On Arithmetic Properties of Integers with Missing Digits I: Distribution in Residue Classes

Paul Erdős*
Mathematical Institute of the Hungarian Academy of Science, H-1053 Budapest, Reáltanoda u. 13-15, Hungary

Christian Mauduit

Institut de Mathématiques de Luminy, CNRS-UPR9016, 163 av. de Luminy, case 907, F-13288 Marseille Cedex 9, France
iew metadata, citation and similar papers at core.ac.uk

Department of Algebra and Number Theory, Eötvös Loránd University, H-1088 Budapest, Muzeum krt. 6-8, Hungary
Communicated by Alan C. Woods

Received July 18, 1996

Consider all the integers not exceeding x with the property that in the system number to base g all their digits belong to a given set $\mathscr{D} \subset\{0,1, \ldots, g,-1\}$. The distribution of these integers in residue classes to "not very large" moduli is studied. (C) 1998 Academic Press

SECTION 1

Throughout this paper we use the following notations: We denote by \mathbb{R}, \mathbb{Z}, and \mathbb{N} the sets of the real numbers, integers and positive integers. We write $l_{1}(N)=\log N, l_{2}(N)=\log \log N, l_{3}(N)=\log \log \log N$. If $F(N)=O(G(N))$, then we write $F(N) \ll G(N)$; if the implied constant depends on certain parameters α, β, \ldots (but on no other parameters), then we write $F(N)=$ $O_{\alpha, \beta, \ldots}(G(N))$ and $F(N) \ll_{\alpha, \beta, \ldots} G(N)$. We denote by $\omega(n)$ the number of

[^0]distinct prime factors of n and by $\Omega(n)$ the number of prime factors of n counted with multiplicity. The greatest prime factor of the integers n will be denoted by $P(n)$ and $\varphi(n)$ is Euler's function. If α is a real number, we write $e(\alpha)=e^{2 i \pi \alpha}$ and $\|\alpha\|=d(\alpha, \mathbb{Z})$ the distance of α to the closest integer.

Let $g \in \mathbb{N}$ be fixed with

$$
\begin{equation*}
g \geqslant 2 \tag{1.1}
\end{equation*}
$$

If $n \in \mathbb{N}$, then representing n in the number system to base g :

$$
n=\sum_{j=0}^{\mu} a_{j} g^{j}, \quad 0 \leqslant a_{j} \leqslant g-1,
$$

we write

$$
S(n)=\sum_{j=0}^{\mu} a_{j} .
$$

For $N \in \mathbb{N}, m \in \mathbb{N}, r \in \mathbb{Z}$ we write

$$
\mathscr{U}_{(m, r)}(N)=\{n: n \leqslant N, S(n) \equiv r(\bmod m)\} .
$$

The arithmetic structure of the sets $\mathscr{U}_{m, r}(N)$ has been studied by Gelfond [GEL]. His main result which extends an earlier result of Fine [FIN] is the following:

RU 1. If $m \in \mathbb{N}$ is fixed with

$$
\begin{equation*}
(m, g-1)=1, \tag{1.2}
\end{equation*}
$$

then for all $r \in \mathbb{Z}$ and all "small" $q \in \mathbb{N}$. the set $\mathscr{U}_{(m, r)}(N)$ is well-distributed in the residue classes modulo q.

As an application of the result above, Gelfond estimated the number of " z-free" elements of $\mathscr{U}_{(m, r)}(N)$:
(RU 2) If $g \in \mathbb{N}, m \in \mathbb{N}, z \in \mathbb{N}$ are fixed with (1.1), (1.2) and $z>1$, and $r \in \mathbb{Z}$, then for $N \rightarrow+\infty$ Gelfond [GEL] gave an asymptotics for the member of elements of $\mathscr{U}_{(m, r)}(N)$ which are not divisible by the z th power of a prime.

In [MS1] we studied further arithmetic properties of the elements of the sets $\mathscr{U}_{(m, r)}(N)$. But one might think that these results are not very much surprising since the sets $\mathscr{U}_{(m, r)}(N)$ are of "positive density" and would like to study "thinner" sets characterized by digit properties and to see whether still the same conclusion holds.

Indeed, in [MS2] we introduced the sets $\mathscr{V}_{k}(N)$ defined in the following way: if $g \in \mathbb{N}, g \geqslant 2, N \in \mathbb{N}, k \in \mathbb{N}, 0 \leqslant k \leqslant(g-1)(\log N / \log g+1)$, then let

$$
\mathscr{V}_{k}=\mathscr{V}_{k}(N)=\{n: n \leqslant N, S(n)=k\}
$$

(where again, $S(n)$ denotes the sum of the digits in the number system to base g). We showed that for every k we have

$$
\left|\mathscr{V}_{k}(N)\right| \ll_{g} N(\log N)^{-1 / 2}
$$

so that, in fact, the sets \mathscr{V}_{k} are much thinner than the sets $\mathscr{U}_{(m, r)}$. In [MS2] we proved analogs of the resuts (RU1) and (RU2) with the sets \mathscr{V}_{k} in place of the sets $\mathscr{U}_{(m, r)}$:

RV 1. If $g \in \mathbb{N}, g \geqslant 2, k \in \mathbb{N}, 0<k<(g-1)(\log N / \log g+1)$,

$$
\min \left(k,(g-1) \frac{\log N}{\log k}-k\right) \rightarrow+\infty,
$$

$m \in \mathbb{N}$ and m is "small," then \mathscr{V}_{k} is well-distributed in the residue classes modulo m.

As an application of this result, (RV 2) a \mathscr{V}-analog of (RU 2) is given in [MS2].

Several other arithmetic properties of the sets $\mathscr{U}_{(m, r)}$ and \mathscr{V}_{k} are given in [MS1], [MS2].

SECTION 2

In this paper, our goal is to study even thinner sets characterized by digit properties. Indeed, while $\left|\mathscr{U}_{(m, r)}(N)\right| \gg N$ and

$$
\max _{k}\left|\mathscr{V}_{k}(N)\right| \geqslant N(\log N)^{-1 / 2}
$$

here our goal is to study sets with cardinality $<N^{1-\varepsilon}$. The most natural way to construct such a set via digit properties is to consider integers with missing digits. In other words, let

$$
\begin{array}{llll}
g \in \mathbb{N}, & g \geqslant 3, & t \in \mathbb{N}, \quad 2 \leqslant t \leqslant g-1, \\
\mathscr{D} \subset\{0,1, \ldots, g-1\}, & 0 \in \mathscr{D}, & |\mathscr{D}|=t, & \tag{2.2}
\end{array}
$$

and let $\mathscr{W}_{\mathscr{D}}(N)$ denote the set of the integers n such that $0 \leqslant n \leqslant N$ and representing n in the number system to base g :

$$
\begin{equation*}
n=\sum_{j=0}^{v} a_{j} g^{j}, \quad 0 \leqslant a_{j} \leqslant g-1, \tag{2.3}
\end{equation*}
$$

where now

$$
\begin{equation*}
g^{v} \leqslant N<g^{v+1}, \tag{2.4}
\end{equation*}
$$

we have

$$
a_{j} \in \mathscr{D} \quad \text { for } \quad j=0,1, \ldots, v .
$$

(Note that the assumption $0 \in \mathscr{D}$ is not necessary, but it makes the discussion slightly simpler, besides the general case can be reduced to this one.) Sets of the type $\mathscr{W}_{\mathscr{A}}(N)$ have been studied in [COQ1], [COQ2], [COQ3], [FK], [MAU]. Here our goal is to prove analogs of the results (RU 1), (RU 2), (RV 1), (RV 2) for the sets $\mathscr{W}_{\mathscr{D}}$. The study of the analogs of the other arithmetic properties studied in [MS1], [MS2] with the sets $\mathscr{W}_{\mathscr{D}}$ in place of the sets $\mathscr{U}_{(m, r)}$ or \mathscr{V}_{k} will appear in a further paper.

First we will prove the \mathscr{W}-analog of the results (RU 1), (RV 1):
Theorem 1. If g and t satisfy (2.1), then there exist positive constants $c_{1}=c_{1}(g, t), c_{2}=c_{2}(g, t), c_{3}=c_{3}(g, t)$ such that if also (2.2) holds, and writing $\mathscr{D}=\left\{d_{1}, d_{2}, \ldots, d_{t}\right\}$ where $d_{1}=0$, we have

$$
\begin{equation*}
\left(d_{2}, \ldots, d_{t}\right)=1 \tag{2.5}
\end{equation*}
$$

moreover, $N \in \mathbb{N}, m \in \mathbb{N}, m \geqslant 2,((g-1) g, m)=1$,

$$
\begin{equation*}
m<\exp \left(c_{1}(\log N)^{1 / 2}\right) \tag{2.6}
\end{equation*}
$$

and $h \in \mathbb{Z}$, then

$$
\begin{align*}
& \left|\left|\left\{n: n \in \mathscr{W}_{\mathscr{D}}(N), n \equiv h(\bmod m)\right\}\right|-\frac{1}{m}\right| \mathscr{W}_{\mathscr{D}}(N)| | \\
& \quad<c_{2} \frac{1}{m}\left|\mathscr{W}_{\mathscr{D}}(N)\right| \exp \left(-c_{3} \frac{\log N}{\log m}\right) . \tag{2.7}
\end{align*}
$$

(Note that the condition (2.5) is necessary since $\left(d_{2}, \ldots, d_{t}\right)$ divides every element of $\mathscr{W}_{\mathscr{D}}(N)$.)

By Theorem 1, the set $\mathscr{W}_{\mathscr{D}}(N)$ is well-distributed in the modulo m residue classes if $m<\exp \left(c(g, t)(\log N)^{1 / 2}\right)$. It follows that for such an $m, \mathscr{W}_{\mathscr{D}}(N)$ meets every residue class modulo m. One may ask the question that how
large can m be with this property? We will prove the following theorem in this direction:

Theorem 2. If g, t satisfy (2.1), then there is an effectively computable number $N_{0}=N_{0}(g, t)$ such that if $\mathscr{D} \subset\{0,1, \ldots, g-1\},|\mathscr{D}|=t, N>N_{0}$, then there is a prime p with the following properties: writing

$$
k=\left[2 \frac{\log g}{\log t}\right]+1,
$$

we have

$$
p>N^{(\log t) / 2(k \log g)}
$$

and $\mathscr{W}_{\mathscr{D}}(N)$ meets every residue class modulo p.
From the opposite direction, one might like to show that there exist relatively small moduli m (small in terms of $\left.\left|\mathscr{W}_{\mathscr{D}}(N)\right|\right)$ such that $\mathscr{W}_{\mathscr{D}}(N)$ does not meet residue class modulo m. If $m>\left|\mathscr{W}_{\mathscr{D}}(N)\right|$ then this is clearly so. We will improve on this trivial bound considerably:

Theorem 3. Let $\varepsilon>0$. Then there is a number $g_{0}=g_{0}(\varepsilon)$ such that if $g \in \mathbb{N}, g>g_{0}$ and $\mathscr{D}=\{0,1\}$, then for infinitely many $N \in \mathbb{N}$ there is an $m \in \mathbb{N}$ such that $\operatorname{gcd}(m, g)=1$,

$$
\begin{equation*}
m<\left|\mathscr{W}_{\mathscr{D}}(N)\right|^{\varepsilon} \tag{2.8}
\end{equation*}
$$

and $\mathscr{W}_{\mathscr{D}}(N)$ does not meet every residue class modulo m.
(Indeed, it will turn out that $\mathscr{W}_{\mathscr{D}}(N)$ meets only "few" residue classes modulo m.)

One can apply Theorem 1 to prove the \mathscr{W}-analog of (RU 2), (RV 2):

Theorem 4. If g, t, \mathscr{D} are defined as in Theorem 1 , and $z \in \mathbb{N}$,

$$
\begin{equation*}
z>\frac{\log g}{\log t}, \tag{2.9}
\end{equation*}
$$

then there are effectively computable constants N_{0}, c_{4} (both depending on g, t and z only) such that if $N>N_{0}$, then the number $T_{z}(N)$ of those integers n with $n \in \mathscr{W}_{\mathscr{D}}(N)$ which are not divisible by the z th power of a prime p with $((g-1) g, p)=1$ is

$$
\begin{align*}
T_{z}(N)= & \left(\xi(z) \prod_{p \mid(g-1) g}\left(1-\frac{1}{p^{z}}\right)\right)^{-1}\left|\mathscr{W}_{\mathscr{D}}(N)\right| \\
& \times\left(1+O_{g, t, z}\left(\exp \left(-c_{4}(\log N)^{1 / 2}\left(\frac{\log t}{\log g}-\frac{1}{z}\right)\right)\right)\right) \tag{2.10}
\end{align*}
$$

Note that we have no asymptotics for $T_{z}(N)$ if (2.9) does not hold. Thus, e.g., we have not been able to settle the following problem:

Problem 1. Is it true that if $g \in \mathbb{N}, g \geqslant 6$ then there are infinitely many square-free integers such that every digit of them in the number system to base g is 0 or 1 ?

Note that for $g=3,4$ and 5 this has been proved by Filaseta and Konyagin in [FK], and the $g=3$ special case also follows from Theorem 4 above.

By Theorem 4, if $\log t / \log g$ is "large" then there are many integers free of z th powers in $\mathscr{W}_{\mathscr{D}}(N)$. One might like to prove the opposite statement, i.e., that there are integers with large z th power part in $\mathscr{W}_{\mathscr{D}}(N)$. Indeed, if g, t, \mathscr{D} are defined as in Theorem $1, z \in \mathbb{N}$ and $z \geqslant 2$, then by Theorem 1, for large $n \mathscr{W}_{\mathscr{D}}(N)$ contains integers with z th power part greater than $\exp \left(c(\log N)^{1 / 2}\right)$. We will show that if t is close enough to g and z is small enough in terms of t and g then $\mathscr{W}_{\mathscr{T}}(N)$ contains integers with z th power parts as large as $N^{c}($ with $c=c(g, t, z))$:

Theorem 5. If g, t, \mathscr{D} satisfy (2.1) and (2.2), and $z \in \mathbb{N}$,

$$
\begin{equation*}
z<\left(2\left(1-\frac{\log t}{\log g}\right)\right)^{-1} \tag{2.11}
\end{equation*}
$$

then there are effectively computable constants $N_{0}=N_{0}(g ; t ; z)$ and $c_{5}=c_{5}(g ; t ; z)$ such that if $N>N_{0}$ then there is a positive integer n and a prime p with

$$
n \in \mathscr{W}_{\mathscr{D}}(N), \quad p>c_{5}\left(\frac{N^{(\log t) /(2 \log g)}}{\log N}\right)^{1 /(2 z-1)}
$$

and

$$
p^{z} \mid n .
$$

Thus, e.g., if $\log t / \log g>\frac{3}{4}$ then there are integers with large prime square part in $\mathscr{W}_{\mathscr{D}}(N)$. On the other hand, we have not been able to settle the following question:

Problem 2. Is it true that if $g \in \mathbb{N}, g \geqslant 3$ then there is a constant $c=c(g)$ with the following property: there are infinitely many integers n such that
every digit of them in the number system to base g is 0 or 1 , and there is a prime with $p>n^{c}, p^{2} \mid n$?

SECTION 3

Three Lemmas. To prove Theorem 1 we shall need three lemmas.
Lemma 1. If g, t and \mathscr{D} are defined as in Theorem 1 and $\alpha \in \mathbb{R}$, then there is an integer j such that $2 \leqslant j \leqslant t$ and

$$
\begin{equation*}
\left\|d_{j} \alpha\right\| \geqslant \frac{1}{2(g-1)^{2}}\|\alpha\| . \tag{3.1}
\end{equation*}
$$

Proof of Lemma 1. We have to distinguish two cases.
Case 1. Assume that

$$
\|\alpha\| \leqslant \frac{1}{2(g-1)}
$$

i.e., α can be written in the form

$$
\alpha=k+\theta_{1}
$$

with $k \in \mathbb{Z}$ and

$$
\begin{equation*}
\left|\theta_{1}\right|=\|\alpha\| \leqslant \frac{1}{2(g-1)} . \tag{3.2}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
d_{2} \alpha=d_{2} k+d_{2} \theta_{1}=d_{2} k+\theta_{2} \tag{3.3}
\end{equation*}
$$

where, in view of (3.2),

$$
\begin{equation*}
\left|\theta_{2}\right|=\left|d_{2} \theta_{1}\right|=d_{2}\left|\theta_{1}\right| \leqslant(g-1) \frac{1}{2(g-1)}=\frac{1}{2} . \tag{3.4}
\end{equation*}
$$

It follows from (3.3) and (3.4) that

$$
\left\|d_{2} \alpha\right\|=\left|\theta_{2}\right|=\left|d_{2} \theta_{1}\right|
$$

so that

$$
\left\|d_{2} \alpha\right\|=d_{2}\left|\theta_{1}\right| \geqslant\left|\theta_{1}\right|=\|\alpha\|
$$

which implies (3.1) with 2 in place of j.

Case 2. Assume now that

$$
\begin{equation*}
\|\alpha\|>\frac{1}{2(g-1)} . \tag{3.5}
\end{equation*}
$$

If

$$
\left\|d_{2} \alpha\right\| \geqslant \frac{1}{2(g-1)^{2}},
$$

then (3.1) holds with $j=2$; thus we may assume that

$$
\left\|d_{2} \alpha\right\|<\frac{1}{2(g-1)}
$$

i.e., $d_{2} \alpha$ can be written in the form

$$
\begin{equation*}
d_{2} \alpha=l+\theta_{3} \tag{3.6}
\end{equation*}
$$

with $l \in \mathbb{Z}$ and

$$
\begin{equation*}
\left|\theta_{3}\right|<\frac{1}{2(g-1)^{2}} . \tag{3.7}
\end{equation*}
$$

Dividing (3.6) by d_{2} we obtain

$$
\begin{equation*}
\alpha=\frac{l}{d_{2}}+\frac{\theta_{3}}{d_{2}} . \tag{3.8}
\end{equation*}
$$

If $d_{2} \mid l$ then this implies

$$
\|\alpha\| \leqslant \frac{\left|\theta_{3}\right|}{d_{2}} \leqslant\left|\theta_{3}\right|<\frac{1}{2(g-1)^{2}}
$$

which contradicts (3.5). It follows that $d_{2} \chi l$ so that writing l / d_{2} in the form

$$
\begin{equation*}
\frac{l}{d_{2}}=\frac{u}{v}, \quad u \in \mathbb{Z}, \quad v \in \mathbb{N}, \quad(u, v)=1, \tag{3.9}
\end{equation*}
$$

here we have

$$
\begin{equation*}
v>1 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
v \leqslant d_{2} \leqslant g-1 . \tag{3.11}
\end{equation*}
$$

Then by (2.5) and (3.10) there is a j such that $j \in\{2,3, \ldots, t\}$ and $v \nmid d_{j}$ whence, by (3.8), (3.9), (3.10) and (3.11),

$$
\begin{aligned}
\left\|d_{j} \alpha\right\| & =\left\|d_{j}\left(\frac{u}{v}+\frac{\theta_{3}}{d_{2}}\right)\right\| \geqslant\left\|\frac{d_{j} u}{v}\right\|-\frac{d_{j}}{d_{2}}\left|\theta_{3}\right| \\
& \geqslant \frac{1}{v}-(g-1) \frac{1}{2(g-1)^{2}} \geqslant \frac{1}{g-1}-\frac{1}{2(g-1)} \\
& =\frac{1}{2(g-1)}
\end{aligned}
$$

so that (3.1) holds and this completes the proof of Lemma 1.
Write

$$
u(\alpha)=u_{\mathscr{O}}(\alpha)=\sum_{k=1}^{t} e\left(d_{k} \alpha\right)
$$

and

$$
\mathscr{U}(\alpha)=U_{\mathscr{D}}(\alpha)=\frac{u_{\mathscr{D}}(\alpha)}{t} .
$$

Lemma 2. If $g, t, \mathscr{D}, \alpha$ are defined as in Lemma 1 then we have

$$
|\mathscr{U}(\alpha)| \leqslant 1-\frac{1}{(g-1)^{5}}\|\alpha\|^{2} .
$$

Proof of Lemma 2. By Lemma 1 there is a j satisfying $2 \leqslant j \leqslant t$ and (3.1). Then we have

$$
\begin{align*}
|\mathscr{U}(\alpha)| & =\frac{1}{t}\left|\sum_{k=1}^{t} e\left(d_{k} \alpha\right)\right| \leqslant \frac{1}{t}\left(\left|e\left(d_{1} \alpha\right)+e\left(d_{1} \alpha\right)\right|+\left|\sum_{\substack{2 \leqslant k \leqslant t \\
k \neq j}} e\left(d_{k} \alpha\right)\right|\right) \\
& \leqslant \frac{1}{t}\left(\left|1+e\left(d_{j} \alpha\right)\right|+(t-2)\right) \tag{3.12}
\end{align*}
$$

For all $\beta \in \mathbb{R}$ we have

$$
\begin{aligned}
|1+e(\beta)|^{2} & =2+2 \cos 2 \pi \beta=4\left(1-\sin ^{2} \pi \beta\right) \\
& \leqslant 4\left(1-(2\|\beta\|)^{2}\right)=4\left(1-4\|\beta\|^{2}\right)
\end{aligned}
$$

whence

$$
|1+e(\beta)| \leqslant 2\left(1-4\|\beta\|^{2}\right)^{1 / 2} \leqslant 2\left(1-2\|\beta\|^{2}\right)
$$

Thus it follows from (3.1) and (3.12) that

$$
\begin{aligned}
|\mathscr{U}(\alpha)| & \leqslant \frac{1}{t}\left(2\left(1-2\left\|d_{j} \alpha\right\|^{2}\right)+(t-2)\right)=1-\frac{4}{t}\left\|d_{j} \alpha\right\|^{2} \\
& \leqslant 1-\frac{4}{g-1}\left(\frac{1}{2(g-1)^{2}}\|\alpha\|\right)^{2}=1-\frac{1}{(g-1)^{5}}\|\alpha\|^{2}
\end{aligned}
$$

which completes the proof of Lemma 2.

Lemma 3. If $g, m, j, \rho \in \mathbb{N}, g \geqslant 2,((g-1) g, m)=1, m \geqslant 2,1 \leqslant j \leqslant m-1$,

$$
\begin{equation*}
\rho \geqslant 2 \frac{\log m}{\log g}+8 \tag{3.13}
\end{equation*}
$$

and $\beta \in \mathbb{R}$, then

$$
\sum_{u=0}^{\rho-1}\left\|\beta+g^{u} \frac{j}{m}\right\|^{2} \geqslant \frac{(g-1)^{2}}{128 g^{4}} \frac{\rho}{\log m}
$$

Proof of Lemma 3. This is Lemma 2 in [MS2].

SECTION 4

Proof of Theorem 1. Consider the generating function

$$
G(\alpha)=\sum_{n \in \mathscr{W}_{\mathscr{D}}(N)} e(n \alpha)
$$

so that

$$
\begin{equation*}
G(0)=\left|\mathscr{W}_{\mathscr{D}}(N)\right| \tag{4.1}
\end{equation*}
$$

and for all $h \in \mathbb{Z}, m \in \mathbb{N}$ we have

$$
\begin{equation*}
\left|\left\{n: n \in \mathscr{W}_{\mathscr{D}}(N), n \equiv h(\bmod m)\right\}\right|=\frac{1}{m} \sum_{j=0}^{m-1} e\left(-\frac{h j}{m}\right) G\left(\frac{j}{m}\right) \tag{4.2}
\end{equation*}
$$

It follows from (4.1) and (4.2) that
so that it remains to estimate $|G(j / m)|$ for

$$
\begin{equation*}
j \in\{1,2, \ldots, m-1\} \tag{4.4}
\end{equation*}
$$

As in [MS2], write N in the form

$$
\begin{aligned}
& N=\sum_{j=1}^{s} b_{j} g^{v_{j}}, \\
& \quad v_{1}>v_{2}>\cdots>v_{s}, \quad b_{j} \in\{1,2, \ldots, g-1\} \quad \text { for } \quad j=1,2, \ldots, s
\end{aligned}
$$

so that

$$
g^{v_{1}} \leqslant N<g^{v_{1}+1}
$$

whence

$$
v_{1}=\left[\frac{\log N}{\log g}\right]
$$

Moreover, for $l=1,2, \ldots, s$, let \mathscr{A}_{l} denote the set of the integers n that can be represented in the form

$$
n=\sum_{i=1}^{l-1} b_{i} g^{v_{i}}+x g^{v_{l}}+\sum_{u=0}^{v_{l}-1} y_{u} g^{u}
$$

where

$$
x \in \mathscr{D} \cap\left\{0,1, \ldots, b_{l}-1\right\}, \quad y_{u} \in \mathscr{D} \quad \text { for } \quad u=0,1, \ldots, v_{l}-1,
$$

and let

$$
\mathscr{A}_{s+1}=\left\{\begin{array}{lll}
\{N\} & \text { if } & N \in \mathscr{W}_{\mathscr{D}}(N) \\
\varnothing & \text { if } & N \notin \mathscr{W}_{\mathscr{D}}(N) .
\end{array}\right.
$$

Then clearly we have

$$
\mathscr{W}_{\mathscr{D}}(N)=\bigcup_{i=1}^{s+1} \mathscr{A}_{l}
$$

and

$$
\mathscr{A}_{1} \cap \mathscr{A}_{l}=\varnothing \quad \text { for } \quad 1 \leqslant j<l \leqslant s+1
$$

so that for all $\alpha \in \mathbb{R}$,

$$
\begin{equation*}
G_{l}(\alpha)=\sum_{n \in \mathscr{W}_{g}(N)} e(n \alpha)=\sum_{l=1}^{s+1} \sum_{n \in \mathscr{A}_{l}} e(n \alpha)=\sum_{l=1}^{s+1} G_{l}(\alpha) . \tag{4.5}
\end{equation*}
$$

Here for $1 \leqslant l \leqslant s$ we have

$$
\begin{aligned}
G_{l}(\alpha)= & \sum_{x} \sum_{y_{0}} \cdots \sum_{y_{v_{l-1}}} e\left(\left(b_{1} g^{v_{1}}+\cdots+b_{l-1} g^{v_{l-1}}+x g_{l}^{v}+y_{0} g^{0}\right.\right. \\
& \left.\left.+\cdots+y_{v_{l}-1} g^{v_{l}+1}\right) \alpha\right) \\
= & e\left(b_{1} g^{v_{1}}+\cdots+b_{l-1} g^{v_{l-1}}\left(\sum_{x \in \mathscr{D} \cap\left\{0,1, \ldots, b_{l-1}\right\}} e\left(x g^{v_{l}}\right)\right)\right. \\
& \times \prod_{u=0}^{v_{l}-1}\left(\sum_{y_{u} \in \mathscr{D}} e\left(y_{u} g^{u} \alpha\right)\right) \\
= & e\left(b_{1} g^{v_{1}}+\cdots+b_{l-1} g^{v_{l-1}}\right)\left(\sum_{x \in \mathscr{D} \cap\left\{0,1, \ldots, b_{l-1}\right\}} e\left(x g^{v_{l}}\right)\right) \prod_{u=0}^{v_{l}-1} u_{\mathscr{D}}\left(g^{u} \alpha\right)
\end{aligned}
$$

whence

$$
\begin{equation*}
\left|G_{l}(\alpha)\right| \leqslant|\mathscr{D}| \prod_{u=0}^{v_{l}-1}\left|u_{\mathscr{D}}\left(g^{u} \alpha\right)\right| \leqslant g t^{v_{l}} \prod_{u=0}^{v_{l}-1}\left|\mathscr{U}_{\mathscr{D}}\left(g^{u} \alpha\right)\right| . \tag{4.6}
\end{equation*}
$$

Thus by $t \geqslant 2$ we have

$$
\begin{align*}
\sum_{l: v_{l} \leqslant 1 / 2 \log N / \log g}\left|G_{l}(\alpha)\right| & \leqslant \sum_{l: v_{l} \leqslant 1 / 2 \log N / \log g} g t^{v_{l}} \prod_{u=0}^{v_{l}-1} 1<g \sum_{j=0}^{+\infty} t^{(\log N) /(2 \log g)-j} \\
& \leqslant 2 g t^{(\log N) /(2 \log g)-j}<2 g\left(t^{v_{1}+1}\right)^{1 / 2}<2 g^{2}\left(t^{v_{1}}\right)^{1 / 2} \\
& \leqslant 2 g^{2}\left|\mathscr{W}_{\mathscr{D}}(N)\right|^{1 / 2} \quad(\text { for } \alpha \in \mathbb{R}) \tag{4.7}
\end{align*}
$$

since clearly

$$
\begin{equation*}
\left|\mathscr{W}_{\mathscr{D}}(N)\right| \geqslant t^{v_{1}} . \tag{4.8}
\end{equation*}
$$

If $v_{l}>\frac{1}{2} \log N / \log g$, then by (2.6),

$$
v_{l}>\frac{1}{2} \frac{\log N}{\log g}>2 \frac{\log m}{\log g}+8
$$

so that (3.13) holds with v_{l} in place of ρ. Thus using Lemma 2 and 3 , by (4.6) and $1-x \leqslant e^{-x}($ for $x \geqslant 0)$ for $l \leqslant s, v_{l}>\frac{1}{2} \log N / \log g, 1 \leqslant j \leqslant m-1$ we have

$$
\begin{aligned}
\left|G_{l}\left(\frac{j}{m}\right)\right| & \leqslant g t^{v_{l}} \prod_{u=0}^{v_{l}-1}\left(1-\frac{1}{(g-1)^{5}}\left\|g^{u} \frac{j}{m}\right\|^{2}\right) \\
& \leqslant g t^{v_{l}} \exp \left(-\frac{1}{(g-1)^{5}} \sum_{u=0}^{v_{l}-1}\left\|g^{u} \frac{j}{m}\right\|^{2}\right) \\
& \leqslant g t^{v_{l}} \exp \left(-\frac{1}{128 g^{4}(g-1)^{3}} \frac{v_{l}}{\log m}\right) \\
& \leqslant g t^{v_{l}} \exp \left(-\frac{1}{256 g^{4}(g-1)^{3} \log g} \frac{\log N}{\log m}\right)
\end{aligned}
$$

whence, by (2.1), (2.6) and (4.8),

$$
\begin{align*}
\sum_{\substack{l \leq s \\
1 / 2 \log N / \log g}}\left|G_{l}\left(\frac{j}{m}\right)\right| & \leqslant g \exp \left(-\frac{\log N}{c_{10} \log m}\right) \sum_{j=0}^{+\infty} t^{v_{1}-j} \\
& \leqslant t^{v_{1}} \exp \left(-\frac{\log N}{c_{11} \log m}\right) \\
& \leqslant\left|\mathscr{W}_{\mathscr{D}}(N)\right| \exp \left(-\frac{\log N}{c_{11} \log m}\right) \\
& \text { for } j \in\{1,2, \ldots, m-1\} \tag{4.9}
\end{align*}
$$

(where c_{10}, c_{11} depend on g and t). Finally, clearly we have
$\left|G_{s+1}(\alpha)\right|=\left|\sum_{n \in \mathscr{A}_{s+1}} e(n \alpha)\right| \leqslant \sum_{n \in \mathscr{A}_{s+1}} 1=\left|\mathscr{A}_{s+1}\right| \leqslant 1 \quad($ for $\alpha \in \mathbb{R})$.
It follows from (4.5, (4.7), (4.9) and (4.10) that for j satisfying (4.4) we have

$$
\begin{align*}
\left|G\left(\frac{j}{m}\right)\right| \leqslant & 2 g^{2}\left|\mathscr{W}_{\mathscr{D}}(N)\right|^{1 / 2}+\left|\mathscr{W}_{\mathscr{D}}(N)\right| \exp \left(-\frac{\log N}{c_{11} \log m}\right)+1 \\
= & \frac{1}{m}\left|\mathscr{W}_{\mathscr{D}}(N)\right|\left(2 m g^{2}\right)\left|\mathscr{W}_{\mathscr{D}}(N)\right|^{-1 / 2} \\
& \left.+m \exp \left(-\frac{\log N}{c_{11} \log _{m}}\right)+m\left|\mathscr{W}_{\mathscr{D}}(N)\right|^{-1}\right) \tag{4.11}
\end{align*}
$$

By $t \geqslant 2$ and (4.8), there are positive constants $c_{12}=c_{12}(g)$ and $c_{13}=c_{13}(g)$ such that

$$
\begin{equation*}
\left|\mathscr{W}_{\mathscr{D}}(N)\right| \geqslant t^{v_{1}} \geqslant 2^{[(\log N) / \log g)]}>c_{12} N^{c_{13}} . \tag{4.12}
\end{equation*}
$$

If c_{1} in (2.6) is chosen small enough, then (2.7) follows from (2.6), (4.3), (4.11) and (4.12), and this completes the proof of Theorem 1.

SECTION 5

Proof of Theorem 2. The proof will be based on the Cauchy-Davenport lemma and Gallagher's "larger sieve:"

Lemma 4 ([DAV1], [DAV2]). Let p be a prime number and let \mathscr{A} and \mathscr{B} sets of distinct modulo p residue classes: \mathscr{A} and $\mathscr{B} \in \mathbb{Z}_{p}$. Then

$$
|\mathscr{A}+\mathscr{B}| \geqslant \min (|\mathscr{A}|+|\mathscr{B}|-1, p)
$$

(where $\mathscr{A}+\mathscr{B}=\{a+b: a \in \mathscr{A}, b \in \mathscr{B}\})$.
If $\mathscr{A} \subset \mathbb{Z}, m \in \mathbb{N}$ then let $v(\mathscr{A}, m)$ denote the number of residue classes modulo m that contain at least one element of \mathscr{A}.

Lemma 5 ([GAL]). Let $M \in \mathbb{R}, N \in \mathbb{N}$ and let \mathscr{A} be a set of integers in the interval $[M+1, M+N]$. Then for any finite set of primes S we have

$$
|\mathscr{A}| \leqslant \frac{\sum_{p \in S} \log p-\log N}{\sum_{p \in S}(\log p / v(\mathscr{A}, p))-\log p}
$$

provided that the denominator is positive.
Write

$$
\delta=\frac{\log t}{2 \log g}-\frac{1}{k}
$$

so that

$$
\begin{equation*}
\delta>0 \tag{5.1}
\end{equation*}
$$

by the definition of k, and set

$$
x=\left[\frac{\log N}{k \log g}\right]
$$

so that

$$
\begin{equation*}
g^{x} \leqslant N^{1 / k}<g^{x+1} \tag{5.2}
\end{equation*}
$$

Finally, write

$$
\begin{equation*}
y=N^{(\log t) /(2 k \log g)} . \tag{5.3}
\end{equation*}
$$

We start out the indirect assumption that there is no p with $y<p \leqslant y^{2}$ such that $\mathscr{W}_{\mathscr{D}}(N)$ meets every residue class modulo p :

$$
\begin{equation*}
v\left(\mathscr{W}_{\mathscr{D}}(N), p\right)<p \quad \text { for all } \quad y<p \leqslant y^{2} \tag{5.4}
\end{equation*}
$$

For $j=1,2, \ldots, k$, write

$$
\mathscr{A}_{j}=\left\{\left(g^{x}\right)^{j-1} n: n \in \mathscr{W}_{\mathscr{D}}\left(g^{x}-1\right)\right\}
$$

so that, in view of (5.2),

$$
\begin{equation*}
\sum_{j=1}^{k} \mathscr{A}_{j} \subset \mathscr{W}_{\mathscr{D}}(N) \tag{5.5}
\end{equation*}
$$

and clearly,

$$
\begin{equation*}
v\left(\mathscr{A}_{j}, p\right)=v\left(\mathscr{W}_{\mathscr{D}}\left(g^{x}-1\right), p\right) \tag{5.6}
\end{equation*}
$$

for $j \in\{1,2, \ldots, k\}$ and all $p>g$.
By the Cauchy-Davenport lemma (Lemma 4) it follows from (5.4), (5.5) and (5.6) that

$$
\begin{aligned}
p & >v\left(\mathscr{W}_{\mathscr{D}}(N), p\right) \geqslant v\left(\sum_{j=1}^{k} \mathscr{A}_{j}, p\right) \geqslant \sum_{j=1}^{k} v\left(\mathscr{A}_{j}, p\right)-(k-1) \\
& =k v\left(\mathscr{W}_{\mathscr{D}}\left(g^{x}-1\right), p\right)-(k-1)
\end{aligned}
$$

whence

$$
v\left(\mathscr{W}_{\mathscr{D}}\left(g^{x}-1\right), p\right)<\frac{p}{k}+1 \quad\left(\text { for all } y<p \leqslant y^{2}\right) .
$$

Thus by using Gallagher's "larger sieve" (Lemma 5) with $-1, g^{x}, \mathscr{W}_{\mathscr{D}}\left(g^{x}-1\right)$ and $\left\{p: p\right.$ prime, $\left.y<p \leqslant y^{2}\right\}$ in place of M, N, \mathscr{A} and S, respectively, by the prime number theorem and since

$$
\sum_{p \leqslant u} \frac{\log p}{p}=\log u+O(1),
$$

in view of (5.2) and (5.3) we obtain for $N \rightarrow+\infty$ that

$$
\begin{aligned}
\left|\mathscr{W}_{\mathscr{D}}\left(g^{x}-1\right)\right| & \leqslant \frac{\sum_{y<p \leqslant y^{2}} \log p-\log g^{x}}{\sum_{y<p \leqslant y^{2}}(\log p /(p / k)+1)-\log g^{x}} \\
& =\frac{1+o(1)) y^{2}-(\log N) / k+O(1)}{(1+o(1)) k \log y-(\log N) / k+O(1)} \\
& =\frac{(1+o(1)) N^{(\log t) /(k \log g)}}{(1+o(1)) \delta \log N+O(1)}
\end{aligned}
$$

where, by (5.1), indeed the denominator is positive for large N. By (5.2), it follows that

$$
\begin{equation*}
\left|\mathscr{W}_{\mathscr{D}}\left(g^{x}-1\right)\right|=O_{g, t}\left(\frac{\left(g^{x}\right)^{(\log t) /(\log g)}}{\log N}\right)=O_{g, t}\left(\frac{t^{x}}{\log N}\right) \tag{5.7}
\end{equation*}
$$

On the other hand, clearly we have

$$
\left|\mathscr{W}_{\mathscr{D}}\left(g^{x}-1\right)\right|=t^{x}
$$

which contradicts (5.7), and this contradiction completes the proof of the theorem.

SECTION 6

Proof of Theorem 3. Let g be a (fixed) positive integer large enough in terms of ε and let $k \in \mathbb{N}$. Write $N=g^{(g-2) k}-1$ and $m=g^{k}-1$ so that

$$
\left|\mathscr{W}_{\mathscr{D}}(N)\right|=2^{(g-2) k}
$$

(with $\mathscr{D}=\{0,1\}$) whence, for $k \rightarrow+\infty$,

$$
m=g^{k}-1=(1+o(1))\left|\mathscr{W}_{\mathscr{D}}(N)\right|^{(\log g) /((g-1)(\log 2))} .
$$

If $g>g_{0}(\varepsilon)$ then, indeed,

$$
\frac{\log g}{(g-2)(\log 2)}<\varepsilon
$$

so that (2.8) holds for every large k.
To show that $\mathscr{W}_{\mathscr{D}}(N)$ does not meet every residue class modulo m, observe that every $n \in \mathscr{W}_{\mathscr{D}}(N)$ is of the form

$$
n=\sum_{i=0}^{(g-2) k-1} \varepsilon_{i} g^{i}
$$

where $\varepsilon_{i}=0$ or 1 for all i. It follows that

$$
n=\sum_{l=0}^{g-3} \sum_{j=0}^{k-1} \varepsilon_{l k+j}\left(g^{k}\right)^{l} g^{j} \equiv \sum_{j=0}^{k-1}\left(\sum_{l=0}^{g-3} \varepsilon_{l k+j}\right) g^{j}(\bmod m) .
$$

Here the coefficient of g^{j} satisfies

$$
\sum_{l=0}^{g-3} \varepsilon_{l k+j} \in\{0,1, \ldots, g-2\}
$$

so that it may assume $g-1$ incongruent values modulo m. Thus this last sum may assume at most

$$
(g-1)^{k}=(1+o(1)) m^{(\log (g-1)) / \log g)}
$$

incongruent values, so that at most so many residue classes modulo m may meet $\mathscr{W}_{\mathscr{D}}(N)$ which completes the proof of the theorem.

SECTION 7

Proof of Theorem 4. First we will prove

Lemma 6. If g, t satisfy (2.1) and $\mathscr{D} \in\{0,1, \ldots, g-1\},|\mathscr{D}|=t$, then for $n \in \mathbb{N}, m \in \mathbb{N}$,

$$
\begin{equation*}
m \leqslant N, \tag{7.1}
\end{equation*}
$$

$h \in \mathbb{Z}$ we have

$$
\left|\left\{n: n \in \mathscr{W}_{\mathscr{D}}(N), n \equiv h(\bmod m)\right\}\right|<2 g\left|\mathscr{W}_{\mathscr{D}}(N)\right| m^{-(\log t) /(\log g)} .
$$

Proof of Lemma 6. For $m \in \mathbb{N}$, define r by $r \in \mathbb{N}$

$$
\begin{equation*}
g^{r} \leqslant m<g^{r+1}, \tag{7.2}
\end{equation*}
$$

and for all $n \in \mathbb{N}$, define $x=x(n)$ and $y=y(n)$ by $n=x g^{r}+y, x, y \in \mathbb{Z}$, $0 \leqslant y<g^{r}$. If $x_{0} \in \mathbb{Z}$ is such that there is at least one n with $n \in \mathscr{W}_{\mathscr{D}}(N)$, $x_{n}=x_{0}$, then clearly

$$
\left|\left\{n: n \in \mathscr{W}_{\mathscr{D}}(N), x(n)=x_{0}\right\}\right|\left\{\begin{array}{lll}
=\left|\mathscr{W}_{\mathscr{D}}\left(g^{r}-1\right)\right|=t^{r} & \text { for } & x_{0}<\left[N / g^{r}\right] \\
\leqslant\left|\mathscr{W}_{\mathscr{D}}\left(g^{r}-1\right)\right|=t^{r} & \text { for } & x_{0}=\left[N / g^{r}\right] .
\end{array}\right.
$$

It follows that
$\mid\left\{x_{0}\right.$: there is n with $\left.n \in \mathscr{W}_{\mathscr{D}}(N), x(n)=x_{0}\right\}\left|t^{r} \leqslant\left|\mathscr{W}_{\mathscr{D}}(N)\right|+t^{r}\right.$
whence, by (7.1) and (7.2),
$\mid\left\{x_{0}\right.$: there is n with $\left.n \in \mathscr{W}_{\mathscr{D}}(N), x(n)=x_{0}\right\} \mid$

$$
\begin{gathered}
\leqslant\left|\mathscr{W}_{\mathscr{D}}(N)\right| t^{-r}+1=\left|\mathscr{W}_{\mathscr{D}}(N)\right|\left(g^{r}\right)^{-(\log t) /(\log g)}+1 \\
<\left|\mathscr{W}_{\mathscr{D}}(N)\right|(m / g)^{-(\log t) /(\log g)}+1<g\left|\mathscr{W}_{\mathscr{D}}(N)\right| m^{-(\log t) /(\log g)}+1
\end{gathered}
$$

By (7.1) and (7.2),

$$
m^{-(\log t) /(\log g)}<t^{r+1} \leqslant g\left|\mathscr{W}_{\mathscr{D}}(m)\right| \leqslant g\left|\mathscr{W}_{\mathscr{D}}(N)\right|
$$

so that

$$
\begin{equation*}
\mid\left\{x_{0} \text { : there is } n \text { with } n \in \mathscr{W}_{\mathscr{D}}(N), x(n)=x_{0}\right\}|<2 g| \mathscr{W}_{\mathscr{D}}(N) \mid m^{-(\log t) /(\log g)} \text {. } \tag{7.3}
\end{equation*}
$$

By (7.2), for all $x_{0} \in \mathbb{Z}$ clearly we have

$$
\begin{equation*}
\left|\left\{n: n \in \mathscr{W}_{\mathscr{D}}(N), x(n)=x_{0}, n \equiv h(\bmod m)\right\}\right| \leqslant 1 . \tag{7.4}
\end{equation*}
$$

It follows from (7.3) and (7.4) that

$$
\begin{aligned}
\mid\{n: n & \left.\in \mathscr{W}_{\mathscr{D}}(N), n \equiv h(\bmod m)\right\} \mid \\
& =\sum_{x_{0}}\left|\left\{n: n \in \mathscr{W}_{\mathscr{D}}(N), x(n)=x_{0}, n \equiv h(\bmod m)\right\}\right| \\
& \leqslant \sum_{x_{0}} 1<2 g\left|\mathscr{W}_{\mathscr{D}}(N)\right| m^{-(\log t) /(\log g)}
\end{aligned}
$$

(where in $\sum_{x_{0}}, x_{0}$ runs over the integers such that there is n with $\left.n \in \mathscr{W}_{\mathscr{D}}(N), x(n)=x_{0}\right)$, which completes the proof of Lemma 6 .

In order to prove (2.10), observe that clearly we have

$$
\begin{align*}
T_{z}(N) & =\sum_{n \in W_{\mathscr{O}}(N)} \sum_{\substack{d^{z} \mid n \\
(d,(g-1) g)=1}} \mu(d)=\sum_{(d,(g-1) g)=1} \mu(d)\left|\left\{n: n \in \mathscr{W}_{\mathscr{D}}(N), d^{z} \mid n\right\}\right| \\
& =\sum_{1}+\sum_{2}+\sum_{3} \tag{7.5}
\end{align*}
$$

with

$$
\begin{aligned}
& \sum_{1}=\sum_{\substack{d<\exp \left(c_{1}(\log N N)^{1 / 2 / z)} \\
(d,(g-1) g)=1\right.}} \mu(d) \frac{\mathscr{O}_{\mathscr{D}}(N) \mid}{d^{z}}, \\
& \sum_{2}=\sum_{\substack{d<\exp _{\begin{subarray}{c}{d,(\log N \\
(d,(g-1) g)=1} }}^{1 / 2 / z)}}\end{subarray}} \mu(d)\left(\left|\left\{n: n \in \mathscr{W}_{\mathscr{D}}(N), d^{z} \mid n\right\}\right|-\frac{\left|\mathscr{W}_{\mathscr{D}}(N)\right|}{d^{z}}\right)
\end{aligned}
$$

and

$$
\sum_{3}=\sum_{\substack{d \geqslant \exp \left(c_{1}(\log N) 1 / 2 / z\right) \\(d,(g-1) g)=1}} \mu(d)\left|\left\{n: n \in \mathscr{W}_{\mathscr{D}}(N), d^{z} \mid n\right\}\right| .
$$

Clearly we have

$$
\begin{align*}
\sum_{1}= & \left|\mathscr{W}_{\mathscr{O}}(N)\right|\left(\sum_{(d,(g-1) g)=1} \frac{\mu(d)}{d^{z}}+O\left(\sum_{d \geqslant \exp \left(c_{1}(\log N)^{1 / 2 / z)}\right.} \frac{1}{d^{z}}\right)\right) \\
= & \left(\left(\zeta(z) \prod_{p \mid(g-1) g}\left(1-\frac{1}{p^{z}}\right)\right)^{-1}\right. \\
& \left.+O_{z}\left(\exp \left(-c_{1}\left(1-\frac{1}{z}\right)(\log N)^{1 / 2}\right)\right)\right)\left|\mathscr{W}_{\mathscr{D}}(N)\right| \tag{7.6}
\end{align*}
$$

Moreover, it follows from Theorem 1 that

$$
\begin{align*}
\sum_{2} & =O\left(\left|\mathscr{W}_{\mathscr{D}}(N)\right| \sum_{d<\exp \left(c_{1}(\log N)^{1 / 2 / z)}\right.} d^{-z} \exp \left(-c_{14}(\log N)^{1 / 2}\right)\right) \\
& =O_{z}\left(\left|\mathscr{W}_{\mathscr{D}}(N)\right| \exp \left(-c_{15}(\log N)^{1 / 2}\right)\right) . \tag{7.7}
\end{align*}
$$

Finally, in view of (2.9), by Lemma 6 we have

$$
\begin{align*}
\sum_{3} & \leqslant \sum_{\exp \left(c_{1}(\log N)^{1 / 2 / z)} \leqslant d\right.} 2 g\left|\mathscr{W}_{\mathscr{D}}(N)\right| d^{-z(\log t) /(\log g)} \\
& =O_{g, t, z}\left(\left|\mathscr{W}_{\mathscr{D}}(N)\right| \exp \left(c_{1}(\log N)^{1 / 2}\left(\frac{1}{z}-\frac{\log t}{\log g}\right)\right)\right), \tag{7.8}
\end{align*}
$$

(2.10) follows from (7.5), (7.6), (7.7) and (7.8), and this completes the proof of Theorem 4.

SECTION 8

Proof of Theorem 5. The proof will be based on the following prime power moduli version of the large sieve (see, e.g., [SAR]):

Lemma 7. If $K \in \mathbb{Z}, M \in \mathbb{N}, \mathscr{A} \subset\{K+1, K+2, \ldots, K+M\}, z \in \mathbb{N}$ and $v \in \mathbb{R}$, then, writing

$$
Z=|\mathscr{A}| \quad \text { and } \quad Z(q, h)=|\{a: a \in \mathscr{A}, a \equiv h(\bmod q)\}|,
$$

we have

$$
\sum_{p \leqslant v} p^{z} \sum_{h=0}^{p^{z}-1}\left(Z\left(p^{z}, h\right)-\frac{Z}{p^{z}}\right)^{2} \leqslant\left(v^{2 z}+M\right) Z .
$$

Indeed, this is a straightforward consequence of the analytic form of the large sieve.

We will prove Theorem 3 by contradiction. Write

$$
y=c_{16}\left(N^{(\log t) /(2 \log g)} / \log N\right)^{1 /(2 z-1)},
$$

and assume that

$$
\begin{equation*}
y<p \leqslant 2 y, \quad n \in \mathscr{W}_{\mathscr{O}}(N) \quad \text { imply } \quad p^{z} \nmid n ; \tag{8.1}
\end{equation*}
$$

it suffices to show that if c_{16} is small enough in terms of g, t and z, then this assumption leads to a contradiction.

Define the integer k by

$$
\begin{equation*}
g^{2 k} \leqslant N<g^{2 k+2} \tag{8.2}
\end{equation*}
$$

so that $k=[\log N / 2 \log g]$. Then clearly $u, v \in \mathscr{W}_{\mathscr{D}}\left(g^{k}-1\right)$ implies that $u+g^{k} v \in \mathscr{W}_{\mathscr{D}}(N)$. Assume that p is a prime greater than g, and $\mathscr{W}_{\mathscr{D}}\left(g^{k}-1\right)$ meets more than $p^{z} / 2$ residue classes modulo p^{z}. Then by $p>g$, the set
$\left\{-g^{k} v: v \in \mathscr{W}_{\mathscr{D}}\left(g^{k}-1\right)\right\}$ meets the same number of residue classes module p^{z}. Thus by the pigeon hole principle, there are $u, v \in \mathscr{W}_{\mathscr{D}}\left(g^{k}-1\right)$ with

$$
u \equiv-g^{k} v \quad\left(\bmod p^{z}\right)
$$

so that $p^{z} \mid\left(u+g^{k} v\right) \in \mathscr{W}_{\mathscr{D}}(N)$. Thus by our indirect assumption (8.1),

$$
\mid\left\{h: 0 \leqslant h<p^{z}, \text { there is } n \in \mathscr{W}_{\mathscr{D}}\left(g^{k}-1\right)\right. \text { with }
$$

$$
\begin{equation*}
\left.n \equiv h\left(\bmod p^{z}\right)\right\} \left\lvert\, \leqslant \frac{p^{z}}{2} \quad\right. \text { for all } \quad y<p \leqslant 2 y \tag{8.3}
\end{equation*}
$$

(note that $p>y$ implies $p>g$).
Now we apply Lemma 7 with $-1, g^{k}, \mathscr{W}_{\mathscr{D}}\left(g^{k}-1\right)$ and $2 y$ in place of K, M, \mathscr{A} and v, respectively. By (8.2) we obtain

$$
\begin{equation*}
\sum_{p \leqslant 2 y} p^{z} \sum_{h=0}^{p^{z}-1}\left(Z\left(p^{z}, h\right)-\frac{Z}{p^{z}}\right)^{2} \leqslant\left((2 y)^{2 z}+g^{k}\right) Z \leqslant\left((2 y)^{2 z}+N^{1 / 2}\right) Z . \tag{8.4}
\end{equation*}
$$

On the other hand, by (8.3) and the prime number theorem for large N we have

$$
\begin{align*}
\sum_{p \leqslant 2 y} & p^{z} \sum_{h=0}^{p^{z}-1}\left(Z\left(p^{z}, h\right)-\frac{Z}{p^{z}}\right)^{2} \\
& \leqslant \sum_{y<p \leqslant 2 y} p^{z} \sum_{\substack{0 \leqslant h<p^{z}-1 \\
Z\left(p^{2}, h\right)=0}} \frac{Z^{2}}{p^{2 z}} \\
& =Z^{2} \sum_{y<p \leqslant 2 y} p^{-z}\left|\left\{h: 0 \leqslant h<p^{z}-1, Z\left(p^{z}, h\right)=0\right\}\right| \\
& \geqslant Z^{2} \sum_{y<p \leqslant 2 y} p^{-z} \frac{p^{z}-1}{2}>\frac{1}{3} Z^{2} \sum_{y<p \leqslant 2 y} 1 \\
& =\frac{1}{3} Z^{2}(1+o(1)) \frac{y}{\log y}>\frac{1}{4} Z^{2} \frac{y}{\log y} . \tag{8.5}
\end{align*}
$$

It follows from (84) and (8.5) that

$$
\begin{equation*}
Z<4 \frac{\log y}{y}\left((2 y)^{2 z}+N^{1 / 2}\right)<4 \frac{\log N}{y}\left((2 y)^{2 z}+N^{1 / 2}\right) . \tag{8.6}
\end{equation*}
$$

On the other hand, by (8.2) clearly we have

$$
\begin{equation*}
Z=\left|\mathscr{W}_{\mathscr{D}}\left(g^{k}-1\right)\right|=t^{k}=\left(g^{2 k}\right)^{(\log t) /(2 \log g)}>g^{-2} N^{(\log t) /(2 \log g)} . \tag{8.7}
\end{equation*}
$$

It follows from (8.6) and (8.7) that

$$
N^{(\log t) /(2 \log g)}<4 g^{2} \frac{\log N}{y}\left((y)^{2 z}+N^{1 / 2}\right) .
$$

However, in view of (2.11), an easy computation shows that if c_{16} in the definition of y is small enough then this inequality cannot hold, and this completes the proof of the theorem.

REFERENCES

[COQ1] J. Coquet, On the uniform distribution modulo one of some subsequences of polynomial sequences, J. Number Theory 10 (1978), 291-296.
[COQ2] J. Coquet, On the uniform distribution modulo one of some subsequences of polynomial sequences II, J. Number Theory 12 (1980), 244-250.
[COQ3] J. Coquet, Graphes connexes, représentation des entiers et équirépartition, J. Number Theory 16 (1983), 363-375.
[DAV1] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30-32.
[DAV2] H. Davenport, A historical note, J. London Math. Soc. 22 (1947), 100-101.
[FIN] M. N. J. Fine, The distribution of the sum of digits $(\bmod p)$, Bull. Amer. Math. Soc. 71 (1965), 2651-2652.
[FK] M. Filaseta and S. Konyagin, Squarefree values of polynomials whose coefficients are 0 and 1, Acta Arith. 74 (1996), 191-205.
[GAL] P. X. Gallagher, A larger sieve, Acta Arith. 18 (1971), 77-81.
[GEL] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arithmetica 13 (1968), 259-265.
[MAU] C. Mauduit, Automates finis et ensembles normaux, Ann. Inst. Fourier 36 (1986), 1-25.
[MS1] C. Mauduit and A. Sárközy, On the arithmetic structure of sets characterized by sum of digits properties, J. Number Theory 61 (1996), 25-38.
[MS2] C. Mauduit and A. Sárközy, On the arithmetic structure of the integers whose sum of digits is fixed, Acta Arithmetica 81 (1997), 145-173.
[SAR] A. Sárközy, A note on the arithmetic form of the large sieve, Studia Sci. Math. Hung. 27 (1992), 83-95.

[^0]: * Research partially supported by Hungarian National Foundation for Scientific Research, Grant 1901 and CEE fund CIPA-CT92-4022. This paper was written when the first and the third authors were visiting the Laboratoire de Mathématiques Discrètes (UPR 9016 CNRS), Marseille.

