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Let n be a fixed integer; we extend the theorem of Schitzenberger, McNaughton, and Papert on
star-free sets of finite words to languages of words of length lessithan © 2001 Academic Press

Finite automata are a formalism for defining sets of words. They began to be studied in the 1
Among the first important results of this theory, Kleene proved [Kle56] that this formalism, when 1
to define sets of finite words, is equivalent to another one, the rational expressions. The class of r
expressions is the smallest class containing the letters and closed under finite union, product, and
closure. It is also a well-known result that finite automata, monadic second-order logic [Biic60]
finite semigroups are equivalent formalisms for defining sets of finite words. The algebraic app
gives access to powerful tools for the study of properties of such sets. By analogy with the auti
theory, one can attach to any rational set of finite wotds canonical semigroup, called the syntact
semigroup ofX. Algebraic properties of such semigroups can be used to define subclasses of the r:
sets of finite words. In particular, a rational set belongs to the smallest set containing the lettel
closed under finite boolean operations and product if and only if its syntactic semigroup is finite
group-free [Sch65]. Such sets, callsthr-free, are also definable by first-order logic formula
and conversely [MP71].

Finite automata om-words were first introduced by Biichi [Bilic62] to prove the decidability of t
monadic second-order theory of integers. As for the finite word case, finite automatavords are
equivalent to rational expressions introduced by McNaughton [McN66], looking like those of Kle
but with an added unary operator standing for the repetition of a rational set of finite words. Bott
formalisms are equivalent to finite semigroups with an adapted structure for the infinite produ
first attempt in the direction of the algebraic approach to the theawywbrds was made by Pécuche
[Péc86a, Péc86b], but a more satisfying one is due to Wilke [Wil91] and Perrin and Pin [PP97] wi
introduction ofw—semigroups. As for the finite word case, one can link to any ration sét»>-words
the syntactieo-semigroup ofX, which is finite and unique. This differs from the automata theory, whe
we do not know how to attach a canonical “minimal” automaton to any rational setvadrds. The
result on star-free sets on finite words was extendegords by Ladner [Lad77], Thomas [Tho79]
and Perrin [Per84].

Biichi [Buic64] generalized his idea of automata recognizingords to transfinite words, i.e., words
whose letters are indexed by ordinals. He defined, among others, classes of automata recognizin
of length less tham", wheren is a given integer. We proved that those automata are equivaler
a generalization of-semigroups, that are finite algebraic structures callédemigroups [Bed98b,
Bed98a]. As for the finite an@-words cases, there exists for every set of words accepted by a B
automata am"-semigroup which is canonical and finite and recognizes the same set.

In this paper we first recall the algebraic definitionssfhsemigroups and introduce logic formula
to define sets of words. Then, we extend the theorem on star-free sets of finiteveordls to sets of
words of length less tha@" for an integem. In order to obtain effective constructions we extend tl
ideas of [Lad77] to obtain a decision procedure for the questxog-"¢” for a first-order sentence,
wherex belongs to a particular class of words on ordinals.

Reader knowledge of ordinals is assumed. Although we tried to write a self-contained article, pre
knowledge of automata and semigroups is also beneficial.
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94 NICOLAS BEDON
1. NOTATIONS AND DEFINITIONS

For the theory of ordinals we refer to [Sie65] or [Ros82]. We denot8bygcthe class of successol
ordinals,Lim the class of limit ordinals, an@rd = SuccJU Lim U {0}. As usual we identify the linear
order on ordinals with the membership. An ordiaas then identified with the set of all ordinals smalle
thana. If w® - Ny + w* - Ny + - - - + w* - ng is the Cantor normal form of an ordinalthe endof «,
noted byend(q), is w*. Leta be an ordinal andA a finite set.A is usually called amlphabet. Each
element of an alphabet idetter. A word uof lengthae on Ais a functionu : « — A which associates
a letter to any position in the word. A position in the word is an ordinal smaller ¢ghaword u of
lengtha can also be seen as sequence (Ug)s~, Of « letters (ora-sequence) oA. For this reason
we sometimes use them interchangeably. [Ehgthof u is denoted byu|. The only word of length O
is theempty word.

ExampLE 1. LetA = {a, b, c}. The wordu of length 2 onA defined byu(0) = a andu(1) = b (or
equallyuy = a andu; = b) is the only word of length 2 whose first letter is aai’‘and second letter is
a “b.” For pratical reasong is also denoted by mere concatenation: ab.

ExampLE 2. Let A = {a, b}. The wordu of lengthw defined byu,, = a anduyk,1 = b for any
integerk is the only word in which the indexes of the letters are exactly all the integers and forme
infinite (w) repetition ofab: “a” appears at even positions and ‘& odd positions.

ExampLe 3. Let A = {a, b}. The wordu of lengthw + 2 defined byu,, = a, with @ < w, and
whose other letters are &™is the only word of lengthw + 2 formed by infinite ¢ + 1) repetition of
ab.

Let u be a word of lengthx on a finite setA, andv be a word of lengttg on a finite setA,. The
productof u andv, denotedu - v, or uv, is the wordw of lengtha + 8 on A, U A, such that

" _{uy if0<y <a
4 Uy _q fa<y<a+p.

ExampLE 4. Letu be the word of Example 1 andthe word of Example 2. The product ofandu
is the word of Example 3. Observe that the product of words is not a commutative operation, sil
this examplauv = v # vu.

If w = xyzthenx, y, andz are calledfactorsof w, x aleft factorof w, andz right factorof w. Let«
andg be ordinals withe < 8 andu a word such thalu| > 8. By u[«, B[ we denote the word such tha
Ule, Bl(y) = u(a + y) forany 0< y < B — a. A decomposition of a word into a product of factors |
called afactorization. LetA be an alphabet andandg be ordinals such tha < «. We denote byA*
the set of all words om\ of lengtha; A<* is the set of all words o\ of length less thar and Al#-2l
the set of all words o of lengthy such thai < y < «a. The powerset of a s&is denoted byP(S)
and its cardinalS|.

1.1. Semigroups

A semigroupis a set equipped with an internal associative function written in multiplicative fo
for short we writexy instead ofx - y. An element of a semigroup is callelempotentf € = e. Itis
well-known that each element of a finite semigrdipas an idempotent power (that is, for every S,
there exists an integex such that§™)? = s™). The least common multiple of all suck is called the
exponendbf Sand is usually denoted by. A semigroupSis aperiodicif there exists an integer (callec
theindexof S) n such that for ang € S, s" = s"*1. A monoidis a semigroup with an identity, usually
denoted 1. LeSbe a semigroup. Aub-semigroup ‘Df Sis a subset o6 such thatS is a semigroup.
We denote bys' the monoidSU {1} if Sis not a monoid, an&otherwise. A subsédtof a semigrouisis
anidealof Siff S'I S = I. A morphismbetween two algebraic structures of the same kind is a funct
preserving operations. For exampleSiandT are two semigroups angis a morphism fronSto T,
thenforallx, yin S, ¢(X-y) = ¢(X) - ¢(y). A semigrouprl is quotientof a semigrousif there exists a
surjective morphismp : S — T. A congruencés an equivalence relation preserving operations, usus
denoted~. For example, a semigroup congrueneeverifiesx ~ y = uxv ~ uyv. This condition
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ensures that iBis a semigroup, then the set of equivalence claSgescan naturally be equipped with
an associative product and that the mapping which associates to an element its equivalence clz
(surjective) semigroup morphism. This remark is also true for algebras more complex than semigr
If ~; and~, are two congruences on an algebraic strucBise say that-, is arefinemenof ~; if and
only if, for everyx, y € S, X ~1 y = X ~2 V. Itis well-known that finite semigroups are equivalent t
usual automata on finite words to define sets of words, and that to any rational language of finite \
one can attach a canonical finite semigroup. A similar result holds in the thearyvofds.

Let us turn to the case of words of length less thdn We refer to [Bed98a, Bed98b] for more
details about the basic theory @f-semigroups. The following theorem, whose proof uses Ramst
type arguments, lays the foundation for extending finite semigroups in order to deal with worc
infinite length:

THeorem5. Let A be an alphabet,an integer,u a word over A such thdti| = o', S a finite set,
andg : ALl — S afunction. Let u= UgusU;, . .. be the factorization of u such that;| = '~ for
any integer j. There exists an increasing infinite sequence of intgggisy and st € S, such that
@(Uo. .. Ug) = s andp(Ux+1- - - Ux;,,) = t for any integer j.

DerinimioN 6. Letn be an integer. Am"-semigroup Ss a set equipped with a partial function callec
theproductof Sy : Ug_g<on1 & — Ssuch that

1. ¢(s) =sforanys e S

2. ifa < 0™ and ($)s-« is a sequence of elements$fthen for any increasing sequengg)f s,
such thaty = 0 ands; < «,

V(S0 81, -+ ) = V(¥ (Sps Spotts - ) V(Sus Spuras -+ ) ¥ (S Sy o), - ),

3. S, which is then equipped with a structure of semigroup, is partitionedintd sub-semigroups
2.S,.... &,
4. Ui<;§ is a semigroup of ided; foranyj <n,

5. if s = ()k<w IS @ sequence of elements §f theny(s) € S1if i < n, and is not defined
otherwise.

Observe the notatiotf (S, s1, . . .) for ¥ (t), wheret = (s3)s. is a sequence of elements 8fand
that the notatiors; S . . . can unambiguously be used fpsy, S1, S, . . ).

ExampLE 7. Let A be an alphabet and an integer. Then the product of words naturally equip
AlL<"'[with a structure ofo"-semigroup. We thus havl = Al*"« 'l for anyi < n.

ExampLE 8.  An w®-semigroup is an ordinary semigroup.

Derinimion 9. Letn be an integer. Am"-Wilke algebra Ss a finite semigroup partitioned into+ 1
sub-semigroup$p, S, . ... § such that for every < n, S is an ideal ofU;<; S, and equipped with
a family of n functions from§ to S denoted bys — s such that, for alk, t € S,

s(ts)” = (st)® (2)

(sM® =s» foralln> 0 2

For brevity, we shall omit the subscripts ®%.
The following theorem is a direct consequence of Wilke's theory (see [Wil91]). It shows that fil
"-semigroups are equivalentdd'-Wilke algebras.

THeorReEM 10. Let n be an integer and S a finite semigroup partitioned intp h sub-semigroups
S. ..., S such that for every < n, §j is an ideal ofU;; §. Assume there exist n unary function:
wi - § — §41for0<i < nsuchthatforalls,t € §, (1) and(2) of Definition 9 are verified. Then S
(as a setran be equipped in a unigue way with a structur@®isemigroup such that’s= v ((tc)k<w),
where f = s for any integer kand (s, t) = s -t for any integer st € S. Conversely, let S be a finite
o"-semigroup. Then &s a seXcan be equipped in a unique way of a finite associative prodsuth
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thats-t = (s, t) forany st € S, and with n unary functions; : § — S;1 for0 <i < n such
that,for all s,t € S, (1) and(2) of Definition 9 are verifiedand & = ¥ ((ti)k<w»), Where f = s for
any integer k.

From now on we shall not differentiate between finitesemigroups and"-Wilke algebras.
Morphisms ofw"-semigroups are defined like in universal algebra:

Derinimion 11, Letn be an integer an8 andT two o"-semigroups. Anorphism of»"-semigroups
¢ : S— T is a function verifying, for any sequencg)s~, of elements ofS such that/s(so, S1, - . .)
is defined,

P(¥s(S, 1. - - ) = ¥r(9(0). ¢(s1). - - ).

We say thaty recognizesa subseiX of Sif ¢~1¢p(X) = X. This subseiX is recognizablef there
exist a finitew"-semigroupT’ and a morphism’ : S — T’ of w"-semigroups such that recognizes
X. We also say thal recognizes Xf there existsp” : S— T such thaty”~1¢”(X) = X

Remark 12. Let Abe an alphabet an integery a word overA of length less than)”+1,OS ane"-
. wn+ . N . i
semigroup, ang : AlL""T — Sa morphism of»"-semigroups. Thea(u) € § iff |u| = > =i w'ay,
where eacla; is an integer and; is not null.

The notatiors® now stands for the infinite product efelementsss. . ..

ProposiTion 13. Let A be an alphabety be an integer,S be a finiteo"-semigroup,and ¢ :
AlLe™ _ S pe a morphism ab"-semigroups. Let x § and Z?:i w'aj (with & > 0) be the

length of the shortest word u such thau) = x. ThenZij 08 <191

Proof. Assume it is false. Let ($1<1<Z be the sequence of elements®fdefined by (t=
Z] _i_kdq +1withl <a_k_1)

i—k
S = ¢<U[O,Zuﬂaj +o' D
i=i

If Zij=o a; > |§|there exist two integetsandl (k < I) less than or equal tEj _o8j suchthas = 5.
Let (withl, < &_,—1 andly < &_k,—1)

i i
k = Zaj—Hl and | = Zaj+|2.
j=i—ky j=i—ko
Let
ik _ i—ko _
w=u|:0,Za)'aj —I—a)'k11|1|: and U=U|:Zw]aj +w'k21|2,|u||:.
j=i j=i
We havep(w) = . Letp(v) = y. We have ¢u) = scy = X. Since
ol = e (a1 — 1) + Z wla;

j=i—kp—2

and since eithdr, > k; ork, = k; andl, > 1, one can verify thatwv| < |u|, but g(wv) = p(w)p(v) =
Y = X, which is a contradiction. m
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ProposiTionl4. Let Abe analphabet be anintegerS be afinites,"-semigroupandy : AlL™'l
S be a morphism @$"-semigroups. I0 < i < n then for every ne S,

e mn A’ = (| ¢ Hs)e ()"
(s,.e)eP

with P={(s,€) € S_1 x S_1|se=s,e? = e, and s& = m}.

Proof. Firstletu e ¢~1(s)¢1(e)” such that (se) € P. Thenu has a factorization im factorsu =
UoUs . . . such thatp(uo) = sandg(u;) = efor every positive integer. It follows from' ~* < |uj| < o'
for every integerj that|u| = '. The inclusion from right to left follows sincg(u) = s&’ = m. Let
us turn to the converse. Assume ¢—1(m) N A“'. Using Theorem 5, has a factorization i factors
U = UgUy ... such thaip(ug) = S ande(u;) = t for every integerj > 0, with |uj| = a)i_lkj, where
kj > Ois ainteger for every > 0, sos € §_; andt € §_;. Since every element of a finite semigroug
has an idempotent power, there exists an int&garch thatk = t2%, and then a factorization efin o
factors

u= Uo(Ul - uk+1)(uk+2 - Ug(k+1)) . (Ujk+j+l - U(j+1)(k+1)) .

such thatp(Ujk+j+1 - . - UG+1)ke) = tk for every integerj. Lete = tk ands = spe. We havessee =
se=Se=S, SO Uc Uggecpp (S 1(e)”. W

If X andY are sets of words we note b§- Y the set of wordsl that verify the following: for every
0 < X < |u| there exisik < y < |u] andy < z < |u| such thau[0, y[e X anduly, Z[€ Y.

ProrosiTion15. Let A be an alphabein be an integerS be a finitew"-semigroup,s and e be
elements of Such that se=s and € = e andy : A"l > S a morphism ab"-semigroups. Then

e e @ S ) e C | e ()
fePse

where Re={f e §|sf=s, ef =f, and f> = f}.

Proof. The left inclusion is immediate. Let us turn to the other one. Assumeec
¢ Y(s) - ¢ (e). Now let (X; ¥j)jn be anw-sequence of prefixes afsuch thak; € ¢=(s), y; € ¢~ (e),
IXj| > |Xj—1Yj—1| for every integerj > 0, and (XjX;|)j<» is cofinal with [u]. Let (zj);en be the
w-sequence of words such that,; = X;z; for any integerj. Using the same kind of argument
as in the proof of Proposition 14} = x¢zyz; ... has a factorizationn = (XoZo. .. Zny—1)(Zn, - - -
Zn,-1)(Zn, -+ - Zn,-1) - .- sUch thakp(x0Zo . . . Zny-1) = 1 ande(zy, ... 2zy,,,-1) = f for somer, f € §
suchthatf =r and f? = f. Sincep(XoZo . . . Zn,—1) = ¢(X;) for somej it follows thatr = s. Since
@©(Zng . .- Zn,—1) = T, Yn, is @ prefix ofz,,, ande(yn,) = eit follows f = egfor someg € Up<j<i S,
soef = eeg= eg= f, which ends the proof of the right inclusionm

_—
CoroLLARY 16. ¢ () = ¢ () - o X(e).

Proof. It suffices to use the previous proposition wsth- e. Sinceef = eandef = f thene = f.
[ |

THEOREM17. Letn be an integelS anw"-semigroupand X a recognizable subset of S. Among a
congruences ab"-semigroups-x such that 3~y recognizes Xthere exists an unique one from which
all others are refinements. The number of equivalence classes of this congnbinteis minimalis
finite. This congruence af"-semigroupcalledsyntactic congruence o, is defined by the following
for any integerilessthann- landx y € §,x ~x y if, forallr,t € St,

rxt e X < ryt e X 3
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and,forany me N and y, yi, ..., ym € S* such that

Yo(- - - ((XyD)“y2)“y3) . . ) Ym

is defined

Yo(. - - ((XYD)“¥2)"¥3)” .. )" Ym € X & Yo(. .. (YY) “Y2)“¥3)” .. .)"¥m € X. (4)

The quotient ofSunder the syntactic congruenceXfs called thesyntacticw"-semigroupf X and
is usually denote&/~x. The function which associates to every elemensdf congruence class in
S/~ is a morphism ofo"-semigroup, called thgyntactic morphisrof X.

We say thatSis aperiodic ifS viewed as a simple semigroup is aperiodic.

ProposiTion18. Lety : S— T be a morphism ab"-semigroup that recognizes a subset X of
Let~, be the equivalence relation defined on S byxy iff ¢(x) = ¢(y). Then:

1. ~, is a congruence ab"-semigroups.

2. S/~, recognizes X.

3. If T is aperiodic then so is 5-,. Furthermore,S/~, is isomorphic tap(S).

4. The natural morphism’ : S— S/~, which associates to any element of S its congruence cl
for ~, is surjective.

ProposiTion19. Let~; and~ be two congruences on af-semigroup S. Then, is a refinement
of ~, iff there exists a surjective morphism from-§ into S/~».

ProprosiTion20. Let A be an alphabeh an integerand X a recognizable subset ofA™'[. Then
X is recognizable by an aperiodie”-semigroup iff A-<""'[/~ is aperiodic.

ProrosiTion21. Let p, g, and r be elements of an aperiodi€’-semigroup S. If p= gpr then
p=qp=pr.

Proof. If Sis aperiodic there exists an integarsuch thag™ = g™, sop = qpr = q"pr™ =
g™ tpr™ = gp. The proof ofp = qpr = p = pr is similar. m

ProposiTion22. Let p be an element of an aperiodié-semigroup S. Then g pStNStp\{r/p ¢
Strsty.

Proof. Itis clear thatp belongs to the right side of the equality. Now febe in the right side of
the equality. There exist, y,r, ands in S' such than = px = ypandp = rns. So n = rnsx
and it follows thatn = rn from Proposition 21. We can prove= ns using the same argument. S
nN=rns=p. A

1.2. Logic

We now define sets of words by sentences of formal logic, that is, by logical properties of words
is based on the sequential calculus of Biichi.

1.2.1. Syntax

Let Abe an alphabet. Ofiirst-order formulaere inductively built from a set of (first-order) variable
usually denoted by, vy, z, x1, V1, 71, ..., @an unary predicat®, for eacha € A, a binary relation
symbol< of linear order, an existential quantifigron variables, a binary logical connecterand an
unary one-:

e If x isavariable anad € A, thenR,(x) is a formula.

o If x andy are variables, ther < y is a formula.

e If ¢ is aformula, then so is¢.

If » andyr are formulae, then sois v .
e If x is a variable ang a formula, therdx¢ is a formula.
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We shall add parentheses for clarity. For convenience, we define the abbreviatipher —3x—¢,

¢ — Yy for ¢ v, ¢ Ay for =(—=¢ v =), x = yfor (=(X < y)) A(=(y < X)), x <y for
X=y) VX <y, x£yfor-(x=y),x=y+1fory <xA—-(Fzz< XAy < 2), Vyxy for
VX(Z<XAX <Yy)— ¥),andIx ¢ forIX(Z< X AX < Y A V).

If x andy are variables and is a letter, the formula®,(x) andx < y are calledatomic formulae.

Derinimion 23.  Let¢ be a first-order formula anx a first-order variable. Thquantifier heighof
¢, denoted byhq(e), is inductively defined on the structure of

ha(x <y) = ha(Ra(x)) = 0
ha(=¢) = ha(¢)

ha(g v ¥) = maxha(¢), ha(v))
ha(3x¢) = ha(@) + 1.

For every formulap we define by induction the s&V (¢) of free variablef ¢:

o FV(Ra(x)) = {x}

FV(x <y)={x.y}

FV(=¢) = FV(¢)

FV(¢ V) =FV(¢) UFV(¥)
FV(@Ex¢) = FV($) \ {x}.

For simplicity, we assume thatXfis a variable3x appears at most one time in a formula, and th:
if ¢ is aformula ank € FV(¢), then3axy is not a sub-formula ap.

An occurrence of a variabbein a formulag is said to bereeif x € FV(¢). A non-free occurrence
of a variable in a formula is said to tunded. A sentends a formulag such that~V (¢) = 9.

Ourmonadic second-order formulder second-order formulae for short) are first-order formulae
which variables of sets, also called (monadic) second-order variables, are allowed. We make a diffe
between second-order and first-order variables by denoting the former using uppercase letters ¢
latter using lowercase letters. Formally, we build second-order formulae by adding five items t
rules of construction of first-order formulae:

e Any first-order formula is considered as a second-order formula.

e If x andX are respectively first and second-order variables, ¥q) is a monadic second-order
formula.

e If X is a monadic second-order variable afé monadic second-order formula, theK¢ is a
monadic second-order formula.

e If ¢ andyr are both monadic second-order formulae then s@are) and—.
o If X is a first-order variable angl a monadic second-order formula then sa@xg.

1.2.2. Semantics

We now explain the meaning of a first-order formula (the semantic of monadic second-order forn
is not needed in the remainder of this work). We defil{e), the set of words verifying properties
described by the formul@, as in [PP86] (see also [Str94]):

Deriniion 24, LetV be a finite set of variables amdan alphabet. A/-marked wordof lengtha
over Ais aword @g, Vo)(a1, V1) - - - overA x P(V) suchthaVg NV, = @if g # y andUg,Vg = V.

Derinmion 25, Letg be a formulaV a finite set such thaV(¢) € V and there is nx € V that
appears bounded ip, andw = (ag, Vo) ... (ag, Vg) ... aV-marked word over an alphabgt We say
thatw satisfiesp, and notew = ¢, iff

e If ¢ has the form—y, notw = ¢,

o If p hastheform) v x,w =¥ orw E y,
o If g hastheformx <y, xe Vg, yeV,,andp <y,
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o If ¢ has the formRa(x), (a, V;) is a letter ofw with x € Vg,
e If ¢ has the formdxy, (ap, Vo) - - - (8, Vg U {X}) - - - = for somep < |w|.

If w=apa---is aword overA andg¢ a first-order sentence, then= ¢ iff (ag, ¥)(a1, 9) - - - = ¢.
Let ¢ be a sentence. We say that a warcE £L(¢) iff w = ¢.

ExampLE 26. The set of words of successor length containing @&hnlétter is defined by the
sentence

IXR(X) A TyVz(z < y).

Let ¢ andy be two first-order formulae. We say thatand - are (logically) equivalent and write
¢ =y, if L(¢) = (¥). If e isan ordinal A an alphabet, angl a first-order formula thed <“(¢) denotes
L(p) U A<®, £ILel(¢) denotesC(¢) N ALl and£%(¢) denotesC(¢p) N A“.

This is a well-known result on formulae:
Derinimion 27, A first-order formulap is in disjunctive normal fornif

e hq(¢) =0andg is

m pi
\//\fﬁ(i,j),

i=1j=1

where eachy j) is an atomic formula or a negation of atomic formula and there does not exists
repetition of a conjunct or a disjunct,

e hg(¢p) =n+1andgis
m p

where eachpg j) is one ofIxe, —3xe, ¢ with ¢ a first-order formula in disjunctive normal form
hg(e) < n, and there does not exists any repetition of a conjunct or a disjunct.

4. i)
1

ProposiTion28. Every first-order formula is logically equivalent to a first-order formula in disjun
tive normal form of the same quantifier height.

CoroLLARY 29. LetV be afinite set of first-order variables and n an integer. There exist only a fi
number of first-order formulag such that h@¢) < n, modulo the logical equivalencwith variables
inV.

Proof. We prove the result by induction an SinceV is finite there exist only a finite number, sa
m, of formulae of the fornx < y or Ry(X) or =(X < y) or =R,(X), wherea € A andx, y are variables.
The number of conjunctions of disjunctions of such formula€’is Row let P be the set of first-order
formulae of quantifier height less thanp = |P| and¢ € P. There exist  formulae of the fornH¢
or —3¢, and ZP conjunctions of such formulae. To each of this conjunction we must add formula
P: we obtain p + 1)22P formulae. The total number of disjunctions i€292". m

Remark 30. Observe that the proof gives the number of first-order formglaech thahq(¢) < n,
modulo the logical equivalence, with variablesvn

ProprosiTion31. For every first-order formula there exists a first-order formula

lel v Qanlﬂ

which is logically equivalent tg, where Q ... Qn are3 or V, Xx; ... X, are first-order variablesand
¥ is a first-order formula without any quantifier.
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1.3. Ehrenfeucht-Fraissé Games

Let u, v be two{}-marked words and an integer. The Ehrenfeucht—Fraissé games are two-pla
games. Lefl and*®B denote these two playerd. tries to prove thati andv do not satisfy the same
atomic formulae, whiléb tries to displease his opponent. Each playentaesbbles, labeled,, . . ., z,.

U plays first: he chooses betwesandv (sayu, for example) and places the peblkjen a position of
u, thus building &z;}-marked word® plays his pebble; on the other marked word, and so on. Thq
game ends when the two players have no more peblilesis won the game if there exists an atomi
formula with free variables iz, . .., z,} that satisfies one of the two obtaingd, . . ., z,}-marked
words but not the other; otherwig® has won. We say that a player hawianing strategyif he wins
the game, independently of what his opponent plays.

For a proof of the following well-known results on games on words, see [Ehr61, Lad77, Str94].

ProprosiTion32. Let n be an integer and u andtwo {}-marked words. One of the two players ha:
a winning strategy on the game @m, v) with n pebbles.

We writeu ~,, v iff ®8 has a winning strategy on (u) usingn pebblesyu ,, v otherwise.

ProposiTion33. U ~, v iff u andv satisfy exactly the same first-order sentences of quantifier hei
at most n.

Clearly,~, is an equivalence relation.
ProposiTion34. Let n be an integer. Ther,, has a finite number of equivalence classes.

ProposiTion35.  Let X, X2, Y1, and y be{}-marked words and n aninteger. if x-, y; and % ~ ¥
then %Xz ~n y1Ya.

Proof. The winning strategy oB consist of partitioning the game in two parts: pebbles played
(x1, y1) and pebbles played ory, y»). 5 just applies his winning strategies on each of the two parts.
prove that this strategy suffices féirto win the game, assume he loses, Xexp #n y1Y2. An atomic
formula is verified in one marked-word (the marked-word built freiR,, for example) and not in the
other. Assume first that this atomic formulaxis< y. If pebbles labeled andy were both played in
X1 then the others pebbles labebledndy were played iny;, according to the strategy &. Then?l
has a winning strategy for the game (y;) usingn pebbles: it suffices fo?l to play exactly like he
did in the gameXi1x», y1Y») without playing the pebbles he played wnor y,. Sox; 7, y1, which is
a contradiction. The rest of the proof uses similar argumerss.

This result can easily be generalized:

ProposITIoN36.  Let(Xg)s<« and(Ys)s<« be two sequences gfmarked words and n an integer. If
Xg ~n Yp for everyf < o then %xiXo - -+ ~n YoX¥iya....

Proof. As for the previous proposition.m

The ordinal numbe® can be thought as a word of lengtton an alphabet containing only one letter
The following are well-known results of Ehrenfeucht—Fraissé games on ordinals. For proofs, se
example [Ros82].

ProrosiTion37. Let n be an integer. For everyk 2" — 1,k ~, k + 1.

ProposiTion38. Let n be an integer. ik < ™! < 8, then

1. a %2 ™t 2. a o3 B.

ProposiTion39. Let n be an integer and and g two ordinals such thatr < o™ < 8. Then
a o3 B.



102 NICOLAS BEDON
2. STAR-FREE SETS

We recall in this section the different definitions of star-free sets, classified by the length of v
considered. We also recall, for each such class of words, the main theorem for star-free sets,
establishes the equivalence between the three formalisms to define sets of words: first-order logi
algebras, and star-free expressions. The section ends with the formulation of the theorem for st
sets of words of length less thafi**, whose proof is the subject of the paper.

Derinimion 40.  LetA be an alphabet. The claSd-(A, < w) of star-free sets of finite wordm A is
the smallest set containing §l} for a € A and closed under finite union, complement with respect
A=* and product.

THeorem 41 [MP71, Sch65]. Let A be an alphabet and X a recognizable subset of.A'he
following conditions are equivalent:

e X e SHA, <w)

o A=®/~y is aperiodic

e X = L~(¢) for a first-order sentence.
A similar result holds for sets ef-words:

Derinimion 42, Let A be an alphabet. The claSd(A, ») of star-free sets ob-wordson A is the
smallest set containing closed under finite union, complement with respecitoand product on the
left only by an element 0§ F(A, < w).

TrHeorem43 [Lad77, Tho79, Per84].Let A be an alphabet and X a recognizable subset‘ofThe
following conditions are equivalent:

e X e SHA, w)

o ALY/~ is aperiodic

o X = L?(¢) for a first-order sentence.
And for sets of words of length less thafi*:

Derinmion 44, Let A be an alphabet anmalan integer. The clasS F(A, [1, »"*1[) of star-free sets
of transfinite wordof length less tham"** on A is the smallest set containing i} for a ¢ A and
closed under finite union, complement with respeo{\[tb“’"“[ and product.

THeorem 45. Let A be an alphabet) an integer,and X a recognizable subset of!A"'[. The
following conditions are equivalent:

e X € SFA, [L, ™)
o A"/~ is aperiodic
o X = LL"(¢) for a first-order sentencg.

The (constructive) proof of this theorem occupies all of the remainder of this paper.

CoroLLARY 46. Let A be an alphabet and n an integer. It is decidable whether a recognizable st
X of AL+"[ s star-free.

3. FROM STAR-FREE SETS TO SENTENCES

LetE € SFA,[1, o"!) andu = apa; - - - € AL \We first prove that there exists a first-orde
formula¢e which has exactly two free variablesandy such that

(0.9) ... (. {X}) ... (ap. {Y}) ... 3.9) Ede  iff ule, B[ E,

where $ is a new letter which is not i, appearing only at the last position of the marked word (i.
the index of ($¢) is |u] in the left side of the equivalence above). The method is very similar to the



STAR-FREE SETS OF WORDS ON ORDINALS 103

usually used for the finite word caserlfs a free variable of a formula the formulap{r < s} is¢ in
which the name has been replaced Isy

If E=@thenge = X =y)A X #£Y). If E={a} wherea € Athenge =y = X+ 1 A Ry(X).
Assume now the existence ¢f and¢y for two star-free seté and M. Theng, y = r(PpL{y «
r} A (pm{x < r})) andg um = ¢L Vv ¢nm. Let us turn finally to the complement operation. It follows
from Proposition 38 thab"*? is definable by a first-order sentengg.1; that is to sayL(¢,1) is the
set of words oveA of lengthe™+1. From this sentence one can build a first-order forngula, which
has exactly two free variablesandy such that

(@0, 9) ... (A, {X}) ... (@, (YD) ... ($.9) = ¢ ff U, B[ 1= s

It suffices to replace i+ each occurrence dfzyr (resp.vVzyr), wherez is a variable and/ a
sub-formula ofp 1, by Rz (resp.vy ).
Since the words of length less thafit! are those without any factor of lengili*+* we have

P-g =X < YA (=Pe) A (-Hz1 2o (@i {X < ZHY < 22})) A =@ s

Thus, we have inductively builgl from a star-free se. It remains to get rid of the two free variables
x andy. Let¢pr = 3Z[(VX z < X) A (¢pe{X < z})], wherez is a name that does not appeagin. The
only free variable o is y. Let¢{ be the sentence obtained fr@fh substituting the sub-formulae of
the formr < ybyr =r,andy <r byr # r, wherer is any variable ot.

It is not difficult to verify that if E is a star-free set then

ueE iff ukE= ¢g.

4. FROM SENTENCES TO APERIODI@"-SEMIGROUPS

Let n be a positive integerd an alphabet, and a first-order sentence. In this section we use gam
on words to prove thaa:‘[l*‘“"“[(¢) is recognizable by a finite aperiodig’-semigroup. We will first
describe a construction for a finite aperio@dit-semigroup recognizingll“”"“[((p). We shall next show
that this construction is effective. Throughout the sechigsmax(2n+ 1, hq(¢)).

4.1. Construction

Propositions 36 and 34 show thAElﬁ‘”"“[/wh is a finitew"-semigroup, and Proposition 33 shows
that A""'[ /~, recognizeC™~""'[(#) for any first-order formula of quantifier height at mast

It remains to prove thal-\[lv“’"“[/~h is aperiodic, which is a direct consequence of the followin
proposition:

ProposiTiond7. Letne Nand k= 2" — 1. For every word ye A"l then Y1 ~ yk,

Proof. As an immediate corollary of Proposition 37 we hae! ~,, ak fora € A. Let y**! =
V1Yo ... Yirr andy® = yiv5. .. yi, wherey; = y/ = yforevery 1< i < k andyk,1 = y. We consider
that2 and®B play simultaneously two different games priurns: the first one oa*! anda® and
the second one oyft* andyX. 9 plays first in the second game. If he playsylit! (the other case is
similar) ony; at relative positionx then he also plays on the first gameasti* at positioni . 8 applies
his winning strategy in the first game: he playsa$rat positionj. His winning strategy in the second
game is to play ory; at relative positionr. =

4.2. Effectivity

We now prove that the construction of a finite aperiod€-semigroup S isomorphic to
A[l’“’”“[/fvh is effective. We first show how to build the semigroup<,S; by induction onn. We
note byg : Alle™'l — AlL™[/~, the natural morphism af"-semigroup which associate to any
element ofAl""l its equivalence class iAL*"" /~,.
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Recallthatthe cardinal dﬂl"“””[/wh isfinite. LetM be an upper bound of this cardinal. According t
Remark 30 the cardinal of the claSf first-order sentences of quantifier height at nmoisteffectively
known. Since each equivalence cl&ssf ~, is characterized by the subclassb€omposed of all the
sentences of satisfying every word oD, M is at most £/

Let also

. o i
Y = {x e AV | X :Zw'a,aj >0, if0 <i < jtheng < w, andZa <M
i i—0

and
Xj ={(x, P) | x € Yj, P = {¢| x = ¢}, and there is ny such thaty, P) € X;}.

In other wordsy; is the set of words such thaix| verifies:
o wl < |X| <l

e the Cantor normal form gi| written as a sum of terms of the forat with k < j has at mosMm
terms.

Note also thak; is isomorphic toY; /~.

Proposition 13 shows that the 9} is isomorphic to the se;. Informally speaking, inX; each
element of §; is represented by a paix,(P) such thai is a word verifyingy(x) = s andP is the set
of all sentences of quantifier height less than or equialdatisfied by every worgt such thatp(y) = s.

If i = 0, using Proposition 13, each classAtt“l/ ~,, contains a word of length less than or equ
to M. Since the alphabeA is finite, all of those words can effectively be enumerated.X_be one
of these. LetV be a finite set of first-order variables such that = h. According to Corollary 29
we can enumerate all sentengesuch thahq(¢) < h with variables names i, modulo the logical
equivalence. Sincl| is finite one can effectively decidexfl= ¢. So the construction of, is effective.
Furthermore X, can effectively be equipped with an associative productxif P;) and ., P,) are
elements ofXg then &g, P1)(X2, P2) = (X, P), where &, P) € Xp andxix; = ¢ iff X = ¢ for any
first-order sentence.

We now assume thaX; for every j < i can effectively be obtained, and we compuitg.;. Let
S € S41. Our first task is to find a word such thalp(x) = s. Since there is no empty equivalenc
class, there exists a wosdsuch thaip(y) = s. Using Proposition 13, we can suppose that Y.
Let|y| = Z?:m w'aj, with a1 > 0, and § )O<r<Z{iéa be the serie of factors of defined by

i+1-k _ i+1-k _
Yz = Y|: Z wlaj + o' TR, Z wlaj + o' TR+ 1)|:

j=i+1 j=i+1

wherez is a sum ofg;’s in decreasing order of indices, and with as many terms as possible, plus :
|, thatis to sayz = (Z',Llﬂ_k aj)+!+1,where-1 < k <i, kas great as possible ahe alprl,k,l.
According to Proposition 14, there exists a wagduch thak, ~y, Yy, for every 0< z < Z'j’;l a;, and
Xz = Xz1X7 5, Wherexz; andx;, are words already enumerated by inducftion hypothesis. There
exist finite wordsc, such thak, ~ y;, andx; is already enumerated too, @'1111 a<z< Z'J-j) a;.

If z= Z'j’;ll a; the wordxiXz ... X;Xz41 . . . X215, IS €quivalent toy, and tox, and can effectively be
constructed from words ok, wherej < i. We now enumerate all sentengesuch thahq(¢) < h.

We have to decide whether or not= ¢ for such arx.

ProposiTiond8. LetV be afinite set of finite words and ttie closure of V under finite use-@ndw.
We modify the rules of Ehrenfeucht—B#® games on two marked words x and y built from words’of
in order to oblige the players to put their pebbles only a finite number of finite areas of positions of \
change dynamically over the game. We note fy) Bhe set of such positions. If ¥ {«1, g, ..., an}
is a finite set of ordinals and is an ordinal then Y4 B denotes the sdtv1 + 8, a2 + 8, ..., an + B}.
P(y) is defined inductively on the structure af y
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e IfyeVithen Ry)={1,..., |y}

o Ify =y1ys, where y, y, € V', then Ry) = P(y1) U (P(y2) 1 Iyal).

o Ify = y?, where y € V' and i is the smallest integer such that all pebbles already played |
y are in the prefix §, then Ry) = P(y}) U U‘j‘;é P(y1) 1 Iy;"'|, where k is the index af ™, X; if
il =30 _mola;.

We write x>, y if ®B wins this restricted game di, y) with n pebbles. We claim thaty, y and that
if X >~ y then x= ¢ iff y = ¢ for any first-order formulap of quantifier height at most n.

Proof. The proof ofy ~, y is by induction on the structure gf In order to avoid heavy notations
we say that a marked worady(, V1)(az, V2) ... is a prefix (resp. a factor) of a wordif aya; ... is a
prefix (resp. a factor) afi.

If yisissued fronV theny >~ yiff y ~, y, soy >, v.

If y = y1¥» by induction hypothesig; ~, y1 andy, >~ y,, and itis easy to prove thgty, >~, y1y»
using the same argument as in the proof of Proposition 35.

Lety = y7. We denote byy| the marked word which is in the left side of thg, sign and|y the
one on the right side. We prove thatjdh turn5 can divide the game im partitions, that is to say,
m “sub-games” denoted byy[i, |1Y), (YI2, 12Y), - - -» (YIm» ImY), Ssuch thaim < j, yl1Y|2...YIm IS @
prefix of y|, [1yl2Y...|mY is a prefix of|y andy|; >~ |iy for every 1< i < m. Assume thaf turns
have been played and that the game is partitioned as explain beRivwplHys in an existing pan|;
(resp.|iy) then®B plays his winning strategy ofy(;, |; y). If U plays on|y on the right of|,y, then the
obtained marked word can be writtgry . . . [myY<y®, where2l played his pebble on the factgf at
relative positionr. The answer of8 is to play ony| at position|y|; ... Y|m| + @. We say thatm 1y
is the factory of |y in which 2( has just placed his pebble agt},,; the factory® of y| in which B
answered according to his winning strategy. Assume nowlthaaces his pebble oyl on the right of
y|m at relative positionr and letl be the smallest integer such that |y**'|. Since it is not difficult
to modify the proof of Proposition 47 to show that™ ~, y* theny**' ~, y*. We say thaty|1 is
the factory**' of y| in which 2( has just placed his pebble afgl1y the factory® of |y in which %
answered according to his winning strategy. This ends the global winning stratgggset Fig. 1).

We now prove the second part of the claimxif~, y thenx = ¢ iff y &= ¢ for any first-order
formula¢ of quantifier height at most, by induction om. If n = 0 by definition of the gamex and
y satisfy the same atomic formulae. Assume that the claim is true fot, thatx ~, y and that there
exists a first-order formula such thathq(¢) = k < n, x = ¢, andy ¥ ¢, that is to sayy = —¢.
We can suppose thgt = 3zy (the other case is similar), wheteis a first-order formula such that
hqg(y) = k — 1. We put the pebble on x such that the obtained marked woxQverifiesx’ = .
Wherever we put a pebbleon y, the obtained marked word verifiesy’ &= —. Sincex >~ v,
thenx’ ~,_1 Y/, so by induction hypothesis andy’ satisfy exactly the same first-order formulae o
quantifier height at most — 1, which is a contradiction. ®

The previous proposition shows that in order to answer the questien Q1X; ... QmXm¥,” where
forevery 1< i < mQ is aquantifiery; is avariable, ang is a first-order formula such thagy(y*) = 0
andFV(y) = {X1, ..., Xm}, it suffices to enumerate all possible positioning of pebkies. ., Xy, in
a finite number of finite factors of, which depends only on the structurexoénd on an integek ef-
fectively computable by induction hypothesis, and to verify if the obtaimxed. . . , xm}-marked word
satisfies), which is effective.

yhti y* yktiz
”~ % Y s A s ™~
yl AL
yh Yl2 yls
~n ~n ~n
Iy |1y |2y |3y ______

FIG. 1. The winning strategy ob.
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This proves that the construction of a semigrayp, X; isomorphic toU; <, S; is effective. We now
have to equip this semigroup wighoperators. Les € X; with j < n. Assumes = (x, P). Since for any
first-order formulap the questionX“ = ¢” is decidable, we can effectively firgl = (y, P’) € Xj11
such thaix® andy satisfy exactly the same first-order formulae of quantifier height less or equal
h. The obtained algebraic structure is isomorphi&to

5. FROM FIRST-ORDER SENTENCES TO STAR-FREE SETS

Leto be afirst-order sentencA,an alphabet, andan integer. In the previous section we showed tf
the set of wordsi € All-*""[such that = ¢ is afinite union of equivalence classesfahaxn1.hq(4))-
We now prove that each such class iSIR(A, [1, ®"1[). Since the star-free sets are closed under fin
union, it follows that the set of words € All-*""'l such thati |= ¢ is in SF(A, [o"]).

If x ¢ A"l we denote by(x), the equivalence class effor Ehrenfeucht—Fraissé gamesnin
turns. The statement of the following proposition is from Ladner.

ProrosiTion49. Let m n be two integers and x a word such tifak |x| < @™. Then

<x>n=< N <u>n1a<v>n1>\( U <u>n1a<v>nl>,

(u,a,v)eP (u,a,v)eQ

where P= {(u, a, v) € A<®" x A x A<*" |uav = x} and Q= {(u, a, v) € A<*" x A x A<*" such
that for any factorization = u'a’v’ then u#,_1 W ora a orv »#n_1 v'}.

This lemma will be useful in the proof of the proposition.

Lemma 50. Let x and y be two words such that, y. If i, X2, y1, Y2 are four words and a and
b two letters determined by the first turn of the game such thax,x= x and \by, = vy, either

X1 7n-1 Y1 0 X2 7n-1 Y2 Or @ # b.

Proof. We denote by' andy' the index of letters of andy played at turri. In his winning strategy,
U plays his first pebble, anth answers, defining the factorizations»ofindy of the statement of the
lemma. If¥B could not have played on the same lette?laa the other word, we have # b. Assumeb
could. Sinc€l wins, there existtwo integersj < nsuch thatone of the two following conditionsis true

1. Re(x'), Ra(y'), andc # d
2. x' < xland noty' < yl.

Since playing two times at the same position is not to the advantaye sihce®B can always do the
same, we can assume that all his moves are different. Assume 1 is true, atichdmplayed at turh
on the left of the first move (the other case is similar). Sidiceould not find the good letter at tuin
on the left of the first move on the other word, and since pebbles played on the right of the first
are not useful for the winning strategy ¥f 2( has a winning strategy o0, x'[ andy[0, y*[inn — 1
turns. The case of 2 is similarm

We can now prove the proposition:

Proof. Lety € (x),. We start by proving that for any factorizatian= uav of x, whereu andv are
words anda a letter, there exist two words andv’ such thaty = u’av’ with u’ ~,_; uandv’ ~p_1 v.
Assume that it is false, that is to say that for evergndv’ we haveu’ £, uorv’ %#,_1 v. It follows
that?l has a winning strategy on the wordsndy in n turns: he put his first pebble @on x, and®3
answers oty. If he cannot play on a lettex, he will lose in only one turn. Otherwise, he will factorige
in u'av’, and since eithar’ »¢,_; uorv’ %,_1 v, A just has to apply his winning strategynn- 1 turns
either on the left or on the right of the first turn. We now show that there do not exiatandv such
that for any factorizatiox = u’av’ we havey € (U)n_1a{v)n_1 andu »,_; U orv »#,_1 v’ ora# a.
Assume that such, a, andv exist, and letiav = z. The winning strategy ol consists in playing on
y, determinizing a factorizatiop = u”av”. 8 answers irx, determinizing a factorizatiorn = u’a’v’.
If @ # a, A wins in only one turn. Otherwise, SiN€& ~,_1 U %#n_1 U Orv” ~p_1 v %#n_1 v, U
applies his winning strategy either affandu’ or onv” andv’. We thus have obtained the contradictio
X %#ny.
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Now lety be a word of the right side of the equality of the statement of the proposition. We show
B wins the game betweenandy in n turns. Assume (wrongly) that ¢, y. 2l plays his first pebble
following his winning strategy, an® answers. If[ played onx, he chose a factorization &f= uav
such that he wins for any factorization pf= u'a’v’ determined by the first play &8. If a # a’, 2
wins in a single turn. Otherwise, according to the preceding lemma, eitligr, U’ or v »¢,_; v’ that
is to say, there does not exists a factorizatjos u’a’v’ such thau ~,_; U’ andv ~,_; v anda = @,
which implies thaty does not belong to the intersection of the right side of the equality, which i
contradiction. If( played ony, he factorized it such that for any factorizatior= u'a’v’ determined by
the first pebble of8 we have eithea # &’ oru 7,1 U’ or v ,_1 v, and thusy belongs to the union
of the right side of the equality, which contradicts the fact thet on the right side of the equalitym

6. FROM APERIODICw"-SEMIGROUPS TO STAR-FREE SETS

Let A be an alphabet) an integer, andb a finite aperiodieo"-semigroup. In this section we prove
that a sefX recognized by a morphisg: AL*""l — Sof w"-semigroups is IS F(A, [1, »"1]).

LetP = o(X) = {p1, ..., Px}. SinceX = ¢~ X(P) = Ui_1_xo 1(p) andSF(A, [1, o"*1[) is closed
under finite union it suffices to prove that(p;) € SF(A, [1, »"™[) for anyi € 1...x, so we can
assume thaP contains only one elemempie S.

Our proof is by induction om. Let us start the induction. if = 0 the result directly follows from
Proposition 20 and Theorem 41. We now suppose that the result is truefor€©On — 1 and we prove
it fori + 1.

Lemma 51. if m € Sy1theng=i(m) N A" € SF(A,[1, o™*1]).
Proof. According to Proposition 14,

_ i+1 _ 1w
e MmN A = | o) (e
(s,e)eP

with P ={(s,€) € § x § | se=s, & = g, ands&’ = m}. Using Corollary 16 we obtain

e MmN A" = | o U9 He) - 9.
(s,e)eP

Using the induction hypothesig;X(s) and¢(e) are both inSF(A, [1, »"*1[), and using results of
Section 3 equivalent to first-order formulag and ¢, having exactly two free variablesandy such
that (the same holds f@f,),

(@0, 9) .. (@ (X)) ... @ {Y)) ... (5. 0) = ¢s  iff ule, Bl ™9,

whereapa; - -- = u and $ is a new letter which is not iA that has been concatenateditoOne can
understand this new letter has a marker to the end ®he formula

p=Vrx <r—3I3Afr <l Al < f Agely < I} A (gelx < I}{y < })

[ ——
has only one free variableand verifiesgo, ¥) . . . (8, {X}) - - - = ¢iff u[e, |ul[ € 9 2(€) - 9 (€). Using
arguments of Section 3 one can build a sentemgsuch that for any word € A"l u = ¢y, iff
ue g (m)n A", We have £om) = L1 1(¢m). According to results of Section 8" [(¢m) €
SFA, [1, ™). m

We now return to our main proof, adapting the proof of Theorem 41 from [Per90]. Assume
p € S11. We introduce a new notation: # € Sj, we denotep=1(s) N A® by ¢=1(s). If Sdoes not
possesses a neutral element we add it: sifee 1 this does not change the aperiodicitySiior ¢ 1(s)
for everys € S. We start by showing that

<n+1

(p_l(p) _ (U Aw ﬂ Aa)<n+lv)\(Aw<n+lW ,A\w<n+].)7 (5)
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where
U= (US m) U ( US w‘l(r)M)
She s
V= (US m) U ( US wT(S)sol(r))
and

seS steS rsteS
p¢SsS peSsSrsts peSrs$SstS
p¢SstS p¢SrstS

W=(U w‘l(S))U U ¢ |u| U ¢ e ™ ee 0|,

and we end by showing that *(p) € SF(A, [1, »""[) by proving thatU, V, and W belong to
SK(A, [1, »"*Y]) using a decreasing induction oisp$. The final result directly follows since
SF(A, [1, »"*1[) is closed under finite boolean operations and product.

We first show the inclusion from left to right of 5. Late ¢~1(p) andw be a left factor ofx such
thatp(w) € pSand there does not exists a left factorof x such thatp(w’) € pSand|w’| < |w].

If lw| = o™ for an integem thenw € ¢~(p(w)), sow € U, andx € U A<*"". Else we write
|lw| in Cantor normal formjw| = w™ - ny + @™ - Ny + --- + @™ - ng and we factorizew in yz

such thatjz| = ™. Sincely| < |w]| it follows thatg(y) ¢ pS sox € U A<*"". The proof that
X € A<*""V is similar, but this time we force the length pf{instead ofz) to bew™ (instead ofv™).

If x e A<*""W A=*""" we cannot have(x) = p, so the inclusion from left to right is proved.

Now let x be in the right side of (5). Since € U A= andgp(U) € pStheng(x) € pS We
prove similarly thaip(x) € Sp Using Proposition 22 it suffices to show thate Sp(x)S to obtain
our inclusion. Assume it is false and letbe a factor ofx such thatp ¢ Sp(w)S and there does not
exists another factow’ of x that verifies|w’| < |w| andp ¢ Sp(w’)S. If |w| = ™ for an integer
mthenw € ¢~1(¢(w)) and sincep ¢ Sp(w)Sit follows thatw € W, which is a contradiction. Else
we write [w| in Cantor normal formjw| = @™ - ny + @™ - Nz + - - - + ™. ng and we factorize
w in wiwowg, With |wy| = o™, |wz| = o™ andw; possibly empty. Ifw; is not the empty word
thenw € p~1(p(w1))p H(w2)e~p(ws)), p ¢ Sp(wi)p(w2)p(ws)S, but p € Sp(wi)p(w2)S and
p € Sp(w2)p(ws)S. so we W. We obtain the same contradictionuf, is the empty word. This ends
the proof of (5).

It remains to prove thag~1(p) € SF(A, [1, »"*1[). First observe that for every € S, SxSC S1S.
Since S is aperiodic, using Proposition 21,4 xyz = xylz = 1z = z = x1ly = X = y, so if
X # 1 then|S1S| > |SxS. Using the same kind of argument, and since 1S, it follows that
(1) = ALl A<9(U,y@218) A<® € SF(A, [1, [), where everya € A. Assume now thap # 1. We
begin by showing that) € SF(A, [1, ®"*1[) using the induction hypothesis. According to Lemma 5
for everys € S, ¢=1(s) € SF(A, [1, »"*1]). Now letr, s, andp be elements o6 such thatsS= pS
andrS # pS There existx € Ssuch thatp = rsx, SpSC SrSandpS C rS. If SpS= SrS
there existy, z € Ssuch thatr = ypz = y(rsx)z = pz according to Proposition 21, s& C pS
andrS = pS which is a contradiction. The proof & e SF(A, [1, »"*1[) is symmetrical. Now let
p € SrsSn SstSsuch thatp ¢ SrstS There exista, b, ¢, d € Ssuch thatp = arsb = cstd,
soMpM <€ MsM. If MpM = MsM thens = xpy for somep, y € S, and using Proposition 21
s = xarsby= xars, sop = cxarstd which is a contradiction, s&/ € SF(A, [1, o"1]).

7. EXAMPLES

We give here two examples of recognizable sets. The first one is not star-free and the sec
star-free.
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ba“a}) be the &-semigroup with the product defined by
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LetA = {a,b} and S = ({a, b, ab, ba, aba,0, 1}, {a“, ab”, ba®, 0, a®a, ab”a,

a b ab ba aba 0 1 a® ab® ba® 0 a“a ab’a ba“a
a 1 ab b aba ba 0 a a® ba” ab® O a®a ba’a ab’a
b ba b 0 ba 0 0 b b O ba® 0 baa 0 ba*a
ab aba ab O aba 0 0 ab a O ab®» O ab’a (O ab’a
ba b 0 b 0 ba 0 ba b& ba® 0O O ba®a ba’ta 0O
aba ab 0 ab 0 aba 0 aba ab¥ ab» O O ab®a akra (O
0 0 0 0 0 0 0 0 o 0 o o0 o o o
1 a b ab ba aba 0 1 a® ab® ba® 0 a“a ab’a baa
a® a®’a a* o a”a o o0 a° a® o a®» 0 a®a o a”a
ab¥ |ab’a a» O abra O O ab® ab® O ab® O ab’a O ab”a
ba® | ba*a ba® 0O bata 0 O ba® ba®» 0 ba® 0O ba*a 0 ba“a
o o o o o o o0 o o o o o0 o o o
a”a a® o a” o a’a 0 a*a a® a“ 0 0O a%a a“a o
ab’a | ab” 0 ab o ab’a O ab’a ab¥ ab® O O ab’a abra O
ba®a | ba® 0 ba® o ba*a O ba®a ba ba® 0 0 ba’a baa O
and thew operator by
a b ab ba aba 0 1
a® ba® O O ab® 0 a*

Let ¢ : ALl 5 Sbe the morphism of!-semigroups defined by(a) = a and¢(b) = b, and
X = {1, b, a”, ba”}. ThenSrecognizes~1(X), the set of non-empty words ok of length less than
w? having an even number (that is to say, there exists an ordisalkh that this number is equal to
2 - «) of consecutive “a” letter. Furthermorg,is the syntactieo!-semigroup of this set. Sin@@ = 1
and Ja = a thenSis not aperiodic, ang—*(X) is not star-free or definable by a first-order sentence

ExampLE 53. LetA = {a,b} andS = ({a, b, 0,ab, ba}, {0, (ab)*, (ba)®, (ab)”a, (ba)”a}) be the

w!-semigroup with the product defined by

a b 0 ab ba 0 (ab)® (ba)* (ab”a (ba)~a
a 0 ab 0 0 a o o (ab)® o (ab)?a
b ba 0 0 b 0 0 (ba)” o (ba)~a o
0 0 0 0 0 0 0 o o o o
ab a 0 0 ab 0 0 (aby® o (ab)»a o
ba 0 b 0 0 ba o o (ba)® o (ba)”a
o o o o o o o o o o o
(ab)® | (ab)?a o 0 (ab)® o o (ab)” o (ab)~a 0]
(ba)® | (ba)?a o 0 (ba)” o 0 (ba)” o (ba)“a o
(ab)ra o (@b O o (aba O o (ab)® o (ab)“a
(ba)”a o (ba)» O o (ba)»a O o (ba)® o (ba)”a
and thew operator by
a b o0 ab ba
0O 0 0 (ab”® (ba)”

Letp : ALl — Sbe the morphism of»'-semigroups defined by(a) = a and¢(b) = b, and

X = {ab, (ab)®}. ThenS recognizesy—1(X), the set of non-empty words ofy of length less than
w? formed by repetitions ofib. One can verify thasS is aperiodic of index 2 and is the syntactic
w'-semigroup of this set. So we haye'(X) € SF(A, [1, »?]),

9 Y(X) = AT\ (LbA*" U A<*aU A<**aa A= U A<’ bb A=),



110 NICOLAS BEDON

whereL = A<®"\ (A<*" A) is the set of limit words union the singleton which contains only the em
word. A first-order sentenag such thatl(¢) = ¢~1(X) is

¢ = P A (YX(-FY X =y + 1> Ra(X)))
A (VXRa(x) = 3y y = x4+ 1A Ru(y)))
AVXEY X < YA Ry(X)) = 3z z= x4+ 1 A Ry(2),

wheredy, .7 is a first-order sentence saying that every word is non-empty and of length legs’thar

8. CONCLUSION

Buichi proved that second-order sentences used for defining set of words on ordinal are equive
a certain clas#\ of automata. If we restrict the set of words recognized by automata of Alesaords
of length less thaw"*?, this class is equivalent to another o, studied by Choueka [Cho78]. We
proved in [Bed98a] that automata of cladBsre equivalent to finite"-semigroups. The construction:
to obtain

e an automaton of clas& from a second-order sentence,

e an automaton of cla€8 from an automaton of clask,
a finite ®"-semigroup from an automaton of claBs
e a star-free expression from a finite aperiogditsemigroup,
¢ a first-order sentence from a star-free expression

are effective. As an immediate consequence:

CoroLLARY 54. Let¢ be a second-order sentence and n an integer. It is decidable whether t
exists a first-order sentenage such thatZ<""'{(¢) = £ I(y). Furthermore,if ¥ exists,it can
effectively be built frong.

Ideas in Subsection 4.2 for the decision procedure gf ¢, whereg is a first-order sentence, are
a generalization of those in [Lad77]. The ideas can also be generalized to second-order sente
obtain another proof of Biichi’'s theorem for words of length less thfan

Syntactic semigroups and logics over finite angvords have been widely studied to obtain hie
archies over rational languages (see, for example, [Pin94]). This can also be generalized to wi
length less than)".

Finally, we introduced in [Bed98b, BC98] an algebraic structure adapted to the study of wor
any denumerable length. The main theorem of this paper (Theorem 45) is extended to sets of w
denumerable length in [Bed].
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