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a b s t r a c t

We present an algorithm for computing the 2-group C̃`
res
F of

narrow logarithmic divisor classes of degree 0 for number fields
F . As an application, we compute in some cases the 2-rank of the
wild kernel WK2(F) and the 2-rank of its subgroup K∞2 (F) :=
∩n≥1 K n2 (F) of infinite height elements in K2(F).

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Jaulent (1994a) pointed out that the wild kernelWK2(F) of a number field F can also be studied via
logarithmic class groups, the arithmetic of which he therefore developed (Jaulent, 1994b).
More precisely, if F contains a primitive 2`th root of unity, the `-rank ofWK2(F) coincides with the

`-rank of the logarithmic class group C̃`F . So an algorithm for computing C̃`F for Galois extensions
F was developed first by Diaz y Diaz and Soriano (1999) and later generalized and improved for an
arbitrary number field by Diaz y Diaz et al. (2005).
In case the prime ` is odd and the field F does not contain a primitive `th root of unity one considers

the cyclotomic extension F ′ := F(ζ`), uses the isomorphism

µ` ⊗ C̃`F ′ ' WK2(F ′)/WK2(F ′)`,
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and gets back to F via the so-called transfer (Jaulent and Soriano-Gafiuk, 2001; Soriano-Gafiuk, 2000;
Jaulent andMichel, 2006). The algorithmic aspect of this is treated by Pauli and Soriano-Gafiuk (2004).
In case ` = 2, whenever the condition ζ2` ∈ F is not fulfilled, the relationship between logarithmic

classes and exotic symbols is more intricate. For instance, when the number field F has a real
embedding, Soriano (1997) observed that one may then define a narrow version of the logarithmic
class group by analogy with the classical ideal class groups; and she used this for approximating
the wild kernel more closely (Soriano-Gafiuk, 2000). But, unexpectedly, the 2-rank of this restricted
logarithmic class group C̃` resF sometimes differs from the 2-rank of the group WK2(F). Moreover, in
this case the wild kernelWK2(F)may differ from its subgroup K∞2 (F) := ∩n≥1K

n
2 (F) of infinite height

elements in K2(F). This was observed by J. Tate and then made more explicit by Hutchinson (2001,
2004).
That last difficultywas finally solved by Jaulent and Soriano-Gafiuk (2004); the authors constructed

a positive class group ad hocC` posF which has the same2-rank as thewild kernelWK2(F). Nevertheless,
in case the set PEF of dyadic exceptional primes of the number field F is empty, that group C`

pos
F

appears as a factor of the full narrow logarithmic class group C` resF (without any assumption on the
degree), so one may still use narrow logarithmic classes in order to compute the 2-rank of the wild
kernel.
In the present paper we use the results by Diaz y Diaz et al. (2005) on (ordinary) logarithmic class

groups and develop an algorithm for computing the narrow groups C̃` resF in arbitrary number fields F .
As a consequence, this algorithm calculates the 2-rank of the wild kernelWK2(F) whenever the field
F has no dyadic exceptional places.
The computation of the 2-rank of WK2(F) in the remaining case (PEF 6= ∅) will be solved in a

forthcoming article where we compute the finite positive class group C`
pos
F and its subgroup C̃`

pos
F of

positive classes of degree 0.

2. The group of narrow logarithmic classes C̃` res
F

In this preliminary section we recall the definition and the main properties of the arithmetic of
restricted (or narrow) logarithmic classes. Jaulent (1994b) and Soriano-Gafiuk (2000) give a more
detailed account.
Throughout this paper the prime number ` equals 2 and F is a number field of degree n = r + 2c

with r real places, c complex places and d dyadic places.
According to Jaulent (1994a), for every finite place p of F there exists a 2-adic p-valuation ṽp which

is related to the wild p-symbol in case the cyclotomic Z2-extension of Fp contains i. The degree degFp
of the place p is a 2-adic integer such that the image ofRF := Z2 ⊗Z F× under the map Log | |p is the
Z2-module degFp Z2 (Jaulent, 1994b), where Log denotes the usual 2-adic logarithm and | |p is the
2-adic absolute value at the place p. The construction of the 2-adic logarithmic valuations ṽp yields:

∀α ∈ RF := Z2 ⊗Z F× :
∑
p∈Pl 0F

ṽp(α)degFp = 0,

where Pl 0F is the set of finite places of the number field F . Setting

d̃ivF (α) :=
∑
p∈Pl 0F

ṽp(α) p

with values inD`F :=
⊕

p∈Pl 0F
Z2 p, we obtain by Z2-linearity:

degF (d̃ivF (α)) = 0. (1)

We then define the subgroup of logarithmic divisors of degree 0 by:

D̃`F :=

{
a =

∑
p∈Pl 0F

app ∈ D`F

∣∣∣∣ degFa :=∑
p∈Pl 0F

ap degFp = 0
}
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and the group of principal logarithmic divisors as the image ofRF by d̃ivF :

P̃`F :=
{
d̃ivF (α) | α ∈ RF

}
.

Due to (1), P̃`F is a subgroup of D̃`F . Also, by the so-called extendedGross conjecture the factor group

C̃`F := D̃`F/P̃`F

is a finite group, the 2-group of logarithmic divisor classes (of degree 0) of the field F introduced by
Jaulent (1994b).
Now let PRF := {p1, . . . , pr} be the (non-empty) set of real places of the field F and F+ be the

subgroup of all totally positive elements in F×, i.e. the kernel of the sign-map

sign∞F : F
×
→ {±1}r

which maps x ∈ F onto the vector of the signs of the real conjugates of x. For

P̃`+F := {d̃ivF (α) | α ∈ R+F := Z2 ⊗Z F+}

Soriano (1997) introduced the factor group

C̃` resF := D̃`F/P̃`
+

F ,

which is called 2-group of narrow (or restricted) logarithmic divisor classes (of degree 0). Under the
extended Gross conjecture C̃` resF is finite.
In order to make it more suitable for actual computations, we may define it in a slightly different

way by introducing real signed divisors of degree 0:

Definition 2.1. With the notations above, the 2-group of real signed logarithmic divisors (of degree
0) is the direct sum:

D̃` resF := D̃`F ⊕ {±1}r;

and the subgroup of principal real signed logarithmic divisors is the image:

P̃` resF := {(d̃ivF (α), sign
∞

F (α)) | α ∈ RF }

ofRF := Z2 ⊗Z F× under the (d̃ivF , sign∞F )map. The factor group:

C̃` resF := D̃` resF /P̃`
res
F

is the 2-group of narrow logarithmic divisor classes (of degree 0).

Due to the weak approximation theorem, every class in C̃` resF can be represented by a pair (a, 1)
where the vector 1 has all entries 1. So the canonical map a 7→ (a, 1) induces a morphism from D̃`F
onto C̃` resF , the kernel of which is P̃`

+

F . We conclude as expected:

C̃` resF = D̃` resF /P̃`
res
F ' D̃`F/P̃`

+

F .

We are now in a situation to present an algorithm for computing narrow logarithmic classes. It
uses our previous results by Diaz y Diaz et al. (2005) on (ordinary) logarithmic classes andmimics the
classical feature concerning narrow and ordinary ideal classes. We note that this algorithm is a bit
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more intricate in the logarithmic context since the logarithmic units are not algebraic numbers and
are therefore not exactly known from a numerical point of view.

3. The algorithm for computing C̃` res
F

We assume in this section that the number field F has at least one real place and that the
logarithmic 2-class group C̃`F is isomorphic to the sum

C̃`F '
ν⊕
j=1

Z/2njZ

subject to 1 ≤ n1 ≤ · · · ≤ nν . Let aj (1 ≤ j ≤ ν) be fixed representatives of the ν generating divisor
classes (of degree 0).We let (εi)i=1,...,r denote the canonical basis of themultiplicative F2-space {±1}r .
Thus any real signed divisor (a, ε) in D̃` resF can be uniquely written:

(a, ε) =

(
ν∑
j=1

ajaj + d̃ivF (α),
r∏
i=1

ε
bi
i sign

∞

F (α)

)
with suitable integers aj ∈ Z, bi ∈ {0, 1} and α ∈ RF .
Then the (aj, 1)j=1,...,ν together with the (0, εi)i=1,...,r are a finite set of generators of the narrow

class group C̃`resF . We just need to detect the relations among those.
From the description of the logarithmic class group C̃`F above we get:

2njaj = d̃ivF (αj),

with αj ∈ RF for j = 1, . . . , ν. So we can define coefficients cν+i,j in {0, 1} by:

sign∞F (αj) = ((−1)
cν+1,j , . . . , (−1)cν+r,j).

Consequently, a first set of relations is given by the columns of the following matrix A ∈ Z(ν+r)×ν2 :

A =



2n1 0 · · · 0 0
0 2n2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 2nν−1 0
0 0 · · · 0 2nν
−− −− −−− −− −−

ci,j


.

Now, the ν elements αj are only given up to logarithmic units. Hence, we must additionally consider
the sign-function on the 2-group ẼF of logarithmic units of F (Jaulent, 1994a). More precisely, in case

ẼF = {±1} × 〈ε̃1, . . . , ε̃r+c〉,

we define exponents bi,j via

sign∞F (ε̃j) =
r∏
i=1

ε
bi,j
i (2)

and we have, of course:

sign∞F (−1) =
r∏
i=1

εi.
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If we can find generators of the 2-group of logarithmic units (see Section 4) and therefore relations
(2), the columns of the followingmatrix R ∈ Z(ν+r)×(ν+2r+c+1)2 generate all relations for the (aj, 1) and
the (0, ej):

R =



2n1 | 0 · · · 0 | 0 · · · 0 0
. . . |

...
... |

...
...

...

2nν | 0 · · · 0 | 0 · · · 0 0
−− −− −−− | −− −− −− | −− −− −− −−

| 2 | b1,1 · · · b1,r+c 1

ci,j |
. . . |

...
...

...

| 2 | bν,1 · · · bν,r+c 1


.

4. Generators for the 2-group of logarithmic units

In the following we describe how generators of the 2-group of logarithmic units can be computed.
The 2-group of logarithmic units

ẼF = {x ∈ RF | ∀p : ṽp(x) = 0} = {x ∈ E ′F | ∀p | 2 : ṽp(x) = 0}

is a subgroup of the 2-group of 2-units E ′F . If we assume that there are exactly d places p1, . . . , pd
containing 2 in F , we have, say,

E ′F = {±1} × 〈ε1, . . . , εr+c+d−1〉.

We fix a precision e for our 2-adic approximations by requiring for elements ε of E ′F the relation
ṽpi(ε) ≡ 0 mod 2

e (1 ≤ i ≤ d).

We obtain a system of generators of ẼF by computing the nullspace of the matrix

M =

 | 2e · · · 0

ṽpi(εj) |
...

. . .
...

| 0 · · · 2e


with r + c + 2d− 1 columns and d rows. We assume that the nullspace is generated by the columns
of the matrix

M ′ =

( C
− − −

D

)
where C has r + c + d − 1 and D exactly d rows. It suffices to consider C . Each column
(n1, . . . , nr+c+d−1)tr of the matrix C corresponds to a unit

r+c+d−1∏
i=1

ε
ni
i ∈ ẼFE

′2e
F

so that we can choose

ε̃ :=

r+c+d−1∏
i=1

ε
ni
i

as an approximation for a logarithmic unit. This procedure yields k ≥ r + c logarithmic units. If the
integer kwhich we get in our calculations is not much larger than r+ c then wewill proceed with the
k generating elements of ẼF obtained. Otherwise, we reduce the number of generators by computing a
basis of the submodule ofZr+c+d−1which is the span of the columns of C . Of course, by the generalized
Gross conjecture we would have exactly r + c such units. This allows us to assert that the precision e,
chosen earlier in this section, was sufficient.
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5. Applications in K -theory

We adopt the notations and definitions in this section from Jaulent and Soriano-Gafiuk (2004). In
particular i denotes a primitive fourth root of unity; and we say that the number field F is exceptional
when i is not contained in the cyclotomicZ2-extension F c of F , i.e.whenever the cyclotomic extension
F c[i]/F is not procyclic.
We say that a non-complex place p of a number field F is signed whenever the local field Fp does

not contain the fourth root of unity i. These are the places which do not decompose in the extension
F [i]/F . For such a place p, there exists a non-trivial sign-map

signp : F
×

p → {±1},

given by the Artin reciprocity map F×p → Gal(Fp[i]/Fp) of class field theory.
We say that a non-complex place p of F is logarithmically signed if and only if one has i 6∈ F cp . These

are the places which do not decompose in F c[i]/F c . So the finite set PLSF of logarithmic signed places
of the field F only contains:

(i) the subset PRF of infinite real places and
(ii) the subset PEF of exceptional dyadic places, i.e. the set of logarithmic signed places above the
prime 2.

We say that a non-complex place p of F is logarithmically primitive if and only if p does not
decompose in the first step E/F of the cyclotomicZ2-extension F c/F . Finallywe say that an exceptional
number field F is primitivewhenever there exists an exceptional dyadic place which is logarithmically
primitive.
Naturally, the task arises to determine logarithmically signed places, i.e. those non-complex places

of F for which i is not contained in F cp :

Proposition 5.1. Let Ep be the first quadratic extension of Fp in the tower of field extension from Fp to F cp .
Then i ∈ F cp holds precisely for i ∈ Ep.

Proof. Since F cp /Fp is a Z2-extension, it contains exactly one quadratic extension Ep of Fp. So we
immediately obtain: i ∈ F cp ⇔ Fp(i) ⊆ Ep ⇔ i ∈ Ep. �

Remark 5.2. The extension Ep is Fp(αk) where k is the smallest integer such that αk does not belong
to Fp with α0 = 0 and αk+1 =

√
2+ αk.

We assume in the following that the number field F has no exceptional dyadic place. Let us
introduce the group C` resF of narrow logarithmic classes without any assumption of degree:

C` resF = D` resF /P̃`
res
F .

Via the degree map, we obtain the direct decomposition:

C` resF ' Z2 ⊕ C̃` resF ,

where the torsion subgroup C̃` resF was already computed in the previous section. So the quotient of
exponent 2

2C` resF := C` resF /(C`
res
F )

2

contains both as hyperplanes the two quotients, 2C̃` resF relative to C̃` resF and 2C` posF relative to the
positive class group C`

pos
F introduced by Jaulent and Soriano-Gafiuk (2004).

Since, according to Jaulent and Soriano-Gafiuk (2004), this gives the 2-rank of the wild kernel
WK2(F), we can extend the results of Hutchinson (2001, 2004) as follows:
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Theorem 5.3. Let F be a number field which has no exceptional dyadic places.

(i) If F is not exceptional (i.e. in case i ∈ F c) the wild kernel WK2(F) coincides with the subgroup
K∞2 (F) = ∩n≥1K

n
2 (F) of infinite height elements in K2(F); the group C̃` resF of narrow logarithmic

classes coincides with the group C̃`F of (ordinary) logarithmic classes; and one has immediately:

rk2WK2(F) = rk2 K∞2 (F) = rk2 C̃` resF = rk2 C̃`F .

(ii) If F is exceptional (i.e. in case i /∈ F c) the subgroup K∞2 (F) has index 2 in the wild kernel WK2(F) and
one still has:

rk2WK2(F) = rk2 C̃` resF ≥ 1.

(ii,a) In case WK2(F) and K∞2 (F) have the same 2-rank, this gives:
rk2 K∞2 (F) = rk2 C̃` resF ≥ 1.

(ii,b) Also, in case K∞2 (F) is a direct summand in WK2(F), one has:
rk2 K∞2 (F) = rk2 C̃` resF − 1.

Proof. In the non-exceptional case, the number field F is not locally exceptional, i.e.has no logarithmic
signed places: PEF = PRF = ∅. In particular, narrow logarithmic classes coincide with ordinary
logarithmic classes and the result follows from (Jaulent and Soriano-Gafiuk, 2004).
In the exceptional case, the number field F may have real places, so the narrow logarithmic

class group C̃` resF may differ from the ordinary logarithmic class group. Moreover, because of the
assumption PEF = ∅ and the results of Hutchinson (Hutchinson, 2001, 2004), the subgroup K∞2 (F)
has index 2 in the wild kernelWK2(F). �

Remark 5.4. It remains to determine whether a number field F is not exceptional, i.e. whether the
cyclotomic Z2-extension F c contains the fourth root of unity i. Of course if i ∈ F c then i is contained
in the quadratic subfield E/F in F c . Now the finite subfields of Qc are the real cyclic fields Q(s)

=

Q[ζ
2s+2
+ζ−1

2s+2
] and the finite extensions of F c are of the form FQ(s). So we only need to checkwhether

i is contained in F [ζ
2s+2
+ ζ−1

2s+2
]where s is minimal with ζ

2s+2
+ ζ−1

2s+2
/∈ F .

6. Examples

The methods described here were implemented in the computer algebra system Magma
(Cannon et al., 2006). Many of the fields used in the examples were results of queries to the QaoS
number field database (Daberkow and Weber, 1996; Freundt et al., 2006).
The wild kernelWK2(F) of a number field F is contained in the tame kernel K2(OF ). Letµ(F) be the

order of the torsion subgroupof F× and for a prime pof F over pdenote byµ1(Fp) the p-Sylow subgroup
of the torsion subgroup of F×p . By couplingMoore’s exact sequence and the localization sequence (Gras,
1986, section 1) one obtains the index formula (Belabas and Gangl, 2004, equation (6)):

(K2(OF ) : WK2(F)) =
2r

|µ(F)|

∏
p

|µ1(Fp)|,

where p runs through all finite places and r is the number of real places of F . We apply this in the
determination of the structure ofWK2(F) in the cases where the structure of K2(OF ) is known.
In the tables Abelian groups are given as a list of the orders of their cyclic factors. Furthermore we

use the following notation:

f is an irreducible polynomial over the integers;
F denotes the number field generated by a root of f ;
r is the number of real places of F ;
dF denotes the discriminant for a number field F ;
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Gal denotes the Galois group of f ;
K2(OF ) denotes the structure of the tame kernel of F ;
[:] denotes the index (K2(OF ) : WK2(F));
C`F denotes the class group, P the set of dyadic places;
C`′F denotes the 2-part of Cl/〈P〉;
C̃`F denotes the logarithmic class group;
C`resF denotes the group of narrow logarithmic classes;
rk2 denotes the 2-rank of the wild kernelWK2;
WK2 denotes the wild kernel in K2(F);
K∞2 denotes the subgroup of infinite height elements in K2(F).

Imaginary quadratic fields. Belabas and Gangl (2004) have developed an algorithm for the
computation of the tame kernel K2OF . The following table contains the structure of K2OF as computed
by Belabas and Gangl and the 2-rank of the wild kernelWK2(F) calculated with our methods. We also
give the structure of the wild kernel if it can be deduced from the structure of K2OF and of the rank
of the wild kernel computed here or in (Pauli and Soriano-Gafiuk, 2004). The structure of the tame
kernel K2(OF ) of all fields except for the starred entries has been proven by Belabas and Gangl. The
table gives the structure of the wild kernel of all imaginary quadratic fields F with no exceptional
places and discriminant |dF | < 1000.

dF C`F K2(OF ) [:] C`′F C̃`F C̃` resF rk2 WK2 K∞2
−68 [ 4 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2]
−132 [2,2] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
−136 [ 4 ] [ 4 ] 1 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2]
−164 [ 8 ] [ 4 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
−228 [2,2] [ 12] 6 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
−260 [2,4] [ 4 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
−264 [2,4] [ 6 ] 3 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
−292 [ 4 ] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
−328 [ 4 ] [ 2 ] 1 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
−356 [ 12 ] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
−388 [ 4 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2]
−420 [2,2,2] [2,4] 2 [2,2] [2,2] [2,2] 2 [2,2] [2]
−452 [ 8 ] [ 8 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [4] [2]
−456 [2,4] [ 2 ] 1 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
−516 [2,6] [ 12 ] 6 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
−520 [2,2] [ 2 ] 1 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
−548 [ 8 ] [ 4 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
−580 [2,4] [ 4 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
−584 [ 16 ] [ 2 ] 1 [ 8 ] [ 8 ] [ 8 ] 1 [2] [ ]
−644 [2,8] [2,16] 2 [2,4] [2,4] [2,4] 2 [2,8] [?]
−708 [2,2] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
−712 [ 8 ] [ 2 ] 1 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
−740 [2,8] [ 4 ] 2 [ 8 ] [ 8 ] [ 8 ] 1 [2] [ ]
−772 [ 4 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2]
−776 [ 20 ] [ 4 ] 1 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2]
*−804 [2,6] [ 36 ] 6 [ 2 ] [ 2 ] [ 2 ] 1 [6] [3]
−836 [2,10] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
−840 [2,2,2] [2,6] 3 [2,2] [2,2] [2,2] 2 [2,2] [2]
−868 [2,4] [2,4] 2 [2,2] [2,2] [2,2] 2 [2,2] [2]
−904 [ 8 ] [4] 1 [ 4 ] [ 4 ] [ 4 ] 2 [4] [2]
−964 [ 12 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2]
−996 [2,6] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
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Real quadratic fields. The table contains all real quadratic fields F with no exceptional places and
discriminant |dF | < 1000. All these fields are exceptional.

dF C`F [:] |P| |PE| C`′F C̃`F C̃` resF rk2
28 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
56 [ ] 4 1 0 [ ] [ ] [ 2 ] 1
60 [ 2 ] 24 1 0 [ ] [ ] [ 2 ] 1
92 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
120 [ 2 ] 4 1 0 [ ] [ ] [ 2 ] 1
124 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
156 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
184 [ ] 4 1 0 [ ] [ ] [ 2 ] 1
188 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
220 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
248 [ ] 4 1 0 [ ] [ ] [ 2 ] 1
284 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
312 [ 2 ] 12 1 0 [ ] [ ] [ 2 ] 1
316 [ 3 ] 8 1 0 [ ] [ ] [ 2 ] 1
348 [ 2 ] 24 1 0 [ ] [ ] [ 2 ] 1
376 [ ] 4 1 0 [ ] [ ] [ 2 ] 1
380 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
412 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
440 [ 2 ] 4 1 0 [ ] [ ] [ 2 ] 1
444 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
476 [ 2 ] 8 1 0 [ 2 ] [ 2 ] [ 2, 2 ] 2
604 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
632 [ ] 4 1 0 [ ] [ ] [ 2 ] 1
636 [ 2 ] 24 1 0 [ ] [ ] [ 2 ] 1
668 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
696 [ 2 ] 4 1 0 [ ] [ ] [ 2 ] 1
732 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
760 [ 2 ] 4 1 0 [ ] [ ] [ 2 ] 1
764 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
796 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
824 [ ] 4 1 0 [ ] [ ] [ 2 ] 1
860 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
888 [ 2 ] 12 1 0 [ ] [ ] [ 2 ] 1
892 [ 3 ] 8 1 0 [ ] [ ] [ 2 ] 1
924 [ 2, 2 ] 24 1 0 [ 2 ] [ 2 ] [ 2, 2 ] 2
952 [ 2 ] 4 1 0 [ 2 ] [ 2 ] [ 2, 2 ] 2
956 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
988 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
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Real quadratic fieldswith class numbers 32 and 64. The table contains extensionswith class number
32 up to discriminant 222780 and extensions with class number 64 up to discriminant 805596.

dF C`F [:] |P| |PE| C`′F C̃`F C̃` resF rk2
112924 [ 2,16 ] 8 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2

120796 [ 2,16 ] 8 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2

136120 [ 2,16 ] 4 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2

153660 [2,2,8] 8 1 0 [ 2,8 ] [ 2,8 ] [2,2,8] 3

158844 [2,2,8] 8 1 0 [ 2,8 ] [ 2,8 ] [2,2,8] 3

163576 [ 2,16 ] 4 1 0 [ 2,8 ] [ 2,8 ] [2,2,8] 3

170872 [ 2,16 ] 4 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2

176316 [ 2,16 ] 24 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2

176440 [ 2,16 ] 4 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2

196540 [ 2,16 ] 8 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2

202524 [ 2,16 ] 24 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2

207480 [2,2,2,4] 4 1 0 [2,2,4] [2,2,4] [2,2,2,4] 4

213180 [2,2,2,4] 24 1 0 [2,2,4] [2,2,4] [2,2,2,4] 4

221276 [ 2,16 ] 8 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2

222780 [2,2,8] 8 1 0 [ 2,8 ] [ 2,8 ] [2,2,8] 3

374136 [2,2,16] 12 1 0 [ 2,16 ] [ 2,16 ] [2,2,16] 3

382204 [ 2,32 ] 8 1 0 [ 32 ] [ 32 ] [ 2,32 ] 2

449436 [2,2,16] 8 1 0 [ 2,16 ] [ 2,16 ] [2,2,16] 3

484764 [2,2,16] 24 1 0 [ 2,16 ] [ 2,16 ] [2,2,16] 3

506940 [2,2,2,8] 24 1 0 [2,2,8] [2,2,8] [2,2,2,8] 4

805596 [2,2,16] 24 1 0 [ 2,16 ] [ 2,16 ] [2,2,16] 3

Biquadratic extensions. The table contains quadratic and biquadratic number fields. The biquadratic
fields are the compositum of the first quadratic extensions and one of the other quadratic extensions.
All fields are exceptional.

F dF r C`F [:] |P| C`′F C̃`F C̃` resF rk2
K 9660 2 [2,2,2] 8 1 [ 2,2 ] [ 2,2 ] [ 2,2,2 ] 3

L1 9340 2 [ 10 ] 8 1 [ ] [ ] [ 2 ] 1

KL1 4 [2,2,2,10] 128 2 [2,2,2] [2,2,2] [2,2,2,2,2] 5

L2 13020 2 [2,2,2] 24 1 [ 2,2 ] [ 2,2 ] [ 2,2,2 ] 3

KL2 4 [2,2,4] 384 2 [ 2,2 ] [2,2,2] [2,2,2,2,2,2] 6

L3 15708 2 [2,2,2] 8 1 [ 2,2 ] [ 2,2 ] [ 2,2,2 ] 3

KL3 4 [2,2,4,28] 128 2 [ 2,2,4] [2,2,4] [2,2,2,2,2,4] 6
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Examples of higher degrees.
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