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1. I N T R O D U C T I O N  

The theory of integral operators and integral equations is an important part  of nonlinear analysis. 
I t  is caused by the fact that  this theory is frequently applicable in other branches of mathemat-  
ics and mathematical  physics, engineering, economics, biology as well in describing problems 
connected with real world (cf. [1-6]). 

In the present paper, we are going to study the solvability of a class of quadratic integral 
equations of Volterra type. We will look for solutions of those equations in the Banach space of 
real functions being defined and continuous on a bounded and closed interval. The main tool used 
in our investigations is the technique of measures of noncompactness which is frequently used in 
several branches of nonlinear analysis [3,4,7,8]. We will apply the measure of noncompactness 
defined in [9] in proving the solvability of the considered equations in the class of monotonic 
functions. 

The results of this paper generalize and complete the results obtained earlier in the paper [8]. 
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2. N O T A T I O N  A N D  A U X I L I A R Y  F A C T S  

Now, we are going to recall the basic results which are needed further on. 
Assume that  E is a real Banach space with the norm []. ]] and the zero element 0. Denote 

by B(x,  r) the closed ball centered at x and with radius r and by Br the ball B(0, r). For X 
being a nonempty subset of E we denote by )~, Cony X the closure and the convex closure of X, 
respectively. With the symbols )~X and X + Y  we denote the algebraic operations on sets. Finally, 
let us denote by M E  the family of nonempty and bounded subsets of E and by NE its subfamily 
consisting of all relatively compact sets. 

DEFINITION 1. (See [7].) A function # : ME --+ [0, oo) is said to be a measure of noncompactness 
in the space E i f  it satisfies the following conditions 

(1) the family ker#  = {X C M E :  #(X)  = 0} is nonempty and ker#  C NE; 
(2) x c Y ~ , ( x )  <_ ~,(v); 
(3) # ( 2 )  ---- # (ConvX)  = I~(X); 
(4) #(AX + (1 - A)Y) _< A#(X) + (1 - A)#(Y) for )~ e [0, 1]; 
(5) • { X n }  n is  a sequence of closed sets from M E  such that X,~+I C X n for n = 1 ,2 , . . .  and 

if  limn-~oo #( Xn) = 0 then, the set X ~  = Nn=l°° Xn is nonempty. 

The family ker # described above is called the kernel of the measure of noncompactness #. 
Further facts concerning measures of noncompactness and their properties may be found in [7]. 
For our purposes we will only need the following fixed-point theorem [7]. 

THEOREM 1. Let N be a nonempty, bounded, closed and convex subset of the Banach space E 
and let F : N --* N be a continuous transformation such that # ( F X )  <_ K # ( X )  for any nonempty 
subset X of N,  where K E [0, 1) is a constant. Then, F has a fixed point in the set N. 

REMAP~K 1. Under the assumptions of the above theorem it can be shown that,  the set F ixF of 
fixed points of F belonging to N is a member of ker #. This observation allows us to characterize 
solutions of considered equations. 

In what follows, we will work in the classical Banach space C[0, M] consisting of all real 
functions defined and continuous on the interval [0, M]. For convenience, we write I --- [0, M] 
and C(I)  = C[0, M]. The space C(I) is furnished by the standard norm 

IIxll = m~x{Ix(t)l : t e I} .  

Now, we recall the definition of a measure of noncompactness in C(I)  which will be used in the 
sequel. That  measure was introduced and studied in the paper [9]. 

To do this let us fix a nonempty and bounded subset X of C(I).  For z > 0 and x E X denote 
by w(x, ~) the modulus of continuity of x defined by 

w(x,E) = sup{]x(t) - x ( s ) [ :  t , s  e I,  It - s[ < e}. 

Further, let us put 

w ( x ,  ¢) = sup{w(x,  ¢) : x  e x } ,  

~o(X) = ~ ( x ,  ~). 

Next, let us define the following quantities 

i ( x )  = s u p { I z ( s )  - x ( t ) l  - [x (s )  - z ( t ) ]  : t ,  s c I ,  t <_ s} ,  

i (X)  = sup{i(x) : x E X} .  

Observe that,  i (X)  = 0 if and only if all functions belonging to X are nondecreasing on I .  Finally, 
let us put 

~(X)  = wo(X) + i (X) .  

It  can be shown [9] that, the function # is a measure of noncompactness in the space C(I). 
Moreover, the kernel ker#  consists of all sets X belonging to Me( i )  such that  all functions 
from X are equicontinuous and nondecreasing on the interval I .  
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3. M A I N  R E S U L T  

In this section, we apply the measure of noncompactness  tt above defined to  the s tudy of 
monotonic solutions of our integral equation. 

We consider the following nonlinear integral equation of Volterra type  

~0 t x(t) = a(t) + (Tx)(t) v(t, r, x(r))dT, t e I. (1) 

The  functions a(t) and v(t, r, x) appearing in this equation are given while x = x(t) is an unknown 
function. 

This  equat ion will be  examined under the following assumptions.  

(i) a e C(I)  and the function a is nondecreasing and nonnegative on the interval I .  
(ii) v : I x I x R --* R is a continuous function such tha t  v : I x I x R +  --* R +  and for 

arbi t rar i ly  fixed ~- E I and x E R +  the function t --~ v(t, % co) is nondecreasing on I .  
(iii) There  exists a nondecreasing function f : R +  --~ R +  such that ,  the inequality 

Iv(t, T,x)l <__ f(Ixl), 

holds for all t, ~- E I and x E R.  
(iv) The  opera tor  T : C(I) ~ C(I) is continuous and satisfies the conditions of Theorem 1 

for the measure of noneompactness  # with a constant  Q and, moreover,  T is a positive 
operator ,  i.e., Tx > 0 if x > 0. 

(v) There  exist nonnegative constants  c and d such tha t  

I(Tx)(t)[ _ c + dllxll, 

for each x e C(I)  and t E I .  
(vi) The  inequality Ilal] + (c+dr)Mf(r )  < r has a positive solution r0 such tha t  Mf(ro)Q < 1. 

Then,  we have the following theorem. 

THEOREM 2. Under the Assumptions (i)-(vi) the equation (1) has at least one solution x = x(t) 
which belongs to the space C(I) and is nondecreasing on the interval I. 

PROOF. Let  us consider the operator  V defined on the space C(I) in the following way 

f0 t (Vx)(t) = a(t) + (Tx)(t) v(t, r, x(r))dr .  

In view of the Assumptions (i), (ii) and (iv) it follows that ,  the function Vx is continuous on I 
for any function x E C([), i.e., V transforms the space C(I) into itself. Moreover, keeping in 
mind the Assumptions  (iii) and (v) we get 

Hence, 

I(Yx)(t)l ~ la(t)l + I(Tx)(t)l r./f v(t, T, ~(~')) dr 

<_ I[all + (c + dllxl[) f(Ix(r)l  ) d-r 

Z - II~rl + (e + drL~ll) Y(IIxPI) dr _< Llall + (~ + dllzlP)MY(ll~ll). 

IlVxll ~ Ilall + (c + dllxll)M f(llxl[). 
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Thus, taking into account the Assumption (vi) we infer tha t  there exists r0 > 0 with Mf(ro)Q < 1 
and such tha t ,  the opera tor  V transforms the ball Br  o into itself. 

In what  follows, we will consider the opera tor  V on the subset B + of the ball B ,  o defined by 

B ~  = {~ e B~o: ~(t) _> o for t e z}.  

Obviously, the set B + is nonempty,  bounded,  closed and convex. In view of these facts and 
Assumptions  (i), (ii), and (iv) we deduce easily tha t  V t ransforms the set B + into itself. 

Now, we show tha t  V is continuous on the set B + .  To do this let us fix z > 0 and take 
arbi t rar i ly  x, y 6 B + such tha t  IIx - Yll -< ¢- Then,  for t 6 1 we get the following inequalities 

fo t fo  t d'r [(Vx)(t) - (Vy)(t)l = (Zx)(t)  v(t,T,X('C)) d~"- (Ty)(t) v(t,~',y('c)) 

f f  fo' d, <_ (T~)(t) ~(t,~-, ~(,-)) d~- - (Ty)(t) ~(t, ~, ~(,-)) 

+ I(Ty)(t) fotv(t, T,X(T))dr - (Ty)(t) fotv(t, r,y(,))dT 

Z _< l ( r~ ) ( t )  - (Ty)(t)l ~(t,~-,x(~-))d~- 

+ ITy(t)[ f f  Iv(t ,r ,z(~))  - v( t , r ,y(r) ) l  dT 

[ 
' fo < I I T x - T y t l j o  y ( r o ) d r + ( c + d r o )  fl~o(s)dT 

<_ IITx - Ty l lM y(ro) + ( c +  dro)~.o(~)M, 

where j3ro (~) is defined as 

~ro(¢) ---- sup{Iv(t, T,x ) - v(t, T,y)l : t, T e I,  x , y  e [0, r0], Ix -- yl ~ ~}. 

From the above es t imate  we derive the following inequality 

[IVx - Vy[I <_ I]Tx - Ty l lM f(ro) + (c + dro)M13ro(S). 

From the uniform continuity of the function v on the set I x I x [0, r0] and the  continuity of T, 

the last inequality implies the continuity of the opera tor  V on the  set B + . 
In what  follows let us take a nonempty  set X c B + .  Further,  fix arbi t rar i ly  a number  s > 0 

and choose x E X and t, s E [0, M] such tha t  It - s I < s. Wi thout  loss of generality we may  
assume tha t  t < s. Then,  in view of our assumptions we obtain  

I fo ~ fo ~ v(t'~'x(~)) d~ I(Vx)(s)  - ( vx ) ( t ) l  < la(s) - a(t)[ + (Tx)(s) V(S,T,X(~-))dT - (Tx)(t) 

fos /o s x(,))d~" <_ w(a ,¢)  + (Tx)(s) V(S,T,X(T))dT - -  (Tx)(t) V(s,T, 

+ (Tx)(t) _~ v(s, 7, x(~')) d7 - (Tx)(t) jfff v(t, % X(T))  d7 

__ ~(~ ,~)  + I(T~)(~) - (T~)(t)l v(~,,-,~(~-))eT 

+ (Tz)(t) f Iv(s,r,x(~-)) - v(t ,7,x(T))l  dr + (rx)( t )  v(t,~-,z(~')) d~- 
Jo 
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/o ~ /o" <w(a,¢)+w(Tx,¢) f(ro)dT+(c4-dro) '7to(e) d~- 

+ (c + & 0 ) f ( ~ 0 ) ( s  - t) 
< w(a, E) + w(Tz, ~)Mf(ro) + (c + dro)MT~o(~) + (c + dro)f(ro)G 

where '7,'0 (E) is defined as 

"7~o(z) = sup{Iv(s, T,x ) -- v(t, T,X)I : t,s e I, IS -- tl ~ 6, x e [0, r0]}. 

Notice, tha t  in view of the uniform continuity of the function v on the set I x I x [0, r0] we have 
that  3% (6) --, 0 as z -~ 0. This fact in conjunction with the above obtained estimate allows us 
to derive the following inequality 

wo(VX) <_ M f(ro)w(TX). (2) 

On the other hand, fix arbitrarily x E X and t, s E I such tha t  t _< s. Then, we have the following 

estimate 

I ( v x ) ( s )  - (vx)(t)l- [ (Vx) ( s )  - ( v x ) ( t ) ]  

I /o /: 1 = a(s) + (Tx)(s) V(S, GX(T))dT -- a(t) -- (Tx)(t) v(t,%x(~')) dT 

--[a(s)+(Tx)(s) ~S v(s, T,X(~-) ) dT - a(t) - (Tx)(t) ~ v(t, v, x(~-) ) dT] 

[ L ___ [la(s) - a(t)l - [a(s) - a(t)]] + (Tx)(s) v(s,~',x(r)) d~- 

- (Tx ) ( t )  fotV(t,T,X(T))dT - [(Tx)(s) /oSV(S,T,x(T))dv-(Tx)(t) fotV(t,%x(T))dT]] 

/o /o { _< (T~)(s) ~(~,~-,~(~-))d~- - ( T ~ ) ( t )  ~(~,r,~(~-))e~- 

+ (T~)(t) fo"v(~,~-,~(~-))d~--(T~)(t) fo~(t,,-,x(,-))d, - 

Z" /o <_ I(T~)(s) - (T~)(t)l ~(~,r,~(~-))d,--[(T~)(~) - (T~)(t)] ~(~,,-,~(~))d,- 

+ ,(Tx)(t), [ ~t(v(s,-r,x(v)) -- v(t, T,X(T)))dT 

+ f f  v ( s ,T ,x ( . ) )& 1 -  (Tx)( ,)[f0s v ( s , . , x ( . ) ) d . - f 0 t  ~ ( t , . ,~ (~) )&]  

<_ [l(Tx)(s) - (T~:)(t)l- [(T~)(s) - (T~)(t)]] ~(s,~-,~(~-))d,- 

+ (Tx)(t) [~t(V(S, T,X(T) ) -- v(t, T,x('r) ) ) dT + ~SV(S, T,X(T) ) dT] 

- (Tx)(t) [~V(S,  T,x(~')) dT -- fotV(t, v,x(T)) dr] 

< [ l ( T x ) ( s )  - (Tx)(t)l- [(Tx)(s) - (Tx)(t)]]Mf(ro) < Mf(ro)i(Tx). 
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Hence, we get 

and consequently, 

i(Vx) < Mf(ro) i (Tx) ,  

i (VX)  <_ M f (ro) i (TX) .  (3) 

Finally, linking (2), (3) and keeping in mind the definition of the measure of noncompactness # 
(cf. Section 2) and, moreover, the Assumption (iv) we obtain 

# (V X )  <_ M f(ro)/~(TX) < M f(ro)Q#(X) .  

As Mf(ro)Q < 1 ( Assumption (vi)) applying Theorem 1 we complete the proof. | 

REMARK 2. Taking into account Remark 1 and the description of the kernel of the measure of 
noncompactness # given in Section 2, we deduce easily from the proof of Theorem 2 that solutions 
of our integral equation belonging to the set B + are nondecreasing and continuous on the interval 
I = [0, M]. Moreover, those solutions are also positive provided a(t) > 0 for t E I. 

4. S O M E  R E M A R K S  

First, we are going to make an observation related with the Hypothesis (v) of Theorem 2. The 
Hypothesis (v) of the Theorem 2 can be modified in the following sense. We can consider that, 
the operator T verifies that there exist nonnegative constants c and d such that, 

r(Tx)(t)] <_ c + dlx(t)l, for each x e C(I )  and t e / .  (4) 

In this case, the proof of Theorem 2 with this assumption can be done in the same way as the 
proof given in this paper. 

Moreover, notice that if the operator T verifies the above assumption then it satisfies the 
Hypothesis (v) too, i.e., 

](Tx)(t)l<_c+dlx(t)l  , f o r e a c h t e I ~ ] ( T x ) ( t ) l < c + d l l x l l  , for each t e I. 

But, there exist operators which verify the Hypothesis (v) and do not satisfy the inequality (4), 
for example the operator T defined by (Tx)(t) = x(t2). In this case, we have that there exist no 
constants c and d such that I(Tx)(t)l <<_ c + dlx(t)l. Suppose that,  there exist these constants c 
and d and we take to E (0, 1). We consider the straight line joining the points (to, 0) and 
(to 2, max(c, d) + 1) which has the expression 

max(c, d) + 1 
x(t) - ( t -  to). 

Then, it is clear that x(t) belongs to C(I) and Tx  does not satisfy the inequality (4). In fact, 

taking t = to we have 
I (Tx)(e0) l  = Ix(t02)l = m a x ( c ,  d) + 1, 

and c + dlx(to)[ = c. Therefore, ITx(to)[ > c + d[x(to)[. 
Thus, we can conclude that our Assumption (v) is less restrictive than the inequality (4). 
Next, we give some examples which show the relevance of the hypotheses of Theorem 2. 

EXAMPLE 1. Take the function a e C[0, 1] given by a(t) = t 2 - 2 t +  1 which is not nondecreasing 
and, consequently, this function does not satisfy our Assumption (i). 

We put v(t, T, x) = 1, this function satisfies the Assumptions (ii) and (iii) and, moreover, we 
can take as f the function f (r )  = 1 and in this case M = 1. 
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The operator T will be defined as ( T x ) ( t )  = 1 and satisfies the hypotheses (iv) and (v) with 
c = 1, d = 0 and we can take Q = 1/2. As [la[[ = 1 the inequality from (vi) has the form 

1 + 1 - 1 - 1 _ < r ,  

and the number r0 -- 2 is a positive solution of the above inequality. Moreover, M f ( r o ) Q  = 
1 • 1 • (1/2) _ 1. Our integral equation can be expressed by 

f x( t )  = (t 2 - 2t + 1) + d t =  t 2 - t + 1, 

and, consequently, the solution is not nondecreasing. 

EXAMPLE 2. In this ease our interval is [0, 1]. Take as a E C[0, 1] the function zero which satisfies 
the Assumption (i) of the Theorem 2. We put v ( t ,T ,X )  = t 2 - - t  + (1/4) which does not satisfy 
the Assumption (ii) and satisfies the Hypothesis (iii) with f = 1/4. Take ( T x ) ( t )  = 1 and this 
operator satisfies (iv) and (v) with c = 1, d = 0 and Q = 1/2. The inequality from (vi) appears 
as 

1 
1 . 1 . ~ < r ,  

which admits the number  r0 = 1/4 as a positive solution. Moreover, M f ( r o ) Q  = 1-(1 /4) - (1 /2)  < 1 
and our integral equation has the form 

x ( t ) =  - + d ~ c = t a - t 2 + 4 '  

and the solution is not nondecreasing. 

EXAMPLE 3. Take as a E C[0, 1] the function zero, and as T the operator ( T x ) ( t )  = 1 which 
satisfies (iv) and (v) with c = 1, d = 0. 

Now, we put v(t ,  r, x) = x - 1. Obviously, v : I x I x R --~ R is a continuous function 
where I = [0, 1] but  this function does not satisfy the hypothesis v : I x I x R +  -~ R+ .  The 
Assumption (iii) is satisfied with f ( r )  = 1 + r. The inequality appearing in Assumption (vi) has 
the form 

i . l . ( l + r )  < r ,  

and this inequality has not  solution. Our integral equation has the form 

x( t )  = (x(7) - i )  dT. 

Obviously, x( t )  ~- 0 is not a solution of this integral equation. Moreover, as x(0) = 0 and if this 
equation has a solution which is nondecreasing by using the continuity and monotony of x( t ) ,  and 
the form of our integral equation we can find to E I such that  X(to) < 0 and this is not  possible. 
Thus, our equation has not a nondecreasing solution. 

5 .  E X A M P L E S  

Now, we give some examples concerning the Assumptions (iii) and (iv). 

EXAMPLE 4. Let us assume that,  the function f ( r )  appearing in the Assumption (iii) has the 
form f ( r )  = Ar 3, where A is a positive constant. Take a function a C C[0, 1] such tha t  ]la]l < 1/2 
and such tha t  A < 8-16[la[[. In this case M = 1 and we consider as T the operator  ( T x ) ( t )  = x( t ) .  
Then, the inequality from (vi) has the form 

lla/I + ~r  4 _< r. 
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Applying Bolzano's  theorem to the function 

g( r )  = ITall + Ar 4 -- r, 

in the interval [0, 1/2] we can find a positive solution ro to the above inequality with 0 < r0 < 1/2. 
Moreover, we have 

Mf(ro)Q = f(ro) = Ar~ < ~ < 1 - 211~11 < 1. 

EXAMPLE 5. Take a function a C C[0, 1] such tha t  Iiall < 1/2. Assume that ,  the function f from 
the Assumpt ion (iii) has the form f(r) =/~ ln(r  + 1) where ~ is a positive constant  such tha t  

1/2- Ilall ),< 
l n (v~ /2 )  ' 

and (Tx)(t) = 1. Then,  (for M = 1) the inequality from (vi) has the form 

Hall + )~r ln(r + 1) < r. 

Taking into account our conditions and applying Bolzano's  theorem to the function 

g(r) = Ilal] + Aln(r  + 1) - r, 

in the interval [0, 1/2] we can find a positive solution r0 to the above inequality with 0 < r0 < 1/2. 
Moreover, we have 

Mf(ro)Q=f(ro)=Aln(ro+l) < ) ~ l n ( 3 )  < 1 - 2 1 1 a 1 1 < 1 .  

In what  follows let us observe that ,  the assumptions of our existence result contained in Theorem 2 
are ra ther  easy to verify. We illustrate this assertion with help of some examples.  

EXAMPLE 6. Consider the following nonlinear quadrat ic  integral equat ion 

x(t) = ta + ( 4x(t) + ~ ) ~ot (t + cos (1 x2(~-) + X2(T) ) ) dT. 

We investigate the solvability of this equation in the space C[0, 1]. Observe that ,  in our si tuation 
we have tha t  a(t) = t 3, ]lall = 1 and 

v(t,'r,x) = t + cos ~ . 

Further,  we get Iv(t ,r ,z)l  < 2 for all t,r E [0, 1] and x C R.  Thus,  the function f(r) has the form 
f ( r )  = 2. Moreover, the function t --* v(t, r, x) is nondecreasing on [0, 1] for fixed r E [0, 1] and 
z e R .  T h e  o p e r a t o r  T is def ined b y  (Tz)(t) = ( 1 / 4 ) z ( t )  + 1 /4  a n d  verifies the Assumptions  (iv) 
and (v) with Q -- 1/4, c = d = 1/4. Moreover, the inequality 

Ilall + (c + dr)My(r) ~_ r, 

has the form 

or equivalently, 
3 1 ~+~r<r, 
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which has the positive solution r0 -- 3 and we have tha t  

1 1 
M f ( ro )Q = 1 . 2 . 4  2 < 1. 

This allows us to infer tha t  in the space C[0, 1] there exists a solution x = x( t )  of our equation 
which is nondecreasing on the interval [0, 1]. 

EXAMPLE 7. Let  us consider the following integral equation 

(if ); x ( t )  ----- t + -~  [x('r)[ dT r e  t+(l=(r)l/(l+l=(~)l)) d'l". 
JO 

We will s tudy  if this equat ion has solution in the space C[0, 1]. In this case, we have tha t  M -- 1, 
a(t) = t and ][a H = 1. Moreover, the function v(t, r, x) is defined by 

v(t, r, x) = r e  t+(l=l/(l+l=l)). 

We can obtain  the following est imate 

Iv(t, r, x)[ = v(t, r, x) = re  t+(Izl/(l+[=l)) <_ e l+(Izl/(l+lxl)) <<_ e 2. 

Thus, we can take as f the function f ( r ) - - e  2. Now, the opera tor  T is ( T x ) ( t ) - - ( 1 / e  3) f~ Ix(r)l d~r 
and satisfies the Darbo  condition with Q -- 0 and satisfies the Hypothesis  (v) with c = 0 and 
d = 1/e 3. Now, the inequality of the Assumption (vi) has the following form 

1 e 2 < r, I]a[I + (c + d r ) M r ( r )  = 1 + e-gr. 

or equivalently 
r 

l + - < r .  
e 

Taking r0 -- e / (e  - 1) we have tha t  r0 is a positive solution of the above inequality. Moreover, 
we deduce tha t  

M f ( r o ) Q  = 1. e 2. 0 = 0 < 1. 

All the above established facts show that ,  the assumptions of Theorem 2 are satisfied. So, we 
conclude tha t  our integral equation has a nondecreasing solution in the space C[0, 1]. 

EXAMPLE 8. Now, let us consider the following integral equation 

1 fo x(t)  = I t  + ~x( t )  T(t + ln(1 -+- Ix(7)I)) dT. 

We will look for solutions of this equation in the space C[O, 1]. Here, we have tha t  M = 1, 
a(t) = (1/e)t ,  I[a][ = 1/e. Moreover, the function v(t, r, x) has the form 

v(t, r, x) = r ( t  + ln(1 -b Ixl)). 

We can obtain the following es t imate  

Iv(t, 7, x)l---- v(t, 7, x) ---- =(t + ]n(1 + Ixl)) <_ 1 + ln(1 + Ixl). 

As ln(1 + Ixl) _< Ixl we have tha t  

I v ( t ,T , x ) l  = v ( t , 7 , x )  < 1 + Ixl. 
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Thus ,  w e  can  t ake  as f t he  func t ion  f ( r )  = 1-{-r. Moreover ,  t he  o p e r a t o r  T is ( T x ) ( t )  =- (1 /4 )x ( t )  

and satisfies the Darbo condition with Q = 1/4 and e = 0 and d = 1/4. Now, the inequality 

Ilall + (c + dr)Mr(r) < r, 

has the expression 

or equ iva l en t ly  

I t  is easy  to check t ha t ,  t he  n u m b e r  

l + l r (  l + r ) ~ r ,  
e 

+1o _<o. 

3 / 4 -  v 9/16 - 1/e 
r0 = 1 /2  ' 

is a positive solution of the above inequality. Moreover, we obtain 

Mf(ro)Q=l. 1 + 2  - Y 16e ] ]  4 < 3 " ~ = ~ < 1 "  

All the above established facts show that, the assumptions of Theorem 2 are satisfied. In view 
of that theorem we deduce the existence of a solution of our integral equation which belongs to 
t he  space  C[0, 1] and  is nondec reas ing  on the  in terva l  [0, 1]. 
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