,u_{n+\ell}) \equiv 0 \pmod{p}.$$
⁽¹⁹⁾

Assume that (19) holds for t consecutive values of $n \in \mathcal{I}$. Let those values of n be $m + 1, \ldots, m + t$. Evaluating the formula (17) in n = m and reducing modulo p, we get

$$g_t(m)v_m \equiv 0 \pmod{p}$$

Since $m \in \mathcal{I}$, it follows that $|g_t(m)| < p$ and $g_t(m) \neq 0$. Hence, the above congruence implies that $v_m \equiv 0 \pmod{p}$. Continuing in this way, we see that $v_i \equiv 0 \pmod{p}$, for all integers $n_0 < i \leq m$. In particular, assuming that p is large enough, we see that in this case $v_i = 0$ for $i = n_0 + 1, \ldots, n_0 + t - 1$. However, this implies that $v_i = 0$ for all $i > n_0$, which means that $(u_n)_{n \geq n_0+1}$ is a linear recurrence sequence, contradicting our assumption. Thus, the congruence (19) cannot hold for t consecutive values of $n \in \mathcal{I}$. This shows that one out of every telements in \mathcal{I} has the property that its associated congruence (18) is not trivial. In turn, this shows that

$$D \# \mathcal{V}(p)^{\ell+1} \ge \left\lfloor \frac{\# \mathcal{I}}{t} \right\rfloor \gg p^{1/D},$$

giving the claimed result. \Box

Remark 6. In some instances, one may deduce a better inequality. For instance, assume that $(u_n)_{n \ge 0}$ satisfies the recurrence (2) where the polynomials $f_0(X), \ldots, f_\ell(X)$ are linearly independent over \mathbb{Q} . Here, we no longer assume that $(u_n)_{n \ge 0}$ is a proper **PR**-sequence. It is then clear that they remain linearly independent over the finite field with *p* elements \mathbb{Z}_p if *p* is sufficiently large. Furthermore, in this case the relation (18) cannot be trivial. The above argument now easily yields a stronger and more general bound

$$\#\mathcal{V}(N; p) \gg (\min\{p, N\})^{1/(\ell+1)}$$

where

$$\mathcal{V}(N; p) = \{u_n \pmod{p} : n = 0, \dots, N-1\}.$$

Using recurrence (5) and observing that the three polynomials $f_0(X) = X^3$, $f_1(X) = 34X^3 - 51X^2 + 27X - 5$, $f_2(X) = (X - 1)^3$ are linearly independent over \mathbb{Q} , one uses the argument of Remark 6 to derive the inequality

$$\#\mathcal{V}(p,N) \ge \left(\frac{N-2}{3}\right)^{1/2}$$

if $N \leq p$ for the case of the Apéry numbers.

In order to be able to deal with the sequences $(b_{\nu,n})_{n \ge 1}$ and $(\tilde{b}_{\nu,n})_{n \ge 0}$, it suffices to show that they are not linear recurrence sequences from some point on. Note that we need that $\nu \ge 2$, otherwise $b_{1,n} = 2^n$ and $\tilde{b}_{1,n} = 0$. When $\nu = 2$, we have $b_{2,n} = b_n$, thus Remark 6 applies again (in any case for this sequence, stronger results are obtained in Section 2). Assume now that $\nu \ge 3$. Since

$$\binom{n}{k} \leqslant \binom{n}{\lfloor n/2 \rfloor} \sim \frac{2^n}{n^{1/2}}, \quad k = 0, \dots, n,$$

it follows easily that

$$\frac{2^{\nu n}}{n^{\nu/2}} \ll b_{\nu}(n) \ll \frac{2^{\nu n}}{n^{\nu/2-1}}.$$

Furthermore,

$$\widetilde{b}_{\nu,n} \sim \frac{(2\cos(\pi/2\nu))^{2n\nu+\nu-1}}{\sqrt{\nu}2^{\nu-2}(\pi n)^{(\nu-1)/2}}$$

if $N \leq p$ for $v \geq 2$ (see [4]).

Now the fact that $(b_{\nu,n})_{n \ge 1}$ and $(\tilde{b}_{\nu,n})_{n \ge 0}$ are not linear recurrence sequences from some point on follows immediately from Theorem 2.6 of Everest et al. [7].

3.2. The Waring problem and distribution of residues

As we have remarked, Apéry numbers $(a_n)_{n \ge 0}$ as well as sums of powers of binomial coefficients $(b_{\nu,n})_{n \ge 1}$ and $(\tilde{b}_{\nu,n})_{n \ge 0}$ are proper **PR**-sequence which also have the Lucas property. Here we show that all such sequences form a finite additive basis modulo p for every sufficiently large prime p.

Theorem 7. Let $(u_n)_{n \ge 0}$ be a proper **PR**-sequence of integers of type (ℓ, d) with the Lucas property. There exists an absolute constant c > 0 such that for $m = \lceil (d\ell)^c \rceil$, $s = \lceil \exp((d\ell)^c) \rceil$, and every sufficiently large prime p, the congruence

 $u_{n_1} + \dots + u_{n_s} \equiv \lambda \pmod{p}$

has a solution for any integer λ in some nonnegative integers $n_1, \ldots, n_s < p^m$.

Proof. Let \mathcal{T} be a set of the largest possible cardinality of positive integers $t \leq p$, such that u_t with $t \in \mathcal{T}$ are pairwise distinct. By Theorem 5, we have $\#\mathcal{T} \gg p^{\beta}$, where $\beta = 1/2d\ell(\ell + 1)^2$. Therefore, by the result of Bourgain et al. [3], there are some positive constants, c_1, c_2, c_3 such that for any $m > \lceil \beta^{c_1} \rceil$ and $\gamma = \exp(-c_2\beta^{-c_3})$, the bound

$$\max_{\gcd(a,p)=1} \left| \sum_{t_0,\ldots,t_{m-1}\in\mathcal{T}} \mathbf{e}(au_{t_0}\ldots u_{t_{m-1}}) \right| \ll (\#\mathcal{T})^m p^{-\gamma},$$

holds, where, as before, $\mathbf{e}(z) = \exp(2\pi i z/p)$ and $i = \sqrt{-1}$.

Denoting by \mathcal{N} the set of positive integers *n* whose *p*-ary expansion is of the form $n = t_0 + \cdots + t_{m-1}p^{m-1}$ with $t_0, \ldots, t_{m-1} \in \mathcal{T}$, we see, by (3), that the previous bound is equivalent to

$$\max_{\gcd(c,p)=1} \left| \sum_{n \in \mathcal{N}} \mathbf{e}(cu_n) \right| \ll \# \mathcal{N} p^{-\gamma}.$$
(20)

From the identity

$$\sum_{c=0}^{p-1} \mathbf{e}(cu) = \begin{cases} 0 & \text{if } u \not\equiv 0 \pmod{p}, \\ p & \text{if } u \equiv 0 \pmod{p}, \end{cases}$$

we deduce that the number $Q(\lambda)$ of solutions of the congruence of the theorem with $n_1, \ldots, n_s \in \mathcal{N}$ can be expressed as

$$Q(\lambda) = \frac{1}{p} \sum_{c=0}^{p-1} \sum_{n_1,\dots,n_s \in \mathcal{N}} \mathbf{e}(c(u_{n_1} + \dots + u_{n_s} - \lambda))$$
$$= \frac{1}{p} \sum_{c=0}^{p-1} \mathbf{e}(-c\lambda) \left(\sum_{n \in \mathcal{N}} \mathbf{e}(cu_n)\right)^m.$$

Separating the term $(\#N)^s p^{-1}$ corresponding to c = 0 and using (20) for the other terms, we derive

$$Q(\lambda) = (\#\mathcal{N})^s p^{-1} + O\left((\#\mathcal{N})^s p^{-\gamma s}\right).$$

Thus, for any $s > \lfloor \gamma^{-1} \rfloor + 1$, we see that $Q(\lambda) > 0$ for all sufficiently large *p*. Since $\beta^{-1} = 2d\ell(\ell+1)^2 \leq 8d\ell^3 \leq d^4\ell^3$, we obtain the desired result for an appropriate value of *c*. \Box

Very similar ideas also lead to the following result:

Theorem 8. Let $(u_n)_{n \ge 0}$ be a proper **PR**-sequence of integers of type (ℓ, d) with the Lucas property. There exists an absolute constant c > 0, such that for $m = \lceil (d\ell)^c \rceil$, $\alpha = \exp(-(d\ell)^c)$, and every sufficiently large prime p, the congruence

 $u_n \equiv \lambda + \eta \pmod{p}$

has a solution for every integer λ in some nonnegative integers $n < p^m$ and $\eta \leq p^{1-\alpha}$.

Proof. The proof follows from (20) with any $\alpha < \gamma$ by standard arguments relating exponential sums and the uniformity of distribution properties of sequences (see, for example [16, Corollary 3.11]). \Box

We see that both Theorems 7 and 8 apply to Apéry numbers $(a_n)_{n \ge 0}$ and sums of powers of binomial coefficients $(b_{\nu,n})_{n \ge 1}$ and $(\tilde{b}_{\nu,n})_{n \ge 0}$.

Acknowledgments

During the preparation of this paper, M. G. and F. L. were supported in part by Grant SEP-CONACYT 46755, and I. S. was supported in part by ARC Grant DP0556431.

References

- W.D. Banks, F. Luca, I.E. Shparlinski, H. Stichtenoth, On the value set of n! modulo a prime, Turkish Math. J. 29 (2005) 169–174.
- [2] D. Berend, J.E. Harmse, On some arithmetical properties of middle binomial coefficients, Acta Arith. 84 (1998) 31–41.
- [3] J. Bourgain, A.A. Glibichuk, S.V. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, Preprint, 2004.
- [4] N.G. De Bruijn, Asymptotic Methods in Analysis, North-Holland, Amsterdam, 1970.
- [5] J.H.H. Chalk, Polynomial congruences over incomplete residue systems modulo k, Proc. Kon. Ned. Acad. Wetensch. A 92 (1989) 49–62.
- [6] T.W. Cusick, Recurrences for sums of powers of binomial coefficients, J. Combin. Theory Ser. A 52 (1989) 77-83.
- [7] G. Everest, A.J. van der Poorten, I.E. Shparlinski, T.B. Ward, Recurrence sequences, Amer. Math. Soc. (2003).
- [8] M.Z. Garaev, F. Luca, I.E. Shparlinski, Character sums and congruences with n!, Trans. Amer. Math. Soc. 356 (2004) 5089–5102.
- [9] M.Z. Garaev, F. Luca, I.E. Shparlinski, Exponential sums and congruences with factorials, J. Reine Angew. Math. 584 (2005) 29–44.
- [10] I. Gessel, Some congruences for Apéry numbers, J. Number Theory 14 (1982) 362–368.
- [11] R.K. Guy, Unsolved Problems in Number Theory, Springer, New York, 2004.
- [12] W.-C.W. Li, Number Theory with Applications, World Scientific, Singapore, 1996.
- [13] R. Lidl, H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, 1997.
- [14] R.J. McIntosh, Recurrences for alternating sums of powers of binomial coefficients, J. Combin. Theory Ser. A 63 (1993) 223–233.
- [15] R.J. McIntosh, A generalization of a congruential property of Lucas, Amer. Math. Monthly 99 (1992) 231–238.
- [16] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.
- [17] M. Stoll, Bounds for the length of recurrence relations for convolutions of *P*-recursive sequences, European J. Combin. 18 (1997) 707–712.
- [18] A. Weil, Basic Number Theory, Springer, New York, 1974.