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Let n be a fixed integer; we extend the theorem of Schützenberger, McNaughton, and Papert on
star-free sets of finite words to languages of words of length less thanωn. C© 2001 Academic Press

Finite automata are a formalism for defining sets of words. They began to be studied in the 1950s.
Among the first important results of this theory, Kleene proved [Kle56] that this formalism, when used
to define sets of finite words, is equivalent to another one, the rational expressions. The class of rational
expressions is the smallest class containing the letters and closed under finite union, product, and Kleene
closure. It is also a well-known result that finite automata, monadic second-order logic [Büc60], and
finite semigroups are equivalent formalisms for defining sets of finite words. The algebraic approach
gives access to powerful tools for the study of properties of such sets. By analogy with the automata
theory, one can attach to any rational set of finite wordsX a canonical semigroup, called the syntactic
semigroup ofX. Algebraic properties of such semigroups can be used to define subclasses of the rational
sets of finite words. In particular, a rational set belongs to the smallest set containing the letters and
closed under finite boolean operations and product if and only if its syntactic semigroup is finite and
group-free [Sch65]. Such sets, calledstar-free, are also definable by first-order logic formulae,
and conversely [MP71].

Finite automata onω-words were first introduced by Büchi [Büc62] to prove the decidability of the
monadic second-order theory of integers. As for the finite word case, finite automata onω-words are
equivalent to rational expressions introduced by McNaughton [McN66], looking like those of Kleene
but with an added unaryω operator standing for theω repetition of a rational set of finite words. Both
formalisms are equivalent to finite semigroups with an adapted structure for the infinite product. A
first attempt in the direction of the algebraic approach to the theory ofω-words was made by Pécuchet
[Péc86a, Péc86b], but a more satisfying one is due to Wilke [Wil91] and Perrin and Pin [PP97] with the
introduction ofω−semigroups. As for the finite word case, one can link to any rational setX ofω-words
the syntacticω-semigroup ofX, which is finite and unique. This differs from the automata theory, where
we do not know how to attach a canonical “minimal” automaton to any rational set ofω-words. The
result on star-free sets on finite words was extended toω-words by Ladner [Lad77], Thomas [Tho79],
and Perrin [Per84].

Büchi [Büc64] generalized his idea of automata recognizingω-words to transfinite words, i.e., words
whose letters are indexed by ordinals. He defined, among others, classes of automata recognizing words
of length less thanωn, wheren is a given integer. We proved that those automata are equivalent to
a generalization ofω-semigroups, that are finite algebraic structures calledωn-semigroups [Bed98b,
Bed98a]. As for the finite andω-words cases, there exists for every set of words accepted by a Büchi
automata anωn-semigroup which is canonical and finite and recognizes the same set.

In this paper we first recall the algebraic definitions onωn-semigroups and introduce logic formulae
to define sets of words. Then, we extend the theorem on star-free sets of finite andω-words to sets of
words of length less thanωn for an integern. In order to obtain effective constructions we extend the
ideas of [Lad77] to obtain a decision procedure for the question “x |= φ” for a first-order sentenceφ,
wherex belongs to a particular class of words on ordinals.

Reader knowledge of ordinals is assumed. Although we tried to write a self-contained article, previous
knowledge of automata and semigroups is also beneficial.
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1. NOTATIONS AND DEFINITIONS

For the theory of ordinals we refer to [Sie65] or [Ros82]. We denote bySuccthe class of successor
ordinals,Lim the class of limit ordinals, andOrd= Succ∪ Lim∪ {0}. As usual we identify the linear
order on ordinals with the membership. An ordinalα is then identified with the set of all ordinals smaller
thanα. If ωα1 · n1 + ωα2 · n2 + · · · + ωαk · nk is the Cantor normal form of an ordinalα theendof α,
noted byend(α), is ωαk . Let α be an ordinal andA a finite set.A is usually called analphabet. Each
element of an alphabet is aletter. A word uof lengthα on A is a functionu : α→ A which associates
a letter to any position in the word. A position in the word is an ordinal smaller thanα. A word u of
lengthα can also be seen as sequenceu = (uβ)β<α of α letters (orα-sequence) ofA. For this reason
we sometimes use them interchangeably. Thelengthof u is denoted by|u|. The only word of length 0
is theempty word.

EXAMPLE 1. Let A = {a, b, c}. The wordu of length 2 onA defined byu(0) = a andu(1) = b (or
equallyu0 = a andu1 = b) is the only word of length 2 whose first letter is an “a” and second letter is
a “b.” For pratical reasonsu is also denoted by mere concatenation:u = ab.

EXAMPLE 2. Let A = {a, b}. The wordu of lengthω defined byu2k = a andu2k+1 = b for any
integerk is the only word in which the indexes of the letters are exactly all the integers and formed by
infinite (ω) repetition ofab: “a” appears at even positions and “b” at odd positions.

EXAMPLE 3. Let A = {a, b}. The wordu of lengthω + 2 defined byu2α = a, with α ≤ ω, and
whose other letters are a “b” is the only word of lengthω + 2 formed by infinite (ω + 1) repetition of
ab.

Let u be a word of lengthα on a finite setAu andv be a word of lengthβ on a finite setAv. The
productof u andv, denotedu · v, or uv, is the wordw of lengthα + β on Au ∪ Av such that

wγ =
{

uγ if 0 ≤ γ < α

uγ−α if α ≤ γ < α + β.
EXAMPLE 4. Letu be the word of Example 1 andv the word of Example 2. The product ofv andu

is the word of Example 3. Observe that the product of words is not a commutative operation, since in
this exampleuv = v 6= vu.

If w = xyzthenx, y, andz are calledfactorsofw, x a left factorofw, andz right factorofw. Letα
andβ be ordinals withα < β andu a word such that|u| ≥ β. By u[α, β[ we denote the word such that
u[α, β [(γ ) = u(α+ γ ) for any 0≤ γ < β − α. A decomposition of a word into a product of factors is
called afactorization. LetA be an alphabet andα andβ be ordinals such thatβ < α. We denote byAα

the set of all words onA of lengthα; A<α is the set of all words onA of length less thanα and A[β,α [

the set of all words onA of lengthγ such thatβ ≤ γ < α. The powerset of a setS is denoted byP(S)
and its cardinal|S|.

1.1. Semigroups

A semigroupis a set equipped with an internal associative function written in multiplicative form;
for short we writexy instead ofx · y. An elemente of a semigroup is calledidempotentif e2 = e. It is
well-known that each element of a finite semigroupShas an idempotent power (that is, for everys ∈ S,
there exists an integerns such that (sns)2 = sns). The least common multiple of all suchns is called the
exponentof Sand is usually denoted byπ . A semigroupS is aperiodicif there exists an integer (called
theindexof S) n such that for anys ∈ S, sn = sn+1. A monoidis a semigroup with an identity, usually
denoted 1. LetSbe a semigroup. Asub-semigroup S′ of S is a subset ofSsuch thatS′ is a semigroup.
We denote byS1 the monoidS∪{1} if Sis not a monoid, andSotherwise. A subsetI of a semigroupSis
anidealof S iff S1I S1 = I . A morphismbetween two algebraic structures of the same kind is a function
preserving operations. For example, ifSandT are two semigroups andϕ is a morphism fromS to T ,
then for allx, y in S, ϕ(x · y) = ϕ(x) ·ϕ(y). A semigroupT is quotientof a semigroupS if there exists a
surjective morphismϕ : S→ T . A congruenceis an equivalence relation preserving operations, usually
denoted∼. For example, a semigroup congruence∼ verifiesx ∼ y ⇒ uxv ∼ uyv. This condition
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ensures that ifSis a semigroup, then the set of equivalence classesS/∼ can naturally be equipped with
an associative product and that the mapping which associates to an element its equivalence class is a
(surjective) semigroup morphism. This remark is also true for algebras more complex than semigroups.
If ∼1 and∼2 are two congruences on an algebraic structureSwe say that∼1 is arefinementof∼2 if and
only if, for everyx, y ∈ S, x ∼1 y⇒ x ∼2 y. It is well-known that finite semigroups are equivalent to
usual automata on finite words to define sets of words, and that to any rational language of finite words
one can attach a canonical finite semigroup. A similar result holds in the theory ofω-words.

Let us turn to the case of words of length less thanωn. We refer to [Bed98a, Bed98b] for more
details about the basic theory ofωn-semigroups. The following theorem, whose proof uses Ramsey-
type arguments, lays the foundation for extending finite semigroups in order to deal with words of
infinite length:

THEOREM 5. Let A be an alphabet,i an integer,u a word over A such that|u| = ωi , S a finite set,
andϕ : A[1,ωi [ → S a function. Let u= u0u1u2 . . . be the factorization of u such that|u j | = ωi−1 for
any integer j . There exists an increasing infinite sequence of integers(kj ) j∈N and s, t ∈ S, such that
ϕ(u0 . . .uk0) = s andϕ(ukj+1 . . .ukj+1) = t for any integer j .

DEFINITION 6. Letn be an integer. Anωn-semigroup Sis a set equipped with a partial function called
theproductof Sψ : ∪0<α<ωn+1 Sα → Ssuch that

1. ψ(s) = s for anys ∈ S,

2. if α < ωn+1 and (sβ)β<α is a sequence of elements ofS, then for any increasing sequence (γδ)δ<δt

such thatγ0 = 0 andδt ≤ α,

ψ(s0, s1, . . .) = ψ(ψ(sγ0, sγ0+1, . . .), ψ(sγ1, sγ1+1, . . .), ψ(sγ2, sγ2+1, . . .), . . .),

3. S, which is then equipped with a structure of semigroup, is partitioned inton+ 1 sub-semigroups
S0, S1, . . . , Sn,

4. ∪i≤ j Si is a semigroup of idealSj for any j ≤ n,

5. if s = (sk)k<ω is a sequence of elements ofSi , thenψ(s) ∈ Si+1 if i < n, and is not defined
otherwise.

Observe the notationψ(s0, s1, . . .) for ψ(t), wheret = (sβ)β<α is a sequence of elements ofS, and
that the notations0s1s2 . . . can unambiguously be used forψ(s0, s1, s2, . . .).

EXAMPLE 7. Let A be an alphabet andn an integer. Then the product of words naturally equips
A[1,ωn+1[ with a structure ofωn-semigroup. We thus haveAi = A[ω i ,ωi+1[ for any i ≤ n.

EXAMPLE 8. Anω0-semigroup is an ordinary semigroup.

DEFINITION 9. Letn be an integer. Anωn-Wilke algebra Sis a finite semigroup partitioned inton+1
sub-semigroupsS0, S1, . . . , Sn such that for everyj ≤ n, Sj is an ideal of∪i≤ j Si , and equipped with
a family ofn functions fromSi to Si+1 denoted bys→ sωi such that, for alls, t ∈ Si ,

s(ts)ωi = (st)ωi (1)

(sn)ωi = sωi for all n > 0 (2)

For brevity, we shall omit the subscripts ofω’s.
The following theorem is a direct consequence of Wilke’s theory (see [Wil91]). It shows that finite

ωn-semigroups are equivalent toωn-Wilke algebras.

THEOREM 10. Let n be an integer and S a finite semigroup partitioned into n+ 1 sub-semigroups
S0, . . . , Sn such that for every j≤ n, Sj is an ideal of∪i≤ j Si . Assume there exist n unary functions
ωi : Si → Si+1 for 0≤ i < n such that,for all s, t ∈ Si , (1) and(2) of Definition 9 are verified. Then S
(as a set)can be equipped in a unique way with a structure ofωn-semigroup such that sω = ψ((tk)k<ω),
where tk = s for any integer k, andψ(s, t) = s · t for any integer s, t ∈ S. Conversely, let S be a finite
ωn-semigroup. Then S(as a set) can be equipped in a unique way of a finite associative product· such
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that s · t = ψ(s, t) for any s, t ∈ S, and with n unary functionsωi : Si → Si+1 for 0 ≤ i < n such
that, for all s, t ∈ Si , (1) and (2) of Definition 9 are verified, and sω = ψ((tk)k<ω), where tk = s for
any integer k.

From now on we shall not differentiate between finiteωn-semigroups andωn-Wilke algebras.
Morphisms ofωn-semigroups are defined like in universal algebra:

DEFINITION 11. Letn be an integer andSandT twoωn-semigroups. Amorphism ofωn-semigroups
ϕ : S→ T is a function verifying, for any sequence (sβ)β<α of elements ofS such thatψS(s0, s1, . . .)
is defined,

ϕ(ψS(s0, s1, . . .)) = ψT (ϕ(s0), ϕ(s1), . . .).

We say thatϕ recognizesa subsetX of S if ϕ−1ϕ(X) = X. This subsetX is recognizableif there
exist a finiteωn-semigroupT ′ and a morphismϕ′ : S→ T ′ of ωn-semigroups such thatϕ′ recognizes
X. We also say thatT recognizes Xif there existsϕ′′ : S→ T such thatϕ′′−1ϕ′′(X) = X.

Remark 12. Let A be an alphabet,n an integer,u a word overA of length less thanωn+1, Sanωn-
semigroup, andϕ : A[1,ωn+1[ → Sa morphism ofωn-semigroups. Thenϕ(u) ∈ Si iff |u| =∑0

j=i w
j aj ,

where eachaj is an integer andai is not null.

The notationsω now stands for the infinite product ofω elementssss. . . .

PROPOSITION 13. Let A be an alphabet,n be an integer,S be a finiteωn-semigroup,and ϕ :
A[1,ωn+1[ → S be a morphism ofωn-semigroups. Let x∈ Si and

∑0
j=i ω

j aj (with ai > 0) be the

length of the shortest word u such thatϕ(u) = x. Then
∑i

j=0 aj ≤ |Si |.
Proof. Assume it is false. Let (sj )1≤ j≤∑i

j=0 aj
be the sequence of elements ofSi defined by (t=∑i

j=i−k aj + l with l < ai−k−1)

st = ϕ
(

u

[
0,

i−k∑
j=i

w j aj + ωi−k−1l

[)
.

If
∑i

j=0 aj > |Si | there exist two integersk andl (k < l ) less than or equal to
∑i

j=0 aj such thatsk = sl .
Let (with l1 < ai−k1−1 andl2 < ai−k2−1)

k =
i∑

j=i−k1

aj + l1 and l =
i∑

j=i−k2

aj + l2.

Let

w = u

[
0,

i−k1∑
j=i

ω j aj + ωi−k1−1l1

[
and v = u

[
i−k2∑
j=i

ω j aj + ωi−k2−1l2, |u|
[
.

We haveϕ(w) = sk. Letϕ(v) = y. We have ϕ(u) = sky = x. Since

|v| = ωi−k2−1
(
ai−k2−1− l2

)+ 0∑
j=i−k2−2

ω j aj

and since eitherk2 > k1 ork2 = k1 andl2 > l1 one can verify that|wv| < |u|, but ϕ(wv) = ϕ(w)ϕ(v) =
sky = x, which is a contradiction.
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PROPOSITION14. Let A be an alphabet,n be an integer, S be a finiteωn-semigroup,andϕ : A[1,ωn+1[ →
S be a morphism ofωn-semigroups. If0< i ≤ n then for every m∈ Si ,

ϕ−1(m) ∩ Aω
i =

⋃
(s,e)∈P

ϕ−1(s)ϕ−1(e)ω

with P = {(s, e) ∈ Si−1× Si−1 | se= s,e2 = e, and seω = m}.
Proof. First letu ∈ ϕ−1(s)ϕ−1(e)ω such that (s, e) ∈ P. Thenu has a factorization inω factorsu =

u0u1 . . . such thatϕ(u0) = s andϕ(u j ) = e for every positive integer. It follows fromωi−1 ≤ |u j | < ωi

for every integerj that |u| = ωi . The inclusion from right to left follows sinceϕ(u) = seω = m. Let
us turn to the converse. Assumeu ∈ ϕ−1(m)∩ Aω

i
. Using Theorem 5,u has a factorization inω factors

u = u0u1 . . . such thatϕ(u0) = s0 andϕ(u j ) = t for every integerj > 0, with |u j | = ωi−1kj , where
kj > 0 is a integer for everyj ≥ 0, sos0 ∈ Si−1 andt ∈ Si−1. Since every element of a finite semigroup
has an idempotent power, there exists an integerk such thattk = t2k, and then a factorization ofu in ω
factors

u = u0(u1 . . .uk+1)(uk+2 . . .u2(k+1)) . . . (u jk+ j+1 . . .u( j+1)(k+1)) . . .

such thatϕ(u jk+ j+1 . . .u( j+1)(k+1)) = tk for every integerj . Let e= tk ands = s0e. We haves0ee=
se= s0e= s, so u∈ ∪(s,e)∈Pϕ

−1(s)ϕ−1(e)ω.

If X andY are sets of words we note by
−−→
X · Y the set of wordsu that verify the following: for every

0< x < |u| there existx ≤ y < |u| andy < z< |u| such thatu[0, y[∈ X andu[y, z[∈ Y.

PROPOSITION 15. Let A be an alphabet, n be an integer, S be a finiteωn-semigroup,s and e be
elements of Si such that se= s and e2 = e andϕ : A[1,ωn+1[ → S a morphism ofωn-semigroups. Then

ϕ−1(s)ϕ−1(e)ω ⊆ −−−−−−−−−→ϕ−1(s) · ϕ−1(e) ⊆
⋃

f ∈Ps,e

ϕ−1(s)ϕ−1( f )ω,

where Ps,e = { f ∈ Si | s f = s, ef = f, and f2 = f }.
Proof. The left inclusion is immediate. Let us turn to the other one. Assumeu ∈−−−−−−−−−→

ϕ−1(s) · ϕ−1(e). Now let (xj yj ) j∈N be anω-sequence of prefixes ofu such thatxj ∈ ϕ−1(s), yj ∈ ϕ−1(e),
|xj | > |xj−1yj−1| for every integerj > 0, and (|xj x j |) j<ω is cofinal with |u|. Let (zj ) j∈N be the
ω-sequence of words such thatxj+1 = xj zj for any integer j . Using the same kind of argument
as in the proof of Proposition 14,u = x0z0z1 . . . has a factorizationu = (x0z0 . . . zn0−1)(zn0 . . .

zn1−1)(zn1 . . . zn2−1) . . . such thatϕ(x0z0 . . . zn0−1) = r andϕ(znj . . . znj+1−1) = f for somer, f ∈ Si

such thatr f = r and f 2 = f . Sinceϕ(x0z0 . . . zn0−1) = ϕ(xj ) for some j it follows thatr = s. Since
ϕ(zn0 . . . zn1−1) = f , yn0 is a prefix ofzn0, andϕ(yn0) = e it follows f = eg for someg ∈ ∪0≤ j≤i Sj ,
soef = eeg= eg= f , which ends the proof of the right inclusion.

COROLLARY 16. ϕ−1(e)ω = −−−−−−−−−→ϕ−1(e) · ϕ−1(e).

Proof. It suffices to use the previous proposition withs= e. Sinceef = eandef = f thene= f .

THEOREM17. Let n be an integer, S anωn-semigroup,and X a recognizable subset of S. Among all
congruences ofωn-semigroups∼X such that S/∼X recognizes X, there exists an unique one from which
all others are refinements. The number of equivalence classes of this congruence, which is minimal, is
finite. This congruence ofωn-semigroup,calledsyntactic congruence ofX, is defined by the following:
for any integer i less than n+ 1 and x, y ∈ Si , x ∼X y if, for all r , t ∈ S1,

r xt ∈ X ⇔ r yt ∈ X (3)
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and,for any m∈ N and y0, y1, . . . , ym ∈ S1 such that

y0(. . . (((xy1)ωy2)ωy3)ω . . .)ωym

is defined

y0(. . . (((xy1)ωy2)ωy3)ω . . .)ωym ∈ X ⇔ y0(. . . (((yy1)ωy2)ωy3)ω . . .)ωym ∈ X. (4)

The quotient ofSunder the syntactic congruence ofX is called thesyntacticωn-semigroupof X and
is usually denotedS/∼X. The function which associates to every element ofS its congruence class in
S/∼X is a morphism ofωn-semigroup, called thesyntactic morphismof X.

We say thatS is aperiodic ifSviewed as a simple semigroup is aperiodic.

PROPOSITION18. Let ϕ : S→ T be a morphism ofωn-semigroup that recognizes a subset X of S.
Let∼ϕ be the equivalence relation defined on S by x∼ϕ y iff ϕ(x) = ϕ(y). Then:

1. ∼ϕ is a congruence ofωn-semigroups.

2. S/∼ϕ recognizes X.

3. If T is aperiodic then so is S/∼ϕ . Furthermore,S/∼ϕ is isomorphic toϕ(S).

4. The natural morphismϕ′ : S→ S/∼ϕ which associates to any element of S its congruence class
for ∼ϕ is surjective.

PROPOSITION19. Let∼1 and∼2 be two congruences on anωn-semigroup S. Then∼1 is a refinement
of∼2 iff there exists a surjective morphism from S/∼1 into S/∼2.

PROPOSITION20. Let A be an alphabet, n an integer,and X a recognizable subset of A[1,ωn+1[ . Then
X is recognizable by an aperiodicωn-semigroup iff A[1,ω

n+1[/∼X is aperiodic.

PROPOSITION21. Let p, q, and r be elements of an aperiodicωn-semigroup S. If p= qpr then
p = qp= pr.

Proof. If S is aperiodic there exists an integerm such thatqm = qm+1, so p = qpr = qm prm =
qm+1 prm = qp. The proof ofp = qpr ⇒ p = pr is similar.

PROPOSITION22. Let p be an element of an aperiodicωn-semigroup S. Then p= pS1∩S1 p\{r/p 6∈
S1r S1}.

Proof. It is clear thatp belongs to the right side of the equality. Now letn be in the right side of
the equality. There existx, y, r , ands in S1 such thatn = px = yp and p = rns. So n= rnsx
and it follows thatn = rn from Proposition 21. We can proven = ns using the same argument. So
n = rns= p.

1.2. Logic

We now define sets of words by sentences of formal logic, that is, by logical properties of words; this
is based on the sequential calculus of Büchi.

1.2.1. Syntax

Let A be an alphabet. Ourfirst-order formulaeare inductively built from a set of (first-order) variables
usually denoted byx, y, z, x1, y1, z1, . . . , an unary predicateRa for eacha ∈ A, a binary relation
symbol< of linear order, an existential quantifier∃ on variables, a binary logical connector∨, and an
unary one¬:

• If x is a variable anda ∈ A, thenRa(x) is a formula.

• If x andy are variables, thenx < y is a formula.

• If φ is a formula, then so is¬φ.

• If φ andψ are formulae, then so isφ ∨ ψ .

• If x is a variable andφ a formula, then∃xφ is a formula.
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We shall add parentheses for clarity. For convenience, we define the abbreviations∀xφ for ¬∃x¬φ,
φ → ψ for ¬φ ∨ ψ , φ ∧ ψ for ¬(¬φ ∨ ¬ψ), x = y for (¬(x < y)) ∧ (¬(y < x)), x ≤ y for
(x = y) ∨ (x < y), x 6= y for ¬(x = y), x = y + 1 for y < x ∧ ¬(∃z z< x ∧ y < z), ∀y

zxψ for
∀x((z≤ x ∧ x < y)→ ψ), and∃y

zxψ for ∃x(z≤ x ∧ x < y ∧ ψ).

If x andy are variables anda is a letter, the formulaeRa(x) andx < y are calledatomic formulae.

DEFINITION 23. Letφ be a first-order formula andx a first-order variable. Thequantifier heightof
φ, denoted byhq(φ), is inductively defined on the structure ofφ:

• hq(x < y) = hq(Ra(x)) = 0

• hq(¬φ) = hq(φ)

• hq(φ ∨ ψ) = max(hq(φ), hq(ψ))

• hq(∃xφ) = hq(φ)+ 1.

For every formulaφ we define by induction the setFV(φ) of free variablesof φ:

• FV(Ra(x)) = {x}
• FV(x < y) = {x, y}
• FV(¬φ) = FV(φ)

• FV(φ ∨ ψ) = FV(φ) ∪ FV(ψ)

• FV(∃xφ) = FV(φ) \ {x}.
For simplicity, we assume that ifx is a variable,∃x appears at most one time in a formula, and that

if φ is a formula andx ∈ FV(φ), then∃xψ is not a sub-formula ofφ.
An occurrence of a variablex in a formulaφ is said to befree if x ∈ FV(φ). A non-free occurrence

of a variable in a formula is said to bebounded. A sentenceis a formulaφ such thatFV(φ) = ∅.
Ourmonadic second-order formulae(or second-order formulae for short) are first-order formulae in

which variables of sets, also called (monadic) second-order variables, are allowed. We make a difference
between second-order and first-order variables by denoting the former using uppercase letters and the
latter using lowercase letters. Formally, we build second-order formulae by adding five items to the
rules of construction of first-order formulae:

• Any first-order formula is considered as a second-order formula.

• If x andX are respectively first and second-order variables, thenX(x) is a monadic second-order
formula.

• If X is a monadic second-order variable andφ a monadic second-order formula, then∃Xφ is a
monadic second-order formula.

• If φ andψ are both monadic second-order formulae then so areφ ∨ ψ and¬ψ .

• If x is a first-order variable andφ a monadic second-order formula then so is∃xφ.

1.2.2. Semantics

We now explain the meaning of a first-order formula (the semantic of monadic second-order formulae
is not needed in the remainder of this work). We defineL(φ), the set of words verifying properties
described by the formulaφ, as in [PP86] (see also [Str94]):

DEFINITION 24. LetV be a finite set of variables andA an alphabet. AV-marked wordof lengthα
over A is a word (a0,V0)(a1,V1) · · · over A×P(V) such thatVβ ∩Vγ = ∅ if β 6= γ and∪β<αVβ = V .

DEFINITION 25. Letφ be a formula,V a finite set such thatFV(φ) ⊆ V and there is nox ∈ V that
appears bounded inφ, andw = (a0,V0) . . . (aβ,Vβ) . . . a V-marked word over an alphabetA. We say
thatw satisfiesφ, and notew |= φ, iff

• If φ has the form¬ψ , notw |= ψ ,

• If φ has the formψ ∨ χ , w |= ψ orw |= χ ,

• If φ has the formx < y, x ∈ Vβ , y ∈ Vγ , andβ < γ ,
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• If φ has the formRa(x), (a,Vβ) is a letter ofw with x ∈ Vβ ,

• If φ has the form∃xψ , (a0,V0) · · · (aβ,Vβ ∪ {x}) · · · |= ψ for someβ < |w|.
If w = a0a1 · · · is a word overA andφ a first-order sentence, thenw |= φ iff ( a0, ∅)(a1, ∅) · · · |= φ.

Let φ be a sentence. We say that a wordw ∈ L(φ) iff w |= φ.

EXAMPLE 26. The set of words of successor length containing an “a” letter is defined by the
sentence

∃x Ra(x) ∧ ∃y∀z(z≤ y).

Let φ andψ be two first-order formulae. We say thatφ andψ are (logically) equivalent and write
φ ≡ ψ , if L(φ) = (ψ). If α is an ordinal,A an alphabet, andφ a first-order formula thenL<α(φ) denotes
L(φ) ∪ A<α, L[1,α[ (φ) denotesL(φ) ∩ A[1,α[ , andLα(φ) denotesL(φ) ∩ Aα.

This is a well-known result on formulae:

DEFINITION 27. A first-order formulaφ is in disjunctive normal formif

• hq(φ) = 0 andφ is

m∨
i=1

pi∧
j=1

φ(i, j ),

where eachφ(i, j ) is an atomic formula or a negation of atomic formula and there does not exists any
repetition of a conjunct or a disjunct,

• hq(φ) = n+ 1 andφ is

m∨
i=1

pi∧
j=1

φ(i, j ),

where eachφ(i, j ) is one of∃xϕ, ¬∃xϕ, ϕ with ϕ a first-order formula in disjunctive normal form,
hq(ϕ) ≤ n, and there does not exists any repetition of a conjunct or a disjunct.

PROPOSITION28. Every first-order formula is logically equivalent to a first-order formula in disjunc-
tive normal form of the same quantifier height.

COROLLARY 29. Let V be a finite set of first-order variables and n an integer. There exist only a finite
number of first-order formulaeφ such that hq(φ) ≤ n, modulo the logical equivalence, with variables
in V .

Proof. We prove the result by induction onn. SinceV is finite there exist only a finite number, say
m, of formulae of the formx < y or Ra(x) or¬(x < y) or¬Ra(x), wherea ∈ A andx, y are variables.
The number of conjunctions of disjunctions of such formulae is 22m

. Now let P be the set of first-order
formulae of quantifier height less thann, p = |P| andφ ∈ P. There exist 2p formulae of the form∃φ
or¬∃φ, and 22p conjunctions of such formulae. To each of this conjunction we must add formulae of
P: we obtain (p+ 1)22p formulae. The total number of disjunctions is 2(p+1)22p

.

Remark 30. Observe that the proof gives the number of first-order formulaeφ such thathq(φ) ≤ n,
modulo the logical equivalence, with variables inV .

PROPOSITION31. For every first-order formulaφ there exists a first-order formula

Q1x1 . . . Qnxnψ

which is logically equivalent toφ, where Q1 . . . Qn are ∃ or ∀, x1 . . . xn are first-order variables, and
ψ is a first-order formula without any quantifier.
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1.3. Ehrenfeucht–Fraı̈ssé Games

Let u, v be two{}-marked words andn an integer. The Ehrenfeucht–Fraı̈ssé games are two-player
games. LetA andB denote these two players.A tries to prove thatu andv do not satisfy the same
atomic formulae, whileB tries to displease his opponent. Each player hasn pebbles, labeledz1, . . . , zn.
A plays first: he chooses betweenu andv (sayu, for example) and places the pebblez1 on a position of
u, thus building a{z1}-marked word.B plays his pebblez1 on the other marked word, and so on. The
game ends when the two players have no more pebbles.A has won the game if there exists an atomic
formula with free variables in{z1, . . . , zn} that satisfies one of the two obtained{z1, . . . , zn}-marked
words but not the other; otherwiseB has won. We say that a player has awinning strategyif he wins
the game, independently of what his opponent plays.

For a proof of the following well-known results on games on words, see [Ehr61, Lad77, Str94].

PROPOSITION32. Let n be an integer and u andv two {}-marked words. One of the two players has
a winning strategy on the game on(u, v) with n pebbles.

We writeu ∼n v iff B has a winning strategy on (u, v) usingn pebbles,u 6∼n v otherwise.

PROPOSITION33. u ∼n v iff u andv satisfy exactly the same first-order sentences of quantifier height
at most n.

Clearly,∼n is an equivalence relation.

PROPOSITION34. Let n be an integer. Then∼n has a finite number of equivalence classes.

PROPOSITION35. Let x1, x2, y1, and y2 be{}-marked words and n an integer. If x1 ∼n y1 and x2 ∼n y2

then x1x2 ∼n y1y2.

Proof. The winning strategy ofB consist of partitioning the game in two parts: pebbles played on
(x1, y1) and pebbles played on (x2, y2). B just applies his winning strategies on each of the two parts. To
prove that this strategy suffices forB to win the game, assume he loses, i.e.,x1x2 6∼n y1y2. An atomic
formula is verified in one marked-word (the marked-word built fromx1x2, for example) and not in the
other. Assume first that this atomic formula isx < y. If pebbles labeledx andy were both played in
x1 then the others pebbles labeledx andy were played iny1, according to the strategy ofB. ThenA
has a winning strategy for the game (x1, y1) usingn pebbles: it suffices forA to play exactly like he
did in the game (x1x2, y1y2) without playing the pebbles he played onx2 or y2. Sox1 6∼n y1, which is
a contradiction. The rest of the proof uses similar arguments.

This result can easily be generalized:

PROPOSITION36. Let (xβ)β<α and(yβ)β<α be two sequences of{}-marked words and n an integer. If
xβ ∼n yβ for everyβ < α then x0x1x2 · · · ∼n y0xy1y2 . . . .

Proof. As for the previous proposition.

The ordinal numberα can be thought as a word of lengthα on an alphabet containing only one letter.
The following are well-known results of Ehrenfeucht–Fraı̈ssé games on ordinals. For proofs, see for
example [Ros82].

PROPOSITION37. Let n be an integer. For every k≥ 2n − 1, k ∼n k+ 1.

PROPOSITION38. Let n be an integer. Ifα < ωn+1 < β, then

1. α 6∼2n+2 ω
n+1 2. α 6∼2n+3 β.

PROPOSITION39. Let n be an integer andα and β two ordinals such thatα < ωn+1 ≤ β. Then
α 6∼2n+3 β.
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2. STAR-FREE SETS

We recall in this section the different definitions of star-free sets, classified by the length of words
considered. We also recall, for each such class of words, the main theorem for star-free sets, which
establishes the equivalence between the three formalisms to define sets of words: first-order logic, finite
algebras, and star-free expressions. The section ends with the formulation of the theorem for star-free
sets of words of length less thanωn+1, whose proof is the subject of the paper.

DEFINITION 40. LetA be an alphabet. The classSF(A, < ω) of star-free sets of finite wordson A is
the smallest set containing all{a} for a ∈ A and closed under finite union, complement with respect to
A<ω and product.

THEOREM 41 [MP71, Sch65]. Let A be an alphabet and X a recognizable subset of A<ω. The
following conditions are equivalent:

• X ∈ SF(A, < ω)

• A<ω/∼X is aperiodic

• X = L<ω(φ) for a first-order sentenceφ.

A similar result holds for sets ofω-words:

DEFINITION 42. Let A be an alphabet. The classSF(A, ω) of star-free sets ofω-wordson A is the
smallest set containing∅ closed under finite union, complement with respect toAω and product on the
left only by an element ofSF(A, < ω).

THEOREM43 [Lad77, Tho79, Per84].Let A be an alphabet and X a recognizable subset of Aω. The
following conditions are equivalent:

• X ∈ SF(A, ω)

• A[1,ω2[/∼X is aperiodic

• X = Lω(φ) for a first-order sentenceφ.

And for sets of words of length less thanωn+1:

DEFINITION 44. Let A be an alphabet andn an integer. The classSF(A, [1, ωn+1[) of star-free sets
of transfinite wordsof length less thanωn+1 on A is the smallest set containing all{a} for a ∈ A and
closed under finite union, complement with respect toA[1,ωn+1[ and product.

THEOREM 45. Let A be an alphabet,n an integer,and X a recognizable subset of A[1,ωn+1[ . The
following conditions are equivalent:

• X ∈ SF(A, [1, ωn+1[)

• A[1,ωn+1[/∼X is aperiodic

• X = L[1,ωn+1[ (φ) for a first-order sentenceφ.

The (constructive) proof of this theorem occupies all of the remainder of this paper.

COROLLARY 46. Let A be an alphabet and n an integer. It is decidable whether a recognizable subset
X of A[1,ωn+1[ is star-free.

3. FROM STAR-FREE SETS TO SENTENCES

Let E ∈ SF(A, [1, ωn+1[) andu = a0a1 · · · ∈ A[1,ωn+1[ . We first prove that there exists a first-order
formulaφE which has exactly two free variablesx andy such that

(a0, ∅) . . . (aα, {x}) . . . (αβ, {y}) . . . ($,∅) |= φE iff u[α, β [∈ E,

where $ is a new letter which is not inA, appearing only at the last position of the marked word (i.e.,
the index of ($,∅) is |u| in the left side of the equivalence above). The method is very similar to the one
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usually used for the finite word case. Ifr is a free variable of a formulaφ the formulaφ{r ← s} is φ in
which the namer has been replaced bys.

If E = ∅ thenφE ≡ (x = y) ∧ (x 6= y). If E = {a} wherea ∈ A thenφE ≡ y = x + 1∧ Ra(x).
Assume now the existence ofφL andφM for two star-free setsL and M . ThenφL M ≡ ∃r (φL{y ←
r } ∧ (φM{x ← r })) andφL∪M ≡ φL ∨ φM . Let us turn finally to the complement operation. It follows
from Proposition 38 thatωn+1 is definable by a first-order sentenceφωn+1; that is to say,L(φωn+1) is the
set of words overA of lengthωn+1. From this sentence one can build a first-order formulaφ′

ωn+1 which
has exactly two free variablesx andy such that

(a0, ∅) . . . (aα, {x}) . . . (aβ, {y}) . . . ($,∅) |= φ′ωn+1 iff u[α, β [ |=φωn+1.

It suffices to replace inφωn+1 each occurrence of∃zψ (resp.∀zψ), wherez is a variable andψ a
sub-formula ofφωn+1, by ∃yxzψ (resp.∀y

x ψ).
Since the words of length less thanωn+1 are those without any factor of lengthωn+1 we have

φ¬E ≡ x < y ∧ (¬φE) ∧ (¬∃y
xz1 ∃y

xz2 (φ′ωn+1{x← z1}{y← z2})
) ∧ ¬φ′ωn+1.

Thus, we have inductively buildφE from a star-free setE. It remains to get rid of the two free variables
x andy. Let φ′E ≡ ∃z[(∀x z≤ x) ∧ (φE{x ← z})], wherez is a name that does not appear inφE. The
only free variable ofφ′E is y. Letφ′′E be the sentence obtained fromφ′E substituting the sub-formulae of
the formr < y by r = r , andy < r by r 6= r , wherer is any variable ofφ′E.

It is not difficult to verify that if E is a star-free set then

u ∈ E iff u |= φ′′E.

4. FROM SENTENCES TO APERIODICωn-SEMIGROUPS

Let n be a positive integer,A an alphabet, andφ a first-order sentence. In this section we use games
on words to prove thatL[1,ωn+1[ (φ) is recognizable by a finite aperiodicωn-semigroup. We will first
describe a construction for a finite aperiodicωn-semigroup recognizingL[1,ωn+1[ (φ). We shall next show
that this construction is effective. Throughout the sectionh is max(2n+ 1,hq(φ)).

4.1. Construction

Propositions 36 and 34 show thatA[1,ωn+1[/∼h is a finiteωn-semigroup, and Proposition 33 shows
that A[1,ωn+1[/∼h recognizesL[1,ωn+1[ (φ) for any first-order formula of quantifier height at mosth.

It remains to prove thatA[1,ωn+1[/∼h is aperiodic, which is a direct consequence of the following
proposition:

PROPOSITION47. Let n∈ N and k= 2n − 1. For every word y∈ A[1,ωn+1[ then yk+1 ∼n yk.

Proof. As an immediate corollary of Proposition 37 we haveαk+1 ∼n ak for a ∈ A. Let yk+1 =
y1y2 . . . yk+1 andyk = y′1y′2 . . . y

′
k, whereyi = y′i = y for every 1≤ i ≤ k andyk+1 = y. We consider

that A andB play simultaneously two different games onn turns: the first one onak+1 andak and
the second one onyk+1 andyk. A plays first in the second game. If he plays inyk+1 (the other case is
similar) onyi at relative positionα then he also plays on the first game onak+1 at positioni . B applies
his winning strategy in the first game: he plays onak at position j . His winning strategy in the second
game is to play ony′j at relative positionα.

4.2. Effectivity

We now prove that the construction of a finite aperiodicωn-semigroup S isomorphic to
A[1,ωn+1[/∼h is effective. We first show how to build the semigroup∪ j≤nSj by induction onn. We
note byϕ : A[1,ωn+1[ → A[1,ωn+1[/∼h the natural morphism ofωn-semigroup which associate to any
element ofA[1,ωn+1[ its equivalence class inA[1,ωn+1[/∼h.
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Recall that the cardinal ofA[1,ωn+1[/∼h is finite. LetM be an upper bound of this cardinal. According to
Remark 30 the cardinal of the classC of first-order sentences of quantifier height at mostn is effectively
known. Since each equivalence classD of∼h is characterized by the subclass ofC composed of all the
sentences ofC satisfying every word ofD, M is at most 2|C|.

Let also

Yj =
{

x ∈ A
[1,ω j+1[ | |x| =

0∑
i= j

ωi ai ,aj > 0, if 0 ≤ i ≤ j thenai < ω, and
j∑

i=0

ai ≤ M

}

and

X j = {(x, P) | x ∈ Yj , P = {φ| x |= φ}, and there is noy such that (y, P) ∈ X j }.

In other words,Yj is the set of wordsx such that|x| verifies:

• ω j ≤ |x| < ω j+1,

• the Cantor normal form of|x| written as a sum of terms of the formωk with k ≤ j has at mostM
terms.

Note also thatX j is isomorphic toYj /∼h.
Proposition 13 shows that the setX j is isomorphic to the setSj . Informally speaking, inX j each

elements of Sj is represented by a pair (x, P) such thatx is a word verifyingϕ(x) = s andP is the set
of all sentences of quantifier height less than or equal toh satisfied by every wordy such thatϕ(y) = s.

If i = 0, using Proposition 13, each class ofA[1,ω[/∼h contains a word of length less than or equal
to M . Since the alphabetA is finite, all of those words can effectively be enumerated. Letx be one
of these. LetV be a finite set of first-order variables such that|V | = h. According to Corollary 29
we can enumerate all sentencesφ such thathq(φ) ≤ h with variables names inV , modulo the logical
equivalence. Since|x| is finite one can effectively decide ifx |= φ. So the construction ofX0 is effective.
Furthermore,X0 can effectively be equipped with an associative product: if (x1, P1) and (x2, P2) are
elements ofX0 then (x1, P1)(x2, P2) = (x, P), where (x, P) ∈ X0 andx1x2 |= φ iff x |= φ for any
first-order sentenceφ.

We now assume thatX j for every j ≤ i can effectively be obtained, and we computeXi+1. Let
s ∈ Si+1. Our first task is to find a wordx such thatϕ(x) = s. Since there is no empty equivalence
class, there exists a wordy such thatϕ(y) = s. Using Proposition 13, we can suppose thaty ∈ Yi+1.
Let |y| =∑0

j=i+1ω
j aj , with ai+1 > 0, and (yr )0<r≤∑i+1

t=0 at
be the serie of factors ofy defined by

yz = y

[
i+1−k∑
j=i+1

ω j aj + ωi+1−k−1l ,
i+1−k∑
j=i+1

ω j aj + ωi+1−k−1(l + 1)

[
,

wherez is a sum ofaj ’s in decreasing order of indices, and with as many terms as possible, plus a rest
l , that is to say,z= (

∑i+1
j=i+1−k aj )+ l +1, where−1≤ k ≤ i , k as great as possible andl < ai+1−k−1.

According to Proposition 14, there exists a wordxz such thatxz ∼h yz for every 0< z≤∑i+1
j=1 aj , and

xz = xz,1xωz,2, wherexz,1 andxz,2 are words already enumerated by induction hypothesis. There also
exist finite wordsxz such thatxz ∼h yz, andxz is already enumerated too, for

∑i+1
j=1 aj < z≤∑i+1

j=0 aj .
If z = ∑i+1

j=1 aj the wordx1x2 . . . xzxz+1 . . . xz+a0 is equivalent toy, and tox, and can effectively be
constructed from words ofX j , where j ≤ i . We now enumerate all sentencesφ such thathq(φ) ≤ h.
We have to decide whether or notx |= φ for such anx.

PROPOSITION48. Let V be a finite set of finite words and V′ the closure of V under finite use of· andω.
We modify the rules of Ehrenfeucht–Fraı̈sśe games on two marked words x and y built from words of V′

in order to oblige the players to put their pebbles only a finite number of finite areas of positions of y that
change dynamically over the game. We note by P(y) the set of such positions. If Y= {α1, α2, . . . , αn}
is a finite set of ordinals andβ is an ordinal then Y↑ β denotes the set{α1+ β, α2+ β, . . . , αn + β}.
P(y) is defined inductively on the structure of y:
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• If y ∈ V then P(y) = {1, . . . , |y|}.
• If y = y1y2, where y1, y2 ∈ V ′, then P(y) = P(y1) ∪ (P(y2) ↑ |y1|).
• If y = yω1 , where y1 ∈ V ′ and i is the smallest integer such that all pebbles already played on

y are in the prefix yi1, then P(y) = P(yi
1) ∪⋃k−1

j=0 P(y1) ↑ |yi+ j
1 |, where k is the index of∪m

j=0X j if
|y1| =

∑0
j=mω

j aj .

We write x'n y if B wins this restricted game on(x, y) with n pebbles. We claim that y'n y and that
if x 'n y then x|= φ iff y |= φ for any first-order formulaφ of quantifier height at most n.

Proof. The proof ofy 'n y is by induction on the structure ofy. In order to avoid heavy notations
we say that a marked word (a1,V1)(a2,V2) . . . is a prefix (resp. a factor) of a wordu if a1a2 . . . is a
prefix (resp. a factor) ofu.

If y is issued fromV theny 'n y iff y ∼n y, soy 'n y.
If y = y1y2 by induction hypothesisy1 'n y1 andy2 'n y2, and it is easy to prove thaty1y2 'n y1y2

using the same argument as in the proof of Proposition 35.
Let y = yω1 . We denote byy| the marked word which is in the left side of the'n sign and|y the

one on the right side. We prove that atj th turnB can divide the game inm partitions, that is to say,
m “sub-games” denoted by (y|1, |1y), (y|2, |2y), . . . , (y|m, |my), such thatm ≤ j , y|1y|2 . . . y|m is a
prefix of y|, |1y|2y . . . |my is a prefix of|y andy|i 'n |i y for every 1≤ i ≤ m. Assume thatj turns
have been played and that the game is partitioned as explain below. IfA plays in an existing party|i
(resp.|i y) thenB plays his winning strategy of (y|i , |i y). If A plays on|y on the right of|my, then the
obtained marked word can be written|1y . . . |myykyω, whereA played his pebble on the factoryk at
relative positionα. The answer ofB is to play ony| at position|y|1 . . . y|m| + α. We say that|m+1y
is the factoryk of |y in which A has just placed his pebble andy|m+1 the factoryk of y| in which B
answered according to his winning strategy. Assume now thatA places his pebble ony| on the right of
y|m at relative positionα and letl be the smallest integer such thatα ≤ |yk+l |. Since it is not difficult
to modify the proof of Proposition 47 to show thatyk+1 'n yk thenyk+l 'n yk. We say thaty|m+1 is
the factoryk+l of y| in which A has just placed his pebble and|m+1y the factoryk of |y in which B
answered according to his winning strategy. This ends the global winning strategy ofB (see Fig. 1).

We now prove the second part of the claim, ifx 'n y thenx |= φ iff y |= φ for any first-order
formulaφ of quantifier height at mostn, by induction onn. If n = 0 by definition of the game,x and
y satisfy the same atomic formulae. Assume that the claim is true forn− 1, thatx 'n y and that there
exists a first-order formulaφ such thathq(φ) = k ≤ n, x |= φ, andy 6|= φ, that is to say,y |= ¬φ.
We can suppose thatφ = ∃zψ (the other case is similar), whereψ is a first-order formula such that
hq(ψ) = k − 1. We put the pebblez on x such that the obtained marked wordx′ verifiesx′ |= ψ .
Wherever we put a pebblez on y, the obtained marked wordy′ verifies y′ |= ¬ψ . Sincex 'n y,
thenx′ 'n−1 y′, so by induction hypothesisx′ andy′ satisfy exactly the same first-order formulae of
quantifier height at mostn− 1, which is a contradiction.

The previous proposition shows that in order to answer the question “x |= Q1x1 . . . Qmxmψ ,” where
for every 1≤ i ≤ mQi is a quantifier,xi is a variable, andψ is a first-order formula such thathq(ψ) = 0
andFV(ψ) = {x1, . . . , xm}, it suffices to enumerate all possible positioning of pebblesx1, . . . , xm in
a finite number of finite factors ofx, which depends only on the structure ofx and on an integerk ef-
fectively computable by induction hypothesis, and to verify if the obtained{x1, . . . , xm}-marked word
satisfiesψ , which is effective.

FIG. 1. The winning strategy ofB.
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This proves that the construction of a semigroup∪ j≤n X j isomorphic to∪ j≤nSj is effective. We now
have to equip this semigroup withω operators. Lets ∈ X j with j < n. Assumes= (x, P). Since for any
first-order formulaφ the question “xω |= φ” is decidable, we can effectively finds′ = (y, P′) ∈ X j+1

such thatxω andy satisfy exactly the same first-order formulae of quantifier height less or equal than
h. The obtained algebraic structure is isomorphic toS.

5. FROM FIRST-ORDER SENTENCES TO STAR-FREE SETS

Letφ be a first-order sentence,A an alphabet, andn an integer. In the previous section we showed that
the set of wordsu ∈ A[1,ωn+1[ such thatu |= φ is a finite union of equivalence classes for∼max(2n+1,hq(φ)).
We now prove that each such class is inSF(A, [1, ωn+1[). Since the star-free sets are closed under finite
union, it follows that the set of wordsu ∈ A[1,ωn+1[ such thatu |= φ is in SF(A, [ωn+1[).

If x ∈ A[1,ωn+1[ we denote by〈x〉n the equivalence class ofx for Ehrenfeucht–Fraı̈ssé games inn
turns. The statement of the following proposition is from Ladner.

PROPOSITION49. Let m, n be two integers and x a word such that0< |x| < ωm. Then

〈x〉n =
( ⋂

(u,a,v)∈P

〈u〉n−1a〈v〉n−1

)∖( ⋃
(u,a,v)∈Q

〈u〉n−1a〈v〉n−1

)
,

where P= {(u,a, v) ∈ A<ω
m × A× A<ω

m | uav = x} and Q= {(u,a, v) ∈ A<ω
m × A× A<ω

m
such

that for any factorization x= u′a′v′ then u 6∼n−1 u′ or a 6= a′ or v 6∼n−1 v
′}.

This lemma will be useful in the proof of the proposition.

LEMMA 50. Let x and y be two words such that x6∼n y. If x1, x2, y1, y2 are four words and a and
b two letters determined by the first turn of the game such that x1ax2 = x and y1by2 = y, either
x1 6∼n−1 y1 or x2 6∼n−1 y2 or a 6= b.

Proof. We denote byxi andyi the index of letters ofx andy played at turni . In his winning strategy,
A plays his first pebble, andB answers, defining the factorizations ofx andy of the statement of the
lemma. IfB could not have played on the same letter asA in the other word, we havea 6= b. AssumeB
could. SinceA wins, there exist two integersi, j ≤ nsuch that one of the two following conditions is true:

1. Rc(xi ), Rd(yi ), andc 6= d

2. xi < x j and notyi < y j .

Since playing two times at the same position is not to the advantage ofA, sinceB can always do the
same, we can assume that all his moves are different. Assume 1 is true, and thatA has played at turni
on the left of the first move (the other case is similar). SinceB could not find the good letter at turni
on the left of the first move on the other word, and since pebbles played on the right of the first move
are not useful for the winning strategy ofA, A has a winning strategy onx[0, x1[ andy[0, y1[ in n− 1
turns. The case of 2 is similar.

We can now prove the proposition:

Proof. Let y ∈ 〈x〉n. We start by proving that for any factorizationx = uav of x, whereu andv are
words anda a letter, there exist two wordsu′ andv′ such thaty = u′av′ with u′ ∼n−1 u andv′ ∼n−1 v.
Assume that it is false, that is to say that for everyu′ andv′ we haveu′ 6∼n−1 u or v′ 6∼n−1 v. It follows
thatA has a winning strategy on the wordsx andy in n turns: he put his first pebble ona on x, andB
answers ony. If he cannot play on a lettera, he will lose in only one turn. Otherwise, he will factorizey
in u′av′, and since eitheru′ 6∼n−1 u or v′ 6∼n−1 v, A just has to apply his winning strategy inn−1 turns
either on the left or on the right of the first turn. We now show that there do not existsu,a, andv such
that for any factorizationx = u′av′ we havey ∈ 〈u〉n−1a〈v〉n−1 andu 6∼n−1 u′ or v 6∼n−1 v

′ or a 6= a′.
Assume that suchu,a, andv exist, and letuav = z. The winning strategy ofA consists in playinga on
y, determinizing a factorizationy = u′′av′′. B answers inx, determinizing a factorizationx = u′a′v′.
If a′ 6= a, A wins in only one turn. Otherwise, sinceu′′ ∼n−1 u 6∼n−1 u′ or v′′ ∼n−1 v 6∼n−1 v

′, A
applies his winning strategy either onu′′ andu′ or onv′′ andv′. We thus have obtained the contradiction
x 6∼n y.
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Now let y be a word of the right side of the equality of the statement of the proposition. We show that
B wins the game betweenx andy in n turns. Assume (wrongly) thatx 6∼n y. A plays his first pebble
following his winning strategy, andB answers. IfA played onx, he chose a factorization ofx = uav
such that he wins for any factorization ofy = u′a′v′ determined by the first play ofB. If a 6= a′, A
wins in a single turn. Otherwise, according to the preceding lemma, eitheru 6∼n−1 u′ or v 6∼n−1 v

′ that
is to say, there does not exists a factorizationy = u′a′v′ such thatu ∼n−1 u′ andv ∼n−1 v

′ anda = a′,
which implies thaty does not belong to the intersection of the right side of the equality, which is a
contradiction. IfA played ony, he factorized it such that for any factorizationx = u′a′v′ determined by
the first pebble ofB we have eithera 6= a′ or u 6∼n−1 u′ or v 6∼n−1 v

′, and thusy belongs to the union
of the right side of the equality, which contradicts the fact thaty is on the right side of the equality.

6. FROM APERIODICωn-SEMIGROUPS TO STAR-FREE SETS

Let A be an alphabet,n an integer, andS a finite aperiodicωn-semigroup. In this section we prove
that a setX recognized by a morphismϕ : A[1,ωn+1[ → Sof ωn-semigroups is inSF(A, [1, ωn+1[).

Let P = ϕ(X) = {p1, . . . , px}. SinceX = ϕ−1(P) = ∪i=1...xϕ
−1(pi ) andSF(A, [1, ωn+1[) is closed

under finite union it suffices to prove thatϕ−1(pi ) ∈ SF(A, [1, ωn+1[) for any i ∈ 1 . . . x, so we can
assume thatP contains only one elementp ∈ Si .

Our proof is by induction oni . Let us start the induction. Ifi = 0 the result directly follows from
Proposition 20 and Theorem 41. We now suppose that the result is true for 0≤ i ≤ n− 1 and we prove
it for i + 1.

LEMMA 51. if m ∈ Si+1 thenϕ−1(m) ∩ Aw
i+1 ∈ SF(A,[1, ωn+1[).

Proof. According to Proposition 14,

ϕ−1(m) ∩ Aw
i+1 =

⋃
(s,e)∈P

ϕ−1(s)ϕ−1(e)ω

with P = {(s, e) ∈ Si × Si | se= s, e2 = e, andseω = m}. Using Corollary 16 we obtain

ϕ−1(m) ∩ Aw
i+1 =

⋃
(s,e)∈P

ϕ−1(s)
−−−−−−−−−→
ϕ−1(e) · ϕ−1(e).

Using the induction hypothesis,ϕ−1(s) andϕ−1(e) are both inSF(A, [1, ωn+1[), and using results of
Section 3 equivalent to first-order formulaeφs andφe having exactly two free variablesx andy such
that (the same holds forφe),

(a0, ∅) . . . (aα, {x}) . . . (aβ, {y}) . . . ($,∅) |= φs iff u[α, β [ ∈ϕ−1(s),

wherea0a1 · · · = u and $ is a new letter which is not inA that has been concatenated tou. One can
understand this new letter has a marker to the end ofu. The formula

φ ≡ ∀r x < r → ∃l ∃ f r ≤ l ∧ l < f ∧ φe{y← l } ∧ (φe{x← l }{y← f })

has only one free variablex and verifies (a0, ∅) . . . (aα, {x}) · · · |= φ iff u[α, |u|[ ∈−−−−−−−−−→ϕ−1(e) · ϕ−1(e). Using
arguments of Section 3 one can build a sentenceφm such that for any wordu ∈ A[1,ωn+1[, u |= φm iff
u ∈ ϕ−1(m)∩ Aω

i+1
. We have L(φm) = L[1,ωn+1[ (φm). According to results of Section 5L[1,ωn+1[ (φm) ∈

SF(A, [1, ωn+1[).

We now return to our main proof, adapting the proof of Theorem 41 from [Per90]. Assume that
p ∈ Si+1. We introduce a new notation: Ifs ∈ Sj , we denoteϕ−1(s) ∩ Aω

j
by ϕ−1(s). If S does not

possesses a neutral element we add it: since 12 = 1 this does not change the aperiodicity ofSnorϕ−1(s)
for everys ∈ S. We start by showing that

ϕ−1(p) = (U Aω
<n+1 ∩ Aω

<n+1
V
)∖(

Aω
<n+1

W Aω
<n+1)

, (5)
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where

U =
⋃

s∈S
sS=pS

ϕ−1(s)

 ∪
 ⋃

r,s∈S
rsS=pS6=r S

ϕ−1(r )ϕ−1(s)



V =
⋃

s∈S
Ss=Sp

ϕ−1(s)

 ∪
 ⋃

r,s∈S
Ssr=Sp6=Sr

ϕ−1(s)ϕ−1(r )


and

W =
⋃

s∈S
p/∈SsS

ϕ−1(s)

 ∪
 ⋃

s,t∈S
p∈SsS∩St S

p/∈Sst S

ϕ−1(s)ϕ−1(t)

 ∪
 ⋃

r,s,t∈S
p∈SrsS∩Sst S

p/∈Srst S

ϕ−1(r )ϕ−1(s)ϕ−1(t)

 ,
and we end by showing thatϕ−1(p) ∈ SF(A, [1, ωn+1[) by proving thatU,V , and W belong to
SF(A, [1, ωn+1[) using a decreasing induction on|SpS|. The final result directly follows since
SF(A, [1, ωn+1[) is closed under finite boolean operations and product.

We first show the inclusion from left to right of 5. Letx ∈ ϕ−1(p) andw be a left factor ofx such
thatϕ(w) ∈ pSand there does not exists a left factorw′ of x such thatϕ(w′) ∈ pSand|w′| < |w|.
If |w| = ωm for an integerm thenw ∈ ϕ−1(ϕ(w)), sow ∈ U , andx ∈ U A<ω

n+1
. Else we write

|w| in Cantor normal form:|w| = wm1 · n1 + ωm2 · n2 + · · · + ωmk · nk and we factorizew in yz
such that|z| = ωmk . Since|y| < |w| it follows that ϕ(y) /∈ pS, so x ∈ U A<ω

n+1
. The proof that

x ∈ A<ω
n+1

V is similar, but this time we force the length ofy (instead ofz) to beωm1 (instead ofωmk ).
If x ∈ A<ω

n+1
W A<ω

n+1
we cannot haveϕ(x) = p, so the inclusion from left to right is proved.

Now let x be in the right side of (5). Sincex ∈ U A<ω
n+1

andϕ(U ) ⊆ pS thenϕ(x) ∈ pS. We
prove similarly thatϕ(x) ∈ Sp. Using Proposition 22 it suffices to show thatp ∈ Sϕ(x)S to obtain
our inclusion. Assume it is false and letw be a factor ofx such thatp /∈ Sϕ(w)S and there does not
exists another factorw′ of x that verifies|w′| < |w| and p /∈ Sϕ(w′)S. If |w| = ωm for an integer
m thenw ∈ ϕ−1(ϕ(w)) and sincep /∈ Sϕ(w)S it follows thatw ∈ W, which is a contradiction. Else
we write |w| in Cantor normal form:|w| = ωm1 · n1 + ωm2 · n2 + · · · + ωmk . nk and we factorize
w in w1w2w3, with |w1| = ωm1, |w3| = ωmk andw2 possibly empty. Ifw2 is not the empty word
thenw ∈ ϕ−1(ϕ(w1))ϕ−1(w2)ϕ−1(ϕ(w3)), p /∈ Sϕ(w1)ϕ(w2)ϕ(w3)S, but p ∈ Sϕ(w1)ϕ(w2)S and
p ∈ Sϕ(w2)ϕ(w3)S. so w∈ W. We obtain the same contradiction ifw2 is the empty word. This ends
the proof of (5).

It remains to prove thatϕ−1(p) ∈ SF(A, [1, ωn+1[). First observe that for everyx ∈ S, Sx S⊆ S1S.
SinceS is aperiodic, using Proposition 21, 1= xyz = xy1z = 1z = z = x1y = x = y, so if
x 6= 1 then |S1S| > |Sx S|. Using the same kind of argument, and since 1∈ S0, it follows that
ϕ−1(1)= A[1,ω[\A<ω(∪ϕ(a)6=1a)A<ω ∈ SF(A, [1, ω[), where everya ∈ A. Assume now thatp 6= 1. We
begin by showing thatU ∈ SF(A, [1, ωn+1[) using the induction hypothesis. According to Lemma 51,
for everys ∈ S, ϕ−1(s) ∈ SF(A, [1, ωn+1[). Now let r , s, andp be elements ofSsuch thatrsS= pS
andr S 6= pS. There existsx ∈ S such thatp = rsx, SpS⊆ Sr Sand pS ⊆ r S. If SpS= Sr S
there existy, z ∈ S such thatr = ypz= y(rsx)z = pz according to Proposition 21, sor S ⊆ pS
andr S = pS, which is a contradiction. The proof ofV ∈ SF(A, [1, ωn+1[) is symmetrical. Now let
p ∈ SrsS∩ Sst Ssuch thatp /∈ Srst S. There exista, b, c, d ∈ S such thatp = arsb = cstd,
so MpM ⊆ MsM . If MpM = MsM thens = xpy for somep, y ∈ S, and using Proposition 21
s= xarsby= xars, so p = cxarstd, which is a contradiction, soW ∈ SF(A, [1, ωn+1[).

7. EXAMPLES

We give here two examples of recognizable sets. The first one is not star-free and the second is
star-free.
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EXAMPLE 52. Let A = {a, b} and S = ({a, b,ab, ba,aba,0, 1}, {aω,abω, baω, 0′,aωa,abωa,
baωa}) be the ω1-semigroup with the product defined by

a b ab ba aba 0 1 aω abω baω 0′ aωa abωa baωa

a 1 ab b aba ba 0 a aω baω abω 0′ aωa baωa abωa
b ba b 0 ba 0 0 b baω 0′ baω 0′ baωa 0′ baωa
ab aba ab 0 aba 0 0 ab abω 0′ abω 0′ abωa 0′ abωa
ba b 0 b 0 ba 0 ba baω baω 0′ 0′ baωa baωa 0′

aba ab 0 ab 0 aba 0 aba abω abω 0′ 0′ abωa abωa 0′

0 0 0 0 0 0 0 0 0′ 0′ 0′ 0′ 0′ 0′ 0′

1 a b ab ba aba 0 1 aω abω baω 0′ aωa abωa baωa
aω aωa aω 0′ aωa 0′ 0′ aω aω 0′ aω 0′ aωa 0′ aωa
abω abωa abω 0′ abωa 0′ 0′ abω abω 0′ abω 0′ abωa 0′ abωa
baω baωa baω 0′ baωa 0′ 0′ baω baω 0′ baω 0′ baωa 0′ baωa
0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′

aωa aω 0′ aω 0′ aωa 0′ aωa aω aω 0′ 0′ aωa aωa 0′

abωa abω 0′ abω 0′ abωa 0′ abωa abω abω 0′ 0′ abωa abωa 0′

baωa baω 0′ baω 0′ baωa 0′ baωa baω baω 0′ 0′ baωa baωa 0′

and theω operator by

a b ab ba aba 0 1

aω baω 0′ 0′ abω 0′ aω

Let ϕ : A[1,ω2[ → S be the morphism ofω1-semigroups defined byϕ(a) = a andϕ(b) = b, and
X = {1, b,aω, baω}. ThenS recognizesϕ−1(X), the set of non-empty words onA of length less than
ω2 having an even number (that is to say, there exists an ordinalα such that this number is equal to
2 · α) of consecutive “a” letter. Furthermore,S is the syntacticω1-semigroup of this set. Sincea2 = 1
and 1a = a thenS is not aperiodic, andϕ−1(X) is not star-free or definable by a first-order sentence.

EXAMPLE 53. Let A = {a, b} andS= ({a, b, 0,ab, ba}, {0′, (ab)ω, (ba)ω, (ab)ωa, (ba)ωa}) be the
ω1-semigroup with the product defined by

a b 0 ab ba 0′ (ab)ω (ba)ω (ab)ωa (ba)ωa

a 0 ab 0 0 a 0′ 0′ (ab)ω 0′ (ab)ωa
b ba 0 0 b 0 0′ (ba)ω 0′ (ba)ωa 0′

0 0 0 0 0 0 0′ 0′ 0′ 0′ 0′

ab a 0 0 ab 0 0′ (ab)ω 0′ (ab)ωa 0′

ba 0 b 0 0 ba 0′ 0′ (ba)ω 0′ (ba)ωa
0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′ 0′

(ab)ω (ab)ωa 0′ 0′ (ab)ω 0′ 0′ (ab)ω 0′ (ab)ωa 0′

(ba)ω (ba)ωa 0′ 0′ (ba)ω 0′ 0′ (ba)ω 0′ (ba)ωa 0′

(ab)ωa 0′ (ab)ω 0′ 0′ (ab)ωa 0′ 0′ (ab)ω 0′ (ab)ωa
(ba)ωa 0′ (ba)ω 0′ 0′ (ba)ωa 0′ 0′ (ba)ω 0′ (ba)ωa

and theω operator by

a b 0 ab ba

0′ 0′ 0′ (ab)ω (ba)ω

Let ϕ : A[1,ω2[ → S be the morphism ofω1-semigroups defined byϕ(a) = a andϕ(b) = b, and
X = {ab, (ab)ω}. Then S recognizesϕ−1(X), the set of non-empty words onA of length less than
ω2 formed by repetitions ofab. One can verify thatS is aperiodic of index 2 and is the syntactic
ω1-semigroup of this set. So we haveϕ−1(X) ∈ SF(A, [1, ω2[),

ϕ−1(X) = A[1,ω2[ \ (LbA<ω
2 ∪ A<ω

2
a ∪ A<ω

2
aa A<ω

2 ∪ A<ω
2
bbA<ω

2)
,
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whereL = A<ω
2 \ (A<ω

2
A) is the set of limit words union the singleton which contains only the empty

word. A first-order sentenceφ such thatL(φ) = ϕ−1(X) is

φ ≡ φ[1,ω2[ ∧ (∀x(¬∃y x = y+ 1→ Ra(x)))

∧ (∀x Ra(x)→ (∃y y= x + 1∧ Rb(y)))

∧ (∀x(∃y x < y ∧ Rb(x))→ ∃z z= x + 1∧ Ra(z)),

whereφ[1,ω2[ is a first-order sentence saying that every word is non-empty and of length less thanω2.

8. CONCLUSION

Büchi proved that second-order sentences used for defining set of words on ordinal are equivalent to
a certain classA of automata. If we restrict the set of words recognized by automata of classA to words
of length less thanωn+1, this class is equivalent to another one,B, studied by Choueka [Cho78]. We
proved in [Bed98a] that automata of classB are equivalent to finiteωn-semigroups. The constructions
to obtain

• an automaton of classA from a second-order sentence,

• an automaton of classB from an automaton of classA,

• a finiteωn-semigroup from an automaton of classB,

• a star-free expression from a finite aperiodicωn-semigroup,

• a first-order sentence from a star-free expression

are effective. As an immediate consequence:

COROLLARY 54. Let φ be a second-order sentence and n an integer. It is decidable whether there
exists a first-order sentenceψ such thatL[1,ωn+1[ (φ) = L[1,ωn+1[ (ψ). Furthermore,if ψ exists,it can
effectively be built fromφ.

Ideas in Subsection 4.2 for the decision procedure ofx |= φ, whereφ is a first-order sentence, are
a generalization of those in [Lad77]. The ideas can also be generalized to second-order sentences to
obtain another proof of Büchi’s theorem for words of length less thanωn.

Syntactic semigroups and logics over finite andω-words have been widely studied to obtain hier-
archies over rational languages (see, for example, [Pin94]). This can also be generalized to words of
length less thanωn.

Finally, we introduced in [Bed98b, BC98] an algebraic structure adapted to the study of words of
any denumerable length. The main theorem of this paper (Theorem 45) is extended to sets of words of
denumerable length in [Bed].
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[Büc62] Büchi, J. R. (1962), On a decision method in the restricted second-order arithmetic,in “Logic, Methodology and
Philosophy of Science: Proc. Intern. Congr.,” pp. 1–11, Stanford Univ. Press, Stanford, CA.
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