
J. Symbolic Computation (1997) 24, 45–50

A Note on Subresultants and the
Lazard/Rioboo/Trager Formula in Rational Function

Integration

THOM MULDERS

Institute of Scientific Computing,
ETH Zurich,

Zurich, Switzerland

An ambiguity in a formula of Lazard, Rioboo and Trager, connecting subresultants and
rational function integration, is indicated and examples of incorrect interpretations are
given.

c© 1997 Academic Press Limited

1. Introduction

In Lazard and Rioboo (1990) the authors present a formula connecting the logarithmic
part of the integral of a rational function and certain subresultants. They also give an
algorithm based on this formula. The same algorithm was implemented independently by
Trager in SCRATCHPAD II (now AXIOM). In this paper it will be shown that this for-
mula is ambiguous and that a wrong interpretation of this formula and the corresponding
algorithm can lead to wrong results. In fact the formula has been wrongly interpreted in
Geddes et al. (1992) and the wrong interpretation has been implemented in AXIOM 2.0.

2. The Formula

Let K be a field of characteristic 0 and P (x), Q(x) ∈ K[x] such that deg(P (x)) <
deg(Q(x)) and Q(x) square-free. Consider the differentiation ′ = d

dx on K(x). Let S(y) ∈
K[y] be the resultant of Q(x) and P (x)− yQ′(x) w.r.t. x and let

S(y) = c
∏
i∈I

Si(y)i

be the square-free factorization of S(y). Let Ri(x, y) ∈ K[x, y] denote the remainder of
degree i in x appearing in the computation of S(y) by the subresultant algorithm. The
formula stated in Lazard and Rioboo (1990) is then∫

P (x)
Q(x)

dx =
∑
i∈I

∑
b:Si(b)=0

b log(Ri(x, b)). (2.1)

0747–7171/97/010045 + 06 $25.00/0 sy970112 c© 1997 Academic Press Limited

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82755304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

46 T. Mulders

The ambiguity of this formula lies in the fact that it is not clear what is meant by the
above-mentioned remainder of degree i.

3. Subresultants

In this section the facts about subresultants and the Subresultant Polynomial Remain-
der Sequence (SPRS) that we need will be stated. For a nice treatment of these matters
the reader is referred to Brown (1978).

Let u0, u1 ∈ R[X] \ {0} for some integral domain R and d0 = deg(u0) > deg(u1) =
d1. Denote by Tk(u0, u1) (or Tk when u0 and u1 are clear from the context) the kth
subresultant of u0 and u1. The sequence of all subresultants of u0 and u1 then looks as
follows:

Td0 = u0, Td0−1 = u1, 0, . . . , 0, Td1 , Td1−1, 0, . . . , 0, Td2 ,
↓ ↓ ↓ ↓ ↓

deg = d0 deg = d1 deg = d1 deg = d2 deg = d2

Td2−1, 0, . . . , 0, Td3 , Td3−1, 0, . . . , 0, Td4 , . . .
↓ ↓ ↓ ↓

deg = d3 deg = d3 deg = d4 deg = d4

and Tdi−1 ∼ Tdi+1 (where f ∼ g means that there are a, b ∈ R \ {0} such that af = bg).
The remainders that are computed in the SPRS of u0 and u1 are

Td0 , Td0−1, Td1−1, Td2−1, . . . , Tdk−1,

where dk+1 is the degree of the last remainder 6= 0 in any polynomial remainder sequence
of u0 and u1. In case R is a unique factorization domain we have Tdk−1 ∼ gcd(u0, u1).

Concerning specialization we have the following fact. When φ:R→ S (R and S integral
domains) is a homomorphism such that deg(φ(u0)) = deg(u0) and φ(u1) 6= 0 then for
0 ≤ k ≤ d0 we have φ(Tk(u0, u1)) ∼ Tk(φ(u0), φ(u1)).

When d is the degree of a remainder in the SPRS of φ(u0) and φ(u1) we have that
deg(Td(φ(u0), φ(u1))) = d and Td(φ(u0), φ(u1)) ∼ φ(Td(u0, u1)). Since deg(Td(u0, u1)) ≤
d it follows that deg(Td(u0, u1)) = d. From this fact we see the following relationship
between the sequences Tk(u0, u1) (= Tk) and Tk(φ(u0), φ(u1)) (= T̃k)

. . . , Td, Td−1, 0, . . . , 0, Te, Te−1, 0, . . . , . . . , Tf , Tf−1, . . .
l ↓ ↓ ↓ l ↓

. . . , T̃d, T̃d−1, 0, . . . , 0, 0, 0, 0, . . . , 0, T̃f , T̃f−1, . . .

where deg(Td−1) = e and deg(T̃d−1) = f ≤ e. Here l means that the degree remains the
same under φ and ↓ means that the degree may drop under φ.

4. Different Interpretations of the Formula

In equation (2.1) one needs the remainder of degree i in the subresultant algorithm.
As is clear from the previous section there can be two subresultants of degree i in the
sequence of all subresultants (Ti and Tj−1 for some j > i), while the subresultants in the
SPRS have all different degrees. So, if one interprets “the subresultant algorithm” as an
algorithm which computes all subresultants then it is not clear which subresultant one

Subresultants and Rational Function Integration 47

has to take. If one interprets “the subresultant algorithm” as the SPRS then there is no
choice.

Looking at the proof in Lazard and Rioboo (1990), what one needs is

Ri(x, b) ∼ gcd(P (x)− bQ′(x), Q(x)),

when i is the degree of the gcd. Taking u0 = Q(x), u1 = P (x)− yQ′(x) and φ(f(x, y)) =
f(x, b) it is clear that

gcd(φ(u0), φ(u1)) ∼ Ti(φ(u0), φ(u1)) ∼ φ(Ti(u0, u1))

so we can take Ri(x, y) = Ti(u0, u1).
If we would take the other choice, i.e. Ri(x, y) = Tj−1(u0, u1) where j > i, we might

have (as the following example shows) that Ri(x, b) = 0, leading to a wrong result. This
choice is implied when we use the SPRS to compute the resultant (which is done in
Geddes et al. (1992) and in the AXIOM implementation).

Notice that any polynomial equivalent (∼) to Ti(u0, u1) which is not mapped to 0
under φ would also be suitable as a logarithmic part and thus, since Tj−1(u0, u1) ∼
Ti(u0, u1), any polynomial equivalent to Tj−1(u0, u1) which is not mapped to 0 under φ
would be suitable.

Example 4.1. In the following example we will see that the wrong choice of the remain-
der will lead to a wrong result. Let

P (x) = x4 + x3 + x2 + x+ 1

and

Q(x) = x5 + x4 + 2x3 + 2x2 + 2x− 2 + 4α

where α =
√
−1 +

√
3. The remainders in the SPRS of Q(x) and P (x) − yQ′(x) are

Q(x), P (x)− yQ′(x), R3(x, y), R1(x, y) and S(y) where

R3(x, y) = (16y2 − 8y + 1)x3 + (24y2 − 10y + 1)x2 + (36y2 − 12y + 1)x
+(100α− 52)y2 − (40α− 21)y + 4α− 2

and

R1(x, y) =
{

(320α− 288)y3 − (224α− 184)y2 + (52α− 40)y − 4α+ 3
}
x

−(224α− 96)y3 + (104α− 32)y2 − (12α+ 2)y + 1.

Here R1(x, y) is in fact the second subresultant. Now S(y) is square-free and y = 1
4 is a

root (of multiplicity 1) of S(y) and R1(x, y) is the remainder of degree 1 in the SPRS so
the formula implies in the integral a term 1

4 log(R1(x, 1
4)). However R1(x, 1

4) = 0, as one
can easily check.

Computing this example in AXIOM 2.0 will lead to a runtime-error.

5. Some Algorithmic Solutions

We have seen that when using the SPRS to compute the resultant S(y), one cannot just
take the remainder of the right degree in that sequence (i.e. Tj−1 in the previous section)
for the logarithmic part of the integral. However, we have seen that any polynomial

48 T. Mulders

equivalent (∼) to Tj−1 which is not mapped to 0 under φ would suit. Let us call the final
expression in the logarithmic part L, i.e. the final result will have a sum

∑
b log(L(x, b))

in it. We will now give some methods to compute such an L.

1. A possible solution is to take for L the primitive part of Tj−1. The advantage
of this approach is that one gets small coefficients, but the computation of this
primitive part might be quite time consuming, especially when algebraic numbers
are involved. Doing this we get in our example

L =
{

(320α−288)y2− (144α−112)y+16α−12
}
x− (224α−96)y2 +(48α−8)y−4.

2. Another possibility is to take Ti for L. Ti can be computed by multiplying Tj−1 by
a constant (i.e. an element C ∈ K(y)), known during the computation of the SPRS.
Since both Tj−1 and Ti are elements of K[y][x], we can perform the multiplication
by C by first multiplying by the numerator of C (an element of K[y]) followed by
exact division by the denominator of C (also an element of K[y]). The advantage
of this approach is that it is simple and fast. However, the result one gets will be
larger in general. In our example this approach yields

L =
{

(6400α2 − 11520α+ 5184)y4 − (5760α2 − 9664α+ 4032)y3

+(1936α2 − 3072α+ 1216)y2 − (288α2 − 440α+ 168)y + 16α2 − 24α+ 9
}
x

−(4480α2 − 5952α+ 1728)y4 + (2976α2 − 3456α+ 816)y3

−(656α2 − 592α+ 56)y2 + (48α2 − 8α− 22)y − 4α+ 3.

3. Yet another possibility is to divide out any factor that might map Tj−1 to 0 under φ.
This can be done by repeatedly computing gcd(lc(Tj−1), Si(y)) and dividing out
this gcd. This is essentially the method applied in Bronstein (1997) and seems to
be a compromise of the previous methods. In our example we get the same L as
by taking primitive parts. Notice that when a gcd g as mentioned above is 6= 1
and 6= Si(y) we might split the sum in the final result even further, according to
the factorization Si = g (Si/g) (i.e.

∑
b:Si(b)=0 becomes

∑
b:g(b)=0 +

∑
b:(Si/g)(b)=0).

This might be useful in any further processing of the result.
4. Finally, when one splits the result as described above, for the part corresponding

to g one could also use the remainder R in the SPRS of next higher degree (see
the diagram in the previous section). In fact one only needs to consider the terms
up to degree i of R since one knows that higher terms will be mapped to 0 by φ.
Subsequently one can do the same with R, i.e. compute gcd(coeff(R, i), g) and so
on. In our example this means that for b = 1

4 we can take R3(x, y) and delete
the degree 2 and 3 terms (since we know that their coefficients 16y2 − 8y + 1 and
24y2 − 10y + 1 are 0 when evaluated in 1

4). We then get for the zeros 6= 1
4 of S(y)

the same L as in the previous method and for 1
4 we get

L = (36y2 − 12y + 1)x+ (100α− 52)y2 − (40α− 21)y + 4α− 2.

It now depends on what kind of result one wants. If one is only interested in some
expression for the integral, whatever its size may be, the second approach is certainly
the fastest.

However, one might want a smaller expression for the result or one might want to
process the result even further. Examples of further processing are making L monic

Subresultants and Rational Function Integration 49

or replacing complex logarithms by real functions (see Rioboo, 1991). In both cases
subsequent gcd computations have to be done, in which case it is better for L to be
small, so that the third and fourth method are useful.

Below we give the result of all these methods when making L monic. We also give the
times it took to compute these results, excluding the time to compute the SPRS but
including the time to make L monic. The computations where done in MAPLE V.3 on
a SUN Sparcstation 5 with 110 MHz CPU and 64 Mb main memory. For the first three
methods we get the same result, i.e.∑
b:S(b)=0

b log
(
x+

1
76 090 729

{

−(3 166 362 384 896α3 − 9 589 146 863 104α2 + 5 561 008 828 160α+ 25 820 852 224)b4

+(2 572 043 436 032α3 − 7 559 719 452 928α2 + 4 149 998 074 624α+ 152 749 784 768)b3

−(782 864 496 864α3 − 2 219 904 899 648α2 + 1 116 206 990 848α+ 94 889 180 832)b2

+(105 949 632 800α3 − 288 577 921 016α2 + 128 975 650 144α+ 19 331 983 176)b

−5 377 952 768α3 + 14 063 435 544α2 − 5 525 914 060α− 1 188 274 675}
)

The first method took 8.6 CPU seconds, the second 21.4 and the third 8.2.
For the last method we get the result∑

b:y− 1
4 =0

b log(x+ a) +
∑

b:(S(y)/(y− 1
4))=0

b log
(
x+

1
76 090 729

{

(197 271 647 360α3 − 367 859 305 600α2 − 20 758 546 496α+ 133 384 145 600)b3

−(110 333 223 456α3 − 191 732 358 112α2 − 37 918 237 872α+ 85 408 371 744)b2

+(20 807 178 288α3 − 33 322 639 792α2 − 12 257 297 780α+ 16 950 073 192)b

−1 326 544 080α3 + 1 941 306 416α2 + 1 013 686 888α− 1 062 973 459}
)

and it took 8.3 CPU seconds to compute it.
The high time for the second method is due to the fact that the initial expression for

L is big, so that inverting L modulo S(y) is expensive. We see that when one wants to
make L monic it is worthwhile to make L small so that the other methods are preferable.
Also notice that the fourth method yields the ‘nicest’ result.

Remark 5.1. As is observed in Geddes et al. (1992) one can use subresultants in a
similar manner when integrating transcendental functions. Again some caution has to be
taken when interpreting the formula. See also Bronstein (1997) on this.

Acknowledgement

I would like to thank D. Lazard and the referee for their useful comments on an earlier
draft of this paper.

References
——Bronstein, M. (1997). Symbolic Integration I . Springer-Verlag.
——Brown, W.S. (1978). The subresultant PRS algorithm. ACM TOMS 4(3), 237–249.

50 T. Mulders

——Geddes, K.O., Czapor, S.R., Labahn, G. (1992). Algorithms for Computer Algebra. Kluwer Academic
Publishers.

——Lazard, D., Rioboo, R. (1990). Integration of Rational Functions: Rational Computation of the Loga-
rithmic Part. J. Symbolic Comput. 9, 113–116.

——Rioboo, R. (1991). Quelques aspects du calcul exact avec des nombres réels, Thèse de Doctorat de
l’Université de Paris 6, Informatique.

Originally received 13 May 1996
Accepted 23 February 1997

