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Abstract

We first prove a quantitative estimate of the volume of the sublevel sets of a plurisubharmonic function
in a hyperconvex domain with boundary values 0 (in a quite general sense) in terms of its Monge–Ampère
mass in the domain. Then we deduce a sharp sufficient condition on the Monge–Ampère mass of such a
plurisubharmonic function ϕ for exp(−2ϕ) to be globally integrable as well as locally integrable.
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1. Introduction

It is well known that estimates on volumes and capacities of sub-level sets of plurisubharmonic
functions from various classes as well as integrability theorems for such classes play an important
role in many areas of complex analysis (see [23,25,29,30] and references therein).

A classical result in this direction is Skoda’s theorem [28] which asserts that if ϕ is a plurisub-
harmonic function defined near some point a ∈ C

n, then exp(−2ϕ) is locally integrable in a
neighborhood of a if its Lelong number satisfies νa(ϕ) < 1.

For n = 1 the condition νa(ϕ) < 1 turns out to be equivalent to the local integrability of
exp(−2ϕ) in a neighborhood of a. It is possible in this case to derive a global integrability result
using classical potential theory. Namely, if ϕ is a subharmonic function defined on the unit disc
D ⊂ C with smallest harmonic majorant identically zero and 2πμ := ∫

D
�ϕ < +∞. Then for

any s > 0

V2
({ϕ � −s}) � 4π exp(−2s/μ), (1.1)

where V2 is the 2-dimensional Lebesgue measure on C.
From this inequality it is easy to derive a uniform bound on

∫
D

e−2ϕ dV2 when
∫

D
�ϕ �

2πμ < 1 (see Section 4).
When n � 2, the situation is much more delicate (see [5] for a partial result).
In [18], Demailly provided a sharp condition for the local integrability of e−2ϕ , if ϕ is

plurisubharmonic, in terms of the mass of its Monge–Ampère measure (ddcϕ)n. It says that
if Ω � C

n, ϕ ∈ PSH(Ω) satisfies −A � ϕ � 0 on Ω \ K, where K � Ω and

∫
Ω

(
ddcϕ

)n � μn < nn (1.2)

then

∫
K

e−2ϕ dV2n � C(Ω,K,A,μ)

where dV2n denotes the 2n-dimensional Lebesgue measure and ddc =
√−1

π
∂∂̄ . In an appendix

to [18], the last-named author observed that from this estimate one can actually deduce a global
estimate on the whole of Ω .

This result can be viewed as a non-linear version of Skoda’s integrability theorem [28] where
the assumption that ϕ is bounded near ∂Ω gives a much stronger statement. Without any extra
hypothesis the estimate is no longer true as functions depending on one variable only show.

Actually Demailly proved, using an approximation theorem [17] and the semicontinuity theo-
rem for complex singularity exponents of plurisubharmonic functions [19] (both rather difficult)
that his criterion is equivalent to a local algebra inequality due to Corti [15] for n = 2, and de
Fernex, Ein, Mustaţǎ [21] in the general case. The inequality

lc(I) � ne(I)−1/n, (1.3)
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relates e(I) — the Hilbert–Samuel multiplicity of the ideal of germs of holomorphic functions
with isolated singularity at the origin in C

n and lc(I) — the log canonical threshold of I at the
origin.

Introducing his result Demailly called for an “analytic proof” of it for the following reasons:

• the criterion involves only plurisubharmonic functions,
• in his proof the constant C(Ω,K,A,μ) is not explicitly given in terms of Ω,K,A,μ,

• an alternative proof combined with Demailly’s argument would provide an analytic way of
proving (1.3).

We refer to [15,18,20,21] for the discussion of the interesting consequences (1.3) has in the
study of birational rigidity of varieties.

Our first aim is to generalize (1.1) into the several complex variables setting. In particular this
gives a positive answer to the question of Demailly.

In order to state our main results let us introduce some notations. Throughout this paper, Ω �
C

n denotes a bounded hyperconvex domain (see Section 2 for the definition). The normalized

operator dc =
√−1
2π

(∂̄ − ∂) is used, so that the complex Monge–Ampère measure given by log |z|
is exactly the Dirac measure at the origin, i.e. (ddc log |z|)n = δ0.

We shall consider the class E (Ω) introduced in [8]. It is the largest set of non-positive
plurisubharmonic functions defined on the hyperconvex domain Ω for which the complex
Monge–Ampère operator is well defined (Theorem 4.5 in [8]). Let F (Ω) ⊂ E (Ω) contain those
functions with smallest maximal plurisubharmonic majorant identically zero and also with finite
total Monge–Ampère mass. Note that if n = 1, then the condition of belonging to F (Ω) coin-
cides with the above conditions on ϕ that its smallest harmonic majorant is identically zero and
bounded Laplace mass.

Let us state our main results.

Theorem A. There exists a uniform constant cn > 0, depending only on n such that for any
ϕ ∈ F (Ω), and any s > 0, we have that

V2n

({ϕ � −s}) � cnδ
2n
Ω

(
1 + sμ−1)n−1 exp

(−2nsμ−1), (1.4)

where V2n is the 2n-dimensional Lebesgue measure on C
n, μ � 0 is defined through μn =∫

Ω
(ddcϕ)n and δΩ is the diameter of Ω .

Theorem B. There exist a uniform constant an > 0, depending only on n, such that for any
positive number 0 � μ < n and any ϕ ∈ F (Ω) such that

∫
Ω

(ddcϕ)n � μn, we have that

∫
Ω

e−2ϕ dV2n �
(

πn + an

μ

(n − μ)n

)
δ2n
Ω , (1.5)

where V2n is the 2n-dimensional Lebesgue measure on C
n and δΩ is the diameter of Ω .

Theorem C. Let Ω � C
n and D � C be hyperconvex domains and ϕ ∈ F (Ω × D). Then for

almost all ζ ∈ D, the energy (up to a sign) of the slice function ϕ(·, ζ ) is well defined by
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ϕn+1(ζ ) :=
∫
Ωz

ϕ(z, ζ )
(
ddc

zϕ(z, ζ )
)n

,

and is equal to

ϕn+1(ζ ) =
∫

Ωz×Dη

g(ζ, η)
(
ddcϕ(z, η)

)n+1
,

where g = gD is the Green function of D with logarithmic pole. Moreover, ϕn+1 ∈ F (D) and its
Laplace mass is given by

∫
D

ddcϕn+1 =
∫

Ω×D

(
ddcϕ

)n+1
.

Theorem C is proved in Section 3 (see Theorem 3.1). Theorem B follows from Theorem A and
gives a precise estimate on the global integrability of exp(−2ϕ) in terms of its Monge–Ampère
mass. This will give in particular a precise and global quantitative version of Demailly’s theorem
(see Section 5).

The proof of Theorem A goes by induction on the dimension n � 1 starting from (1.1) and
uses in a crucial way the result of Theorem C. The first step is to reduce to the case where
Ω = D

n is the unit polydisc using a subextension theorem [14]. Then the key ingredient in
the induction process relies on special properties of the pluricomplex energy of the slices of a
function ϕ ∈ F (Ω × D) defined on a product domain (see Section 3). Namely we are able to
compute the (n+1)-dimensional complex Monge–Ampère mass of a function ϕ ∈ F (Ω ×D) in
terms of the Laplacian mass of its partial n-dimensional Monge–Ampère energy function which
turns out to be well defined and subharmonic on D.

In Section 6 we give different applications of our results. We prove a useful inequality between
the volume and the Monge–Ampère capacity of a Borel set (Proposition 6.1) and an integral esti-
mate of Monge–Ampère capacities of slices of a Borel set in a product domain (Proposition 6.2).
Finally in Section 6.3 we deduce a general local transcendental inequality on complex singularity
exponents of plurisubharmonic functions (Proposition 6.3) which implies, following an argument
of Demailly in [18], the local algebra inequality (1.3).

2. Preliminaries

Let us recall some definitions. Let D denote the unit disk in C, D
n the unit polydisc in C

n

and let V2n denote the Lebesgue measure in C
n. Consider also the usual differential operators

d and dc =
√−1
2π

(∂̄ − ∂) acting on plurisubharmonic functions on domains in C
n so that ddc =

(
√−1/π)∂∂̄ .

For an open set Ω ⊂ C
n, we denote by PSH(Ω) ⊂ L1

loc(Ω) the set of plurisubharmonic func-
tions in Ω .

An open set Ω � C
n is said to be hyperconvex if it admits a negative plurisubharmonic ex-

haustion function i.e. there exists a plurisubharmonic function ρ : Ω �→ [−1,0[ such that for any
c < 0, Ωc := {z ∈ Ω; ρ(z) < c} � Ω .
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It is well known that a domain D � C is hyperconvex if and only if it is regular with respect
to the Dirichlet problem for the Laplace operator [27]. Therefore any product of regular planar
domains (e.g. a polydisc) is a hyperconvex domain. More generally any bounded pseudoconvex
domain with Lipschitz boundary is hyperconvex (see [16] and references therein).

Now we recall some notations from [7,8]. We write E0(Ω) for the set of plurisubharmonic test
functions i.e. functions ϕ ∈ PSH(Ω) ∩ L∞(Ω) which tend to zero at the boundary and satisfy∫
Ω

(ddcϕ)n < +∞.

Denote by F (Ω) the set of all ϕ ∈ PSH(Ω) such that there exists a sequence (ϕj ) of plurisub-
harmonic functions in E0(Ω) such that ϕj ↘ ϕ and supj

∫
Ω

(ddcϕj )
n < +∞.

The class E (Ω) will be the set of all ϕ ∈ PSH(Ω) such that for any open subset ω � Ω there
is a function ψ ∈ F (Ω) such that ψ = ϕ on ω.

The complex Monge–Ampère operator is well defined and continuous under decreasing lim-
its in the class E (Ω). Moreover in the class F (Ω), we have the following strong convergence
theorem, namely if (ϕj ) is a decreasing sequence of functions in F (Ω) which converges to
ϕ ∈ F (Ω), then for any h ∈ PSH(Ω) such that h � 0, we have (see [8,10])

lim
j

∫
Ω

h
(
ddcϕj

)n =
∫
Ω

h
(
ddcϕ

)n
.

Define E1(Ω) to be the class of plurisubharmonic functions ϕ ∈ PSH(Ω) with finite energy
i.e. there exists a sequence (ϕj ) of plurisubharmonic functions in E0(Ω) such that ϕj ↘ ϕ and
supj

∫
Ω

(−ϕj )(ddcϕj )
n < +∞. It can be proved that E1(Ω) ⊂ E (Ω) (see [8]).

We will need the following lemma.

Lemma 2.1. Let v ∈ PSH(Ω) ∩ L∞(Ω) be such that limz→ζ v(ζ ) = 0 for any ζ ∈ ∂Ω . Assume
that

∫
Ω

(−v)(ddcv)n < +∞. Then v ∈ E1(Ω).

Proof. Let (Ωj ) be an exhaustion of Ω by bounded domains. It follows from [24] that for j ∈ N,

there exists vj ∈ E0(Ω) such that

(
ddcvj

)n = 1Ωj

(
ddcv

)n

in Ω . By the comparison principle (vj )j is a decreasing sequence from E0(Ω) converging to v.
Integration by parts gives that

∫
Ω

(−vj )(ddcvj )
n �

∫
Ω

(−v)(ddcv)n < +∞, so v ∈ E1(Ω) by
definition. �

Now we introduce the notion of capacity due to Bedford and Taylor [3]. For a given Borel
subset E ⊂ Ω we define the Monge–Ampère capacity of the condenser (E,Ω) by

Cap(E,Ω) = CapΩ(E) := sup

{∫
E

(
ddcv

)n; v ∈ PSH(Ω), −1 � v � 0

}
.

Then by [3] if E � Ω we have the formula

Cap(E,Ω) =
∫ (

ddch∗
E,Ω

)n
,

Ω
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where hE,Ω is the extremal function of (E,Ω) defined by

hE,Ω := sup
{
v ∈ PSH(Ω); v � 0, v|E � −1

}
.

We will also need the following estimates on the capacity of the sub-level sets of functions in
E1(Ω) (see [12]).

Lemma 2.2. Let v ∈ E1(Ω). Then for any s > 0, we have that

sn+1CapΩ

({v � −s}) �
∫
Ω

(−v)
(
ddcv

)n
.

Proof. By homogeneity, it is enough to prove the estimate for s = 1. Then take an arbitrary
compact subset K ⊂ {v � −1}. If hK is the extremal function of (K,Ω) the function h := h∗

K ∈
E0(Ω) and satisfies v � h. Thus using repeatedly integration by parts we obtain that

Cap(K,Ω) =
∫
Ω

(−h)
(
ddch

)n �
∫
Ω

(−v)
(
ddch

)n

�
∫
Ω

(−h)ddcv ∧ (
ddch

)n−1 �
∫
Ω

(−v)ddcv ∧ (
ddch

)n−1

� · · · �
∫
Ω

(−v)
(
ddcv

)n
. � (2.1)

3. Partial pluricomplex energies

In this section we present the main technical tool which will be used in the proofs of many
results to follow. Namely we show that given a function ϕ ∈ F (Ω ×D), its partial n-dimensional
Monge–Ampère energy function (up to a sign) is well defined and subharmonic on D and more-
over its Laplacian mass is equal to the (n + 1)-dimensional Monge–Ampère mass of ϕ. The
precise statement is the following (this is Theorem C in the introduction).

Theorem 3.1. Let Ω ⊂ Cn and D ⊂ C be two bounded hyperconvex domains and g = gD the
Green function of D with logarithmic pole. If ϕ ∈ F (Ω × D), then the slice function Ω � z →
ϕ(z, ζ ) belongs to E1(Ω) for all ζ ∈ D with

∫
Ωz×Dη

g(ζ, η)
(
ddcϕ(z, η)

)n+1
> −∞.

Furthermore, if we define

ϕn+1(ζ ) :=
∫

ϕ(z, ζ )
(
ddc

zϕ(z, ζ )
)n
Ωz
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if the integral is well defined and ϕn+1(ζ ) = −∞ otherwise, then for any ζ ∈ D,

ϕn+1(ζ ) =
∫

Ωz×Dη

g(ζ, η)
(
ddcϕ(z, η)

)n+1
.

In particular we have that ϕn+1 ∈ F (D) and it satisfies

∫
D

ddcϕn+1 =
∫

Ω×D

(
ddcϕ

)n+1
.

Proof. Assume first that ϕ ∈ E0(Ω × D) ∩ C∞(Ω × D), and let K � Ω , L � D. Then 0 �
ϕ(z, ζ )(ddc

z ϕ(z, ζ ))n ∈ C∞(Ω × D) and thus

ϕK(ζ ) :=
∫
K

ϕ(z, ζ )
(
ddc

zϕ(z, ζ )
)n ∈ C∞(D).

For h ∈ E0(D) ∩ C(D) we have

∫
L

ϕK(ζ )ddch(ζ ) =
∫
L

∫
K

ϕ(z, ζ )
(
ddc

zϕ(z, ζ )
)n ∧ ddch(ζ )

=
∫
K

∫
L

ϕ(z, ζ )
(
ddcϕ(z, ζ )

)n ∧ ddch(ζ ).

Then it follows that

∫
K

∫
L

ϕ(z, ζ )
(
ddcϕ(z, ζ )

)n ∧ ddch(ζ ) �
∫
Ω

∫
D

ϕ(z, ζ )
(
ddcϕ(z, ζ )

)n ∧ ddch(ζ ).

By a generalized Jensen–Lelong–Demailly type formula in F (Ω × D) [11, Remark 1], we have

∫
Ω×D

ϕ(z, ζ )
(
ddcϕ(z, ζ )

)n ∧ ddch(ζ ) =
∫

Ω×D

h(ζ )
(
ddcϕ(z, ζ )

)n+1
> −∞,

since h as a function of (z, ζ ) ∈ Ω ×D, only depends on ζ ∈ D and vanishes on the distinguished
boundary of Ω × D.

Then by letting L increase to D, it follows that ϕK is a decreasing family of continuous
functions on Ω which are uniformly integrable on Ω as K increases to Ω . This implies that
ϕn+1 is upper semicontinuous and integrable on Ω and satisfies

∫
D

ϕn+1 ddch =
∫
D

∫
Ω

h(ζ )
(
ddcϕ(z, ζ )

)n+1
, (3.1)
ζ z
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for any test function h ∈ E0(D) ∩ C(D). Since C∞
0 (D) ⊂ E0(D) ∩ C(D̄) − E0(D) ∩ C(D̄)

(see [8]), we get from (3.1) that ddcϕn+1 � 0 in the weak sense on Ω , which proves that ϕn+1 is
subharmonic on D.

Now fix ζ ∈ D and apply (3.1) to the function h = sup{g(ζ, ·),−j}. Then by classical poten-
tial theory in C, we deduce that

ϕn+1(ζ ) =
∫

Ωz×Dη

g(ζ, η)
(
ddcϕ(z, η)

)n+1
, (3.2)

since ddcg(ζ, ·) is the Dirac mass at the point ζ . This also proves that ϕn+1 ∈ F (D).
If ϕn+1(ζ ) > −∞, then v := ϕ(·, ζ ) has boundary values 0 and

∫
Ω

(−v)
(
ddcv

)n =: −ϕn+1(ζ ) < +∞,

which implies by Lemma 2.1 that v = ϕ(·, ζ ) ∈ E1(Ω).
For the general case, assume that ϕ ∈ F (Ω × D). By [9] we can choose a sequence ϕj ∈

E0 ∩C∞(Ω ×D) such that ϕj ↘ ϕ, j → +∞. It follows from (3.2) that (ϕ
j

n+1)j is a decreasing
sequence of functions in F (D) such that

lim
j→+∞ϕ

j

n+1(ζ ) =
∫

Ω×D

g(ζ, η)
(
ddcϕ

)n+1
.

It follows now from the previous case that (ϕj (·, ζ ))j is a decreasing sequence of functions in
E1(Ω) with uniformly bounded energies which converges to ϕ(·, ζ ) if ϕn+1(ζ ) > −∞. Then
from Theorem 3.8 in [7], we deduce that ϕ(·, ζ ) ∈ E1(Ω) if ϕn+1(ζ ) > −∞. �

Theorem 3.1 says that almost all the slices of a function in F (D2) belong to the space E1(D
2).

However these slices do not always belong to F (D) as the following example shows.

Example 3.2. The function

ϕ(z, ζ ) :=
+∞∑
k=1

max
{
log |z|, k−4 log |ζ |}, (z, ζ ) ∈ D × D

is an example of a function ϕ ∈ F (D2) with all slices ϕ(·, ζ ) ∈ E1(D) \ F (D) if ζ 
= 0 (see
Example 5.7 [13]).

The last result can be generalized as follows.

Theorem 3.3. Let Ω ⊂ C
n and D ⊂ C be two bounded hyperconvex domains and g = gD the

Green function of D with logarithmic pole. If ϕj ∈ F (Ω ×D),0 � j � n, then the slice function
Ω � z → ϕ0(z, ζ ) is integrable on Ω with respect to the measure ddc

zϕ1(z, ζ )∧· · ·∧ddc
zϕn(z, ζ )

for all ζ ∈ D with



2044 P. Åhag et al. / Advances in Mathematics 222 (2009) 2036–2058
∫
Ωz×Dη

g(ζ, η) ddcϕ0(z, η) ∧ ddcϕ1(z, η) ∧ · · · ∧ ddcϕn(z, η) > −∞.

Furthermore, if we define

u(ζ ) :=
∫
Ωz

ϕ0(z, ζ ) ddc
zϕ1(z, ζ ) ∧ · · · ∧ ddc

zϕn(z, ζ ), ζ ∈ D

then for any ζ ∈ D,

u(ζ ) =
∫

Ωz×Dη

g(ζ, η) ddcϕ0(z, η) ∧ ddcϕ1(z, η) ∧ · · · ∧ ddcϕn(z, η)

so in particular we have that u ∈ F (D) and

∫
D

ddcu =
∫

Ω×D

ddcϕ0 ∧ ddcϕ1 ∧ · · · ∧ ddcϕn.

Proof. Let h ∈ E0 ∩C(D) be a given test function. As in the first part of the proof of Theorem 3.1
we get

∫
D

uddch =
∫

Ω×D

ϕ0(z, ζ ) ddcϕ1(z, ζ ) ∧ · · · ∧ ddcϕn(z, ζ ) ∧ ddch(ζ ).

So if we prove that the right-hand side equals

∫
Ω×D

h(ζ ) ddcϕ0(z, ζ ) ∧ · · · ∧ ddcϕn(z, ζ ),

the proof can be completed in the same way as in the second part of the proof of the previous
theorem.

Indeed for 0 � kj � n, 0 � j � n the inequality

∫
Ω×D

ϕk0(z, ζ ) ddcϕk1(z, ζ ) ∧ · · · ∧ ddcϕkn(z, ζ ) ∧ ddch(ζ )

�
∫

Ω×D

h(ζ ) ddcϕk0(z, ζ ) ∧ ddcϕk1(z, ζ ) ∧ · · · ∧ ddcϕkn(z, ζ ),

can be obtained by approximating h by a decreasing sequence of functions hp ∈ E0(Ω × D),

using partial integration in F and observing that ddcϕk1(z, ζ ) ∧ · · · ∧ ddcϕkn(z, ζ ) ∧ ddchp(ζ )

tends weakly to ddcϕk1(z, ζ ) ∧ · · · ∧ ddcϕkn(z, ζ ) ∧ ddch(ζ ) when p tends to ∞.
Again, since F is a convex cone, ψ := ∑n

j=0 ϕj ∈ F (Ω × D) and then it follows from [11]
that
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∫
Ω×D

ψ(z, ζ )
(
ddcψ(z, ζ )

)n ∧ ddch(ζ ) =
∫

Ω×D

h(ζ )
(
ddcψ(z, ζ )

)n+1
.

Using the separate linearity of the wedge product, we can expand both sides to obtain sums
of terms of the form

∫
Ω×D

ϕk0(z, ζ ) ddcϕk1(z, ζ ) ∧ · · · ∧ ddcϕkn(z, ζ ) ∧ ddch(ζ )

on the left-hand side, while on the right-hand side we get terms

∫
Ω×D

h(ζ ) ddcϕk0(z, ζ ) ∧ ddcϕk1(z, ζ ) ∧ · · · ∧ ddcϕkn(z, ζ ).

Since they have the same sum, they have all to be equal which completes the proof of the theo-
rem. �
4. Volume estimates of sub-level sets

Here we prove Theorem A (see Corollary 4.2 below). Let us first prove it for the polydisc.

Theorem 4.1. There exists a constant cn > 0 such that for any μ > 0, any ϕ ∈ F (Dn) with∫
Dn(ddcϕ)n � μn and any s > 0, we have that

V2n

({ϕ � −s}) � cn(1 + s/μ)n−1 exp(−2ns/μ). (4.1)

Proof. We prove the theorem using induction over the dimension n.
For n = 1, the estimate was proved in [5]. Let us recall its proof here for the convenience of the

reader. We use the classical Pólya’s inequality which we recall. Let K ⊂ C be a compact subset
in the complex plane with area A(K) and logarithmic capacity c(K). In [26], Pólya proved what
we today could write as

A(K) � πc(K)2 (4.2)

(for an elegant proof see e.g. Theorem 5.3.5 in [27]). We can assume that K is not polar. Then
from the Riesz representation formula for the Green function VK of K with pole at infinity, we
obtain that

c(K) � 2 exp
(
− sup

|z|=1
VK(z)

)
.

Now denote by MK := sup|z|=1 VK(z). Then M−1
K VK � hK,D on D. Since by our normalization∫

D
ddcVK = ∫

C
ddcVK = 1, it follows from the comparison principle for the Laplace operator

that
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M−1
K = M−1

K

∫
D

ddcVK �
∫
D

ddch∗
K = Cap(K,D).

This inequality is due to Alexander and Taylor (see [2]). Then putting all together we obtain the
inequality

V2(K) � 4π exp
(−2/Cap(K,D)

)
. (4.3)

It is clear that this inequality is still true for Borel subsets K ⊂ D. Now if ϕ ∈ F (D), we know
that Cap({ϕ � −s},D) �

∫
D

ddcϕ/s. Therefore we have that

V2
({ϕ � −s}) � 4π exp(−2s/μ), (4.4)

where μ := ∫
D

ddcϕ (see [5]).
Now assume that the estimate (4.1) is true in dimension n and let us prove it in dimension

n + 1.
Fix ϕ ∈ F (Dn+1) such that

∫

Dn+1

(
ddcϕ

)n+1 � μn+1.

By homogeneity, it is enough to prove the estimate for s = 1. Then we want to estimate the
volume V2n+2({ϕ � −1}) by applying Fubini’s theorem. So fix ζ ∈ D and estimate the volume
V2n({z ∈ D

n: ϕ(z, ζ ) � −1}). Indeed, define Eζ := {z ∈ D
n: ϕ(z, ζ ) � −1}, consider its relative

extremal function hζ := h∗
Eζ

and observe that V2n(Eζ ) = V2n({hζ � −1}), since the two sets
coincide up to a pluripolar set. We want to apply the induction hypothesis to the function hζ .

Fix ζ ∈ D such that ϕn+1(ζ ) > −∞ and observe that hζ � v := ϕ(·, ζ ). By Theorem 3.1, the
function v = ϕ(·, ζ ) ∈ E1(D

n) and then hζ ∈ E1(D
n). On the other hand, by [3], we know that

∫
Dn

(
ddchζ

)n = Cap
(
Eζ ,D

n
)
.

Then since v = ϕ(·, ζ ) ∈ E1(D
n), it follows from Lemma 2.2 that

Cap
(
Eζ ,D

n
) = Cap

({v � −1},D
n
)
�

∫
Dn

(−v)
(
ddcv

)n = −ϕn+1(ζ ) < +∞.

This implies that for any ζ ∈ D such that ϕn+1(ζ ) > −∞,

∫
Dn

(
ddchζ

)n � −ϕn+1(ζ ) < +∞

and then hζ ∈ F (Dn).
Now applying the induction hypothesis to the function hζ ∈ F (Dn), we deduce that for almost

all ζ ∈ D,
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V2n

({
ϕ(·, ζ ) � −1

})
� cn

(
1 + (−ϕn+1(ζ )

)−1/n)n−1 exp
(−2n

(−ϕn+1(ζ )
)−1/n)

.

Then integrating in ζ ∈ D, we get

V2n+2
({ϕ � −1}) � cn

∫
D

χ
(−ϕn+1(ζ )

)
dV2(ζ ), (4.5)

where

χ(t) := (
1 + t−1/n

)n−1 exp
(−2nt−1/n

)
, t � 0.

It is easy to check that the function χ is increasing with χ(0) = 0 and χ(+∞) = 1. Therefore
from (4.5), it follows that

V2n+2
({ϕ � −1}) � cn

+∞∫
0

χ ′(t)V2
({ϕn+1 � −t})dt. (4.6)

Since
∫

D
ddcϕn+1 = ∫

Dn+1(ddcϕ)n+1 � μn+1 by Theorem 3.1, it follows from (4.6) that

V2n+2
({ϕ � −1}) � cn

+∞∫
0

χ ′(t) exp
(−2tμ−n−1)dt.

Now using the change of variable x = t−1/n and observing that

χ ′(t) dt = −(2nx + n + 1)(1 + x)n−2e−2nx dx,

we get the following estimate

V2n+2
({ϕ � −1}) � 8nπcn

+∞∫
0

(x + 1)n−1 exp
(−2

(
nx + x−nμ−n−1))dx. (4.7)

Now observe that the function R
+ � x �→ 2(nx + x−nμ−n−1) reaches its minimum at the

point x = 1/μ and this minimum is precisely equal to 2(n + 1)μ−1. Then splitting the integral
in (4.7) into two parts, integrating first from 0 to 3/μ and then from 3/μ to +∞, we easily get

V2n+2
({ϕ � −1}) � 8nπcn(3/μ)(1 + 3/μ)n−1 exp

(−2(n + 1)μ−1)

+ 8nπcn

+∞∫
3/μ

(1 + x)n−1 exp(−2nx)dx. (4.8)

It is easy to see that the last terms is much smaller that the first one and can be easily estimated
from above by 8πcn exp(−2(n + 1)/μ) so that we finally get
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V2n+2
({ϕ � −1}) � 8π

(
n3n + 1

)
cn(1 + 1/μ)n exp

(−2(n + 1)μ−1).
This implies that the inequality (4.1) holds with

cn := 23n−1πn
∏

0�k�n−1

(
k3k + 1

)
, n � 1. � (4.9)

The volume estimate actually holds in the following general setting which will prove Theo-
rem A.

Corollary 4.2. Let Ω � C
n be a bounded hyperconvex domain. Then for any ϕ ∈ F (Ω) and any

s > 0, we have

V2n

({ϕ � −s}) � cnδ
2n
Ω

(
1 + sμ−1)n−1 exp

(−2nsμ−1), (4.10)

where μn := ∫
Ω

(ddcϕ)n, δΩ is the diameter of Ω and cn is the constant defined by (4.9).

Proof. Observe that the inequality is invariant under holomorphic linear change of variables so
that we can always assume that Ω � D

n. Then by the subextension theorem [14], there exists
a function ψ ∈ F (Dn) such that ψ � ϕ and

∫
Dn(ddcψ)n �

∫
Dn(ddcϕ)n = μn. Applying the

estimate of Theorem 4.1 to ψ , we obtain the required estimate. �
Remark 1. An analogous estimate was obtained by Demailly and Kollár for plurisubharmonic
functions of the type ϕ = log(

∑N
j=1 |gj |2), where g1, . . . , gN are holomorphic functions (see

[19, Proposition 1.7, p. 531]).

Remark 2. It is possible to improve slightly the estimate (4.1) at least asymptotically by replac-
ing in the right-hand side the factor (1 + s/μ)n−1 by (1 + √

s/μ)n−1. This can be easily done
by studying the asymptotics of the integral on the right-hand side of the estimate (4.7) using the
classical method of Laplace. We do not know if this estimate is sharp.

5. Integrability theorems in terms of Monge–Ampère masses

In this section we prove Theorem B (see Corollary 5.2) stated in the introduction, which will
give a pluripotential proof of a theorem due to Demailly [18]. We also prove a theorem on local
integrability.

5.1. Global integrability

Theorem 5.1. Let ϕ ∈ F (Dn) such that
∫

Dn(ddcϕ)n � μn with μ < n. Then

∫
Dn

e−2ϕ dV2n � πn + an

μ

(n − μ)n
,

where an > 0 is a dimensional constant.
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Proof. By Theorem 4.1, we have

∫
Dn

e−2ϕ dV2n = πn + 2

+∞∫
0

e2sV2n

({ϕ < −s})ds

� πn + 2cn

+∞∫
0

(1 + s/μ)n−1e2s−2ns/μ ds.

Now it is easy to see by integration by parts that the integrals

In :=
+∞∫
0

(1 + s/μ)n−1e2s−2ns/μ ds

satisfy the inequality

In � (n − 1)!
2n

μ

(n − μ)n
,

for n � 1, and the required estimate follows with the constant

an := (n − 1)!
2n−1

cn. � (5.1)

We have a more general result.

Corollary 5.2. Let Ω � C
n be a bounded hyperconvex domain. Then for any ϕ ∈ F (Ω) such

that
∫
Ω

(ddcϕ)n � μn < nn with μ < n, we have that

∫
Ω

e−2ϕ dV2n �
(

πn + an

μ

(n − μ)n

)
δ2n
Ω ,

where δΩ is the diameter of the domain Ω and an is the constant defined by (5.1).

Proof. The proof is the same as before using Corollary 4.2. �
Remark. The proof of Corollary 5.2 uses a subextension argument (see the proof of Corol-
lary 4.2). It is interesting to note that it follows from results in [1] that to every ϕ ∈ F (Ω) there
are two uniquely determined functions ϕ1, ϕ2 ∈ F (Ω), ϕ � ϕ1, ϕ � ϕ2 such that

(
ddcϕ1

)n = 1{ϕ>−∞}
(
ddcϕ

)n
,

(
ddcϕ2

)n = 1{ϕ=−∞}
(
ddcϕ

)n
.

Furthermore, ϕ1 + ϕ2 � ϕ, so the integrability exponent of ϕ is completely determined by its
“singular part” ϕ2. Indeed since (ddcϕ1)

n puts no mass on pluripolar sets, the Lelong numbers
of ϕ1 are 0 and then it follows that e−2ϕ1 ∈ L1(Ω) (see [14]).
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Also, let Ω � Ω̃ be another hyperconvex domain and let ϕ̃2 be the maximal subextension of
ϕ to Ω̃ . Then it follows that ϕ̃2 has the same Monge–Ampère measure as ϕ2.

As a corollary we get a strengthened version of Demailly’s theorem [17].

Corollary 5.3. Let Ω � C
n be a bounded pseudoconvex domain and M > 0 a fixed constant.

Then for any ϕ ∈ PSH(Ω) with 0 � ϕ � −M near the boundary, ϕ ∈ E (Ω). Moreover if∫
Ω

(ddcϕ)n � μn with μ < n, we have that

∫
Ω

e−2ϕ dV2n �
(

πn + an

μ

(n − μ)n

)
e2Mδ2n

Ω ,

where δΩ := diam(Ω) is the diameter of Ω and an is the constant defined by (5.1).

Proof. We can assume the domain Ω to be hyperconvex. It follows from Theorem 2.1 in [10]
that there exists ψ ∈ F (Ω) with

∫
Ω

(ddcψ)n �
∫
Ω

(ddcϕ)n such that ϕ � ψ − M on Ω . Then
the result follows from Corollary 5.2. �

Now we investigate integrability in the critical case when the total Monge–Ampère mass has
the maximal value nn.

Theorem 5.4. Let Ω � Cn be a bounded hyperconvex domain and ϕ ∈ F (Ω) such that∫
Ω

(ddcϕ)n = nn. Then for any real number λ > n, we have that

∫
Ω

e−2ϕ

(1 − ϕ)λ
dV2n �

(
1 + (2/λ)λeλ−2)V2n(Ω) + 2cnδ

2n
Ω

1

λ − n
,

where cn is the constant defined by (4.9).

Proof. Indeed, set χ(t) := (1 + t)−λe2t , for t � 0. Since

χ ′(t) = (−λ(1 + t)−λ−1 + 2(1 + t)−λ
)
e2t = (2 − λ + 2t)(1 + t)−λ−1e2t ,

it follows that the function χ is increasing for t � t0 := (λ − 2)/2 and decreasing on [0, t0].
Therefore we have that

∫
Ω

e−2ϕ

(1 − ϕ)λ
dV2n =

∫
−ϕ<t0

e−2ϕ

(1 − ϕ)λ
dV2n +

∫
−ϕ�t0

e−2ϕ

(1 − ϕ)λ
dV2n

� V2n(Ω) +
∫

ϕ�−t0

e−2ϕ

(1 − ϕ)λ
dV2n

� V2n(Ω) + χ(t0)V2n(Ω) +
+∞∫

χ ′(t)V2n

({ϕ � −t})dt.
t0
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By Corollary 4.2, we have that

∫
Ω

e−2ϕ

(1 − ϕ)λ
dV2n �

(
1 + χ(t0)

)
V2n(Ω) + 2cnδ

2n
Ω

+∞∫
0

(1 + t)n−λ−1 dt. �

5.2. Local integrability of exp(−2ϕ)

Theorem 5.5. Suppose ϕ ∈ E (Ω) and a ∈ Ω . If
∫
{a}(ddcϕ)n < nn, then exp(−2ϕ) is locally

integrable near a.

Proof. By definition, functions in E (Ω) are locally in F (Ω) so we can assume that ϕ ∈ F (Ω).
Set for j � 1,

ψj := sup
{
u ∈ PSH(Ω); u � 0, u � ϕ on Bj

}
,

where Bj := B(a,1/j) is the ball of center a and radius 1/j .
Then ψj ∈ F (Ω), ψj � ϕ and ψj = ϕ on Bj . Moreover, supp(ddcψj )

n � Bj−1. Denote by
G(z, a) the pluricomplex Green function for Ω with logarithmic pole at a and choose δ > 0 so
small that

∫
Ω

(−max
{
δG(z, a),−1

})(
ddcϕ

)n
< nn.

Using integration by parts in F (Ω) we see that

∫
Ω

(−max
{
δG(z, a),−1

})(
ddcψj

)n �
∫
Ω

(−max
{
δG(z, a),−1

})(
ddcϕ

)n
< nn.

If we choose k so large that Bk−1 � {δG(z, a) < −1}, it follows that
∫
Ω

(ddcψk)
n =∫

Bk−1
(ddcψk)

n < nn.
Now since ψk = ϕ on Bk, it follows from Corollary 5.2 that

∫
Bk

e−2ϕ dVn =
∫
Bk

e−2ψk dVn �
∫
Ω

e−2ψk dVn < +∞. �

Remark 1. Note that the theorem is optimal as the functions (n − ε) log |z − a| (ε > 0) show.

Remark 2. The following example shows that there is no local version of Theorem 5.4. Indeed,
fix 0 < α < 1/n and consider the function defined on the unit ball Bn ⊂ C

n by

ϕ(z) := n ln |z| − (− ln |z|)α
, z ∈ Bn.

Then ϕ ∈ E (Bn) and (ddcϕ)n({0}) = nn. However for any λ > 0 the function (1 − ϕ)−λe−2ϕ is
not locally integrable near 0.
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6. Applications

6.1. An inequality between volume and capacity

Our first application of Theorem 4.1 is a useful inequality between volume and Monge–
Ampère capacity improving a previous result in [5].

Proposition 6.1. Let Ω � C
n be a hyperconvex domain. Then for any Borel subset E ⊂ Ω , we

have that

V2n(E) � cnδ
2n
Ω

(
1 + CapΩ(E)−1/n

)n−1 exp
(−2nCapΩ(E)−1/n

)
, (6.1)

where δΩ := diam(Ω) is the diameter of Ω and cn is the constant defined by (4.9).

Proof. We first assume that E � Ω . Then its plurisubharmonic relative extremal function satis-
fies h∗

E ∈ E0(Ω). Therefore applying the last corollary, we obtain

V2n(E) � V2n

({
h∗

E � −1
})

� cnδ
2n
Ω

(
1 + μ−1)n−1 exp

(−2nμ−1),
where μn = ∫

Ω
(ddch∗

E)n. Then the estimate of the theorem follows since
∫
Ω

(ddch∗
E)n =

Cap(E,Ω) by [3].
Now assume that CapΩ(E) < +∞. Then approximating E by a non-decreasing sequence of

relatively compact subsets of Ω , it follows from continuity properties of the Monge–Ampère
operator in F (Ω) that h∗

E ∈ F (Ω) and the formula
∫
Ω

(ddch∗
E)n = CapΩ(E) still holds in this

case. The proof of the inequality follows then in the same way. �
Observe that actually the estimates (4.10) and (6.1) are equivalent since for a function ϕ ∈

F (Ω) we know that Cap({ϕ � −s}) � s−n
∫
Ω

(ddcϕ)n (see [12]).

Remark. Let Ω � C
n be a hyperconvex domain such that Ω ∩ R

n 
= ∅. Then the same method
can be used to prove an estimate of the n-dimensional volume of Borel subsets of Ω ∩ R

n in
terms of their capacity with respect to Ω . Namely, if K ⊂ Ω ∩ R

n is a Borel subset, then its
n-dimensional volume satisfies the inequality

Vn(K) � bnδ
2n
Ω

(
1 + CapΩ(K)−1/n

)n−1
exp

(−nCapΩ(K)−1/n
)
,

where bn > 0 is a uniform constant which can be made explicit. The proof uses induction as
before and the following real version of the inequality (4.4) (see [27]): if K ⊂ [−1,+1] is a real
compact set of length V1(K) and logarithmic capacity c(K) then

V1(K)/4 � c(K) � 2 exp
(−1/CapD(K)

)
.

(See [5] where such kind of estimates were considered.)
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6.2. Integral estimates for capacity of slices

Given a Borel subset E ⊂ C
n+m = C

n × C
m, we define its n-dimensional slices as follows.

For a given ζ ∈ C
m we set

Eζ := {
z ∈ C

n; (z, ζ ) ∈ E
}
.

It is easy to see that if E is pluripolar then its slices Eζ are pluripolar sets in C
n except for a

pluripolar set of ζ ’s in C
m. The converse is not true as the following example of Kiselman [22]

S := {
(z,w) ∈ C

2; Im
(
z + w2) = Re

(
z + w + w2) = 0

}

shows. Indeed S is a smooth totally real analytic 2-manifold in C
2 whose intersection with any

complex line consists of at most 4 points.
Here we want to give a quantitative estimate in terms of Monge–Ampère capacity of the size

of the slices of a Borel set. We consider an increasing function F : R
+ �→ R

+ with F(0+) = 0
and polynomial growth at infinity i.e. there is a constant N > 0 such that F(t) = O(tN). To such
a function we associate the following function (m ∈ N

∗)

F̃m(x) :=
∫

R+m

F (t1 · · · tm · x)e−2(t1+···+tm) dt1 · · ·dtm. (6.2)

Then we can prove the following estimate on the Monge–Ampère capacity of slices of Borel sets.

Proposition 6.2. Let Ω ⊂ C
n and D � C

m be two hyperconvex domains and Ω̃ := Ω × D. Let
F : R

+ �−→ R
+ be an increasing function as above. Then for any Borel subset E ⊂ Ω̃ we have

that

∫
D

F
(
CapΩ(Eζ )

)
dV2m(ζ ) � (8π)mδ2m

D F̃m

(
CapΩ̃ (E)

)
. (6.3)

Proof. It is enough to assume that CapΩ̃ (E) < +∞. As in the proof of Proposition 6.1, if h∗
E is

the plurisubharmonic extremal function of the condenser (E, Ω̃), we see that h∗
E ∈ F (Ω̃).

First suppose that m = 1 and D = D ⊂ C is the unit disc in C. For each ζ ∈ D, let h∗
Eζ

be
the plurisubharmonic extremal function of the condenser (Eζ ,Ω). It follows from the definitions
that for any ζ ∈ D, the partial function h∗

E(·, ζ ) satisfies the inequality

h∗
E(·, ζ ) � h∗

Eζ
, on Ω.

Moreover by Theorem 3.1, for almost all ζ ∈ D, these functions are in E1(Ω) and then by the
proof of Lemma 2.1, we have

CapΩ(Eζ ) =
∫ (−h∗

Eζ

)(
ddch∗

Eζ

)n
Ω
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�
∫
Ω

(−h∗
E(·, ζ )

)
ddch∗

E(·, ζ )n

=: −u(ζ ),

where u(ζ ) is precisely the partial energy function associated to the function h∗
E ∈ F (Ω̃). The

measurability of the function ζ �−→ CapΩ(Eζ ) follows from a combination of Theorems IX:4
and IX:5 in [6]. Therefore we have that

∫
D

F
(
CapΩ(Eζ )

)
dV2(ζ ) �

∫
D

F
(−u(ζ )

)
dV2(ζ )

=
+∞∫
0

V2
({u � −s})dF(s). (6.4)

By Theorem 3.1, we also have that u ∈ F (D) and

∫
D

ddcu =
∫

Ω̃

(
ddch∗

E

)n+1 = CapΩ̃ (E).

Then applying (4.1) in the one-dimensional case, it follows from (6.4) that

∫
D

F
(
CapΩ(Eζ )

)
dV2(ζ ) � 4π

+∞∫
0

exp
(−2s/CapΩ̃ (E)

)
dF(s). (6.5)

Since F(t) = O(tN) as t → +∞, setting t = s/CapΩ̃ (E) and integrating by parts in the right-
hand side of the estimate (6.5), we obtain

∫
D

F
(
CapΩ(Eζ )

)
dV2(ζ ) � 8π

+∞∫
0

F
(
t · CapΩ̃ (E)

)
e−2t dt.

Now if D = D
2 � C

2 is the unit bidisc, we can iterate the previous inequality. Observe that
for any ζ = (ζ1, ζ2) ∈ D

2, we have that Eζ2 ⊂ Ω × D and Eζ = (Eζ2)ζ1 .
Therefore using the previous estimate twice, we get

∫

D2

F
(
CapΩ(Eζ )

)
dV4(ζ ) =

∫
D

dV2(ζ2)

∫
D

F
(
CapΩ

(
(Eζ2)ζ1

))
dV2(ζ1)

� 8π

∫
dV2(ζ2)

+∞∫
F

(
t · CapΩ×D(Eζ2)

)
e−2t dt
D 0
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� (8π)2

+∞∫
0

+∞∫
0

F
(
s · t · CapΩ×D(E)

)
e−2(s+t) ds dt.

Now for m � 3 we obtain by induction on m,

∫
Dm

F
(
CapΩ(Eζ )

)
dV2m(ζ ) � (8π)mF̃m

(
CapΩ×Dm(E)

)
.

In the general case we can always assume that D ⊂ D
n and then CapΩ×Dn(E) � CapΩ×D(E)

and the required estimate follows. �
As a simple example of application of the last result we get

Corollary 6.3. Let Ω ⊂ C
n and D � C

m be two hyperconvex domains and Ω̃ := Ω ×D. Assume
that E ⊂ Ω̃ is a Borel subset such that CapΩ̃ (E) < +∞. Then for any real number p > 0 we
have that

∫
D

(
CapΩ(Eζ )

)p
dV2m(ζ ) � (4π)mδ2m

D 2−mpΓ (p + 1)mCapΩ̃ (E)p, (6.6)

where Γ is the Euler function defined by Γ (p) := ∫ +∞
0 tp−1e−t dt .

Proposition 6.2 can be used to construct new measures dominated by capacity. This notion is
important in the study of the range of the complex Monge–Ampère operator on various classes
of plurisubharmonic functions on bounded hyperconvex domains (see [4,7,25]).

A positive Borel measure ν on a hyperconvex domain Ω � C
n is said to be dominated by

the Monge–Ampère capacity on Ω if there exists an increasing function F : R+ �→ R+ with
F(0+) := limt→0+ F(t) = 0 such that

ν(K) � F
(
CapΩ(K)

)
,

for any Borel subset K ⊂ Ω . In such a case, we will say that ν is F -dominated by the Monge–
Ampère capacity on Ω .

It is clear from Proposition 6.1 that the Lebesgue measure V2n is dominated by the Monge–
Ampère capacity on any bounded hyperconvex domain Ω � C

n.
As a consequence of Proposition 6.2, we obtain the following generalization of Proposi-

tion 6.1.

Corollary 6.4. Let Ω � C
n and D � C

m be bounded hyperconvex domains. If ν is a Borel
measure F -dominated by Monge–Ampère capacity on Ω , then the product measure ν ⊗ V2m

is G-dominated by Monge–Ampère capacity on Ω × D, where G := (8π)mδ2m
D F̃m and F̃m is

defined by the formula (6.2).
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6.3. A local transcendental inequality

Here we want to give a transcendental version of a local algebra inequality (see [15,21])
following an argument of Demailly [18].

Let us first recall the definition of complex integrability exponents introduced by Demailly
and Kollár [19]. Let ϕ be a plurisubharmonic function on an open set Ω ⊂ C

n and a ∈ Ω . We
define the complex singularity exponent of ϕ at the point a to be the positive real number

ca(ϕ) := sup
{
c > 0; ∃U neighborhood of a, exp(−2cϕ) ∈ L1

loc(U)
}
.

Actually the real number λa(ϕ) := 1/ca(f ) is a kind of multiplicity which measures the
“strength” of the singularity of ϕ at the point a (see [19]).

Recall that the Lelong number of ϕ at the point a is defined by the formula

νa(ϕ) := sup
{
ν > 0; ϕ(z) � ν log |z − a| + O(1), 0 < |z − a| � 1

}
.

By Skoda’s integrability theorem [28], it follows that

1

νa(ϕ)
� ca(ϕ) � n

νa(ϕ)
.

Our Theorem 5.5 can be rephrased in the following way.

Proposition 6.5. Let ϕ ∈ E (Ω), then for any a ∈ Ω , we have that

ca(ϕ) � n

μa(ϕ)
,

where μa(ϕ) is defined by the formula

μa(ϕ)n :=
∫
{a}

(
ddcϕ

)n
.

Therefore

n

μa(ϕ)
� ca(ϕ) � n

νa(ϕ)
.

As pointed out by Demailly [18], this inequality implies an important inequality between two
algebraic invariants associated to an ideal I of germs of holomorphic functions with an isolated
singularity at the origin in C

n. Let I be the ideal generated by the holomorphic germs g1, . . . , gN

near the origin, then its log canonical threshold at the origin can be defined to be lc(I) := c0(ϕ),

where ϕ := (1/2) log(
∑

j |gj |2) (see [19]). There is another numerical invariant e(I), called the
Hilbert–Samuel multiplicity of the ideal I (see [20] for the definition), which turns out to be
equal to μ0(ϕ)n [18].

Thus our last result combined with Lemma 2.1 in [18] implies the following result from
local algebra due to Corti [15] in dimension 2 and de Fernex, Ein and Mustaţǎ [20] in higher
dimensions.
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Corollary 6.6. Let I be an ideal as above. Then we have that

lc(I) � n

(e(I))1/n
.
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