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Consider all the integers not exceeding x with the property that in the system
number to base g all their digits belong to a given set D/[0, 1, ..., g, &1]. The
distribution of these integers in residue classes to ``not very large'' moduli is studied.
� 1998 Academic Press

SECTION 1

Throughout this paper we use the following notations: We denote by
R, Z, and N the sets of the real numbers, integers and positive integers. We
write l1(N)=log N, l2(N)=log log N, l3(N)=log log log N. If F(N)=O(G(N)),
then we write F(N)<<G(N); if the implied constant depends on certain
parameters :, ;, ... (but on no other parameters), then we write F(N)=
O:, ;, ...(G(N)) and F(N)<<:, ;, ... G(N). We denote by |(n) the number of
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distinct prime factors of n and by 0(n) the number of prime factors of n
counted with multiplicity. The greatest prime factor of the integers n will be
denoted by P(n) and .(n) is Euler's function. If : is a real number, we
write e(:)=e2i?: and &:&=d(:, Z) the distance of : to the closest integer.

Let g # N be fixed with

g�2. (1.1)

If n # N, then representing n in the number system to base g:

n= :
+

j=0

aj g j, 0�aj�g&1,

we write

S(n)= :
+

j=0

aj .

For N # N, m # N, r # Z we write

U(m, r)(N)=[n: n�N, S(n)#r (mod m)].

The arithmetic structure of the sets Um, r(N) has been studied by Gelfond
[GEL]. His main result which extends an earlier result of Fine [FIN] is
the following:

RU 1. If m # N is fixed with

(m, g&1)=1, (1.2)

then for all r # Z and all ``small '' q # N. the set U(m, r)(N) is well-distributed
in the residue classes modulo q.

As an application of the result above, Gelfond estimated the number of
``z-free'' elements of U(m, r)(N):

(RU 2) If g # N, m # N, z # N are fixed with (1.1), (1.2) and z>1, and
r # Z, then for N � +� Gelfond [GEL] gave an asymptotics for the
member of elements of U(m, r)(N) which are not divisible by the z th power
of a prime.

In [MS1] we studied further arithmetic properties of the elements of the
sets U(m, r)(N). But one might think that these results are not very much
surprising since the sets U(m, r)(N) are of ``positive density'' and would like
to study ``thinner'' sets characterized by digit properties and to see whether
still the same conclusion holds.
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Indeed, in [MS2] we introduced the sets Vk(N) defined in the following
way: if g # N, g�2, N # N, k # N, 0�k�(g&1)(log N�log g+1), then let

Vk=Vk(N)=[n: n�N, S(n)=k]

(where again, S(n) denotes the sum of the digits in the number system to
base g). We showed that for every k we have

|Vk(N)|<<g N(log N)&1�2

so that, in fact, the sets Vk are much thinner than the sets U(m, r) . In [MS2]
we proved analogs of the resuts (RU 1) and (RU 2) with the sets Vk in
place of the sets U(m, r) :

RV 1. If g # N, g�2, k # N, 0<k<(g&1)(log N�log g+1),

min \k, (g&1)
log N
log k

&k+� +�,

m # N and m is ``small,'' then Vk is well-distributed in the residue classes
modulo m.

As an application of this result, (RV 2) a V-analog of (RU 2) is given
in [MS2].

Several other arithmetic properties of the sets U(m, r) and Vk are given in
[MS1], [MS2].

SECTION 2

In this paper, our goal is to study even thinner sets characterized by digit
properties. Indeed, while |U(m, r)(N)|>>N and

max
k

|Vk(N)|�N(log N)&1�2,

here our goal is to study sets with cardinality <N1&=. The most natural
way to construct such a set via digit properties is to consider integers with
missing digits. In other words, let

g # N, g�3, t # N, 2�t�g&1, (2.1)

D/[0, 1, ..., g&1], 0 # D, |D|=t, (2.2)
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and let WD(N) denote the set of the integers n such that 0�n�N and
representing n in the number system to base g:

n= :
&

j=0

a jg j, 0�aj�g&1, (2.3)

where now

g&�N<g&+1, (2.4)

we have

aj # D for j=0, 1, ..., &.

(Note that the assumption 0 # D is not necessary, but it makes the discussion
slightly simpler, besides the general case can be reduced to this one.) Sets of
the type WD(N) have been studied in [COQ1], [COQ2], [COQ3],
[FK], [MAU]. Here our goal is to prove analogs of the results (RU 1),
(RU 2), (RV 1), (RV 2) for the sets WD . The study of the analogs of the
other arithmetic properties studied in [MS1], [MS2] with the sets WD in
place of the sets U(m, r) or Vk will appear in a further paper.

First we will prove the W-analog of the results (RU 1), (RV 1):

Theorem 1. If g and t satisfy (2.1), then there exist positive constants
c1=c1(g, t), c2=c2(g, t), c3=c3(g, t) such that if also (2.2) holds, and
writing D=[d1 , d2 , ..., dt] where d1=0, we have

(d2 , ..., dt)=1, (2.5)

moreover, N # N, m # N, m�2, ((g&1) g, m)=1,

m<exp(c1(log N)1�2) (2.6)

and h # Z, then

} |[n: n # WD(N), n#h(mod m)]|&
1
m

|WD(N)| }
<c2

1
m

|WD(N)| exp \&c3

log N
log m+ . (2.7)

(Note that the condition (2.5) is necessary since (d2 , ..., dt) divides every
element of WD(N).)

By Theorem 1, the set WD(N) is well-distributed in the modulo m residue
classes if m<exp(c(g, t)(log N)1�2). It follows that for such an m, WD(N)
meets every residue class modulo m. One may ask the question that how
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large can m be with this property? We will prove the following theorem in
this direction:

Theorem 2. If g, t satisfy (2.1), then there is an effectively computable
number N0=N0( g, t) such that if D/[0, 1, ..., g&1], |D|=t, N>N0 , then
there is a prime p with the following properties: writing

k=_2
log g
log t &+1,

we have

p>N (log t)�2(k log g),

and WD(N) meets every residue class modulo p.

From the opposite direction, one might like to show that there exist
relatively small moduli m (small in terms of |WD(N)| ) such that WD(N)
does not meet residue class modulo m. If m>|WD(N)| then this is clearly
so. We will improve on this trivial bound considerably:

Theorem 3. Let =>0. Then there is a number g0= g0(=) such that if
g # N, g>g0 and D=[0, 1], then for infinitely many N # N there is an
m # N such that gcd(m, g)=1,

m<|WD(N)| = (2.8)

and WD(N) does not meet every residue class modulo m.

(Indeed, it will turn out that WD(N) meets only ``few'' residue classes
modulo m.)

One can apply Theorem 1 to prove the W-analog of (RU 2), (RV 2):

Theorem 4. If g, t, D are defined as in Theorem 1, and z # N,

z>
log g
log t

, (2.9)

then there are effectively computable constants N0 , c4 (both depending on g, t
and z only) such that if N>N0 , then the number Tz(N) of those integers n
with n # WD(N) which are not divisible by the zth power of a prime p with
((g&1)g, p)=1 is
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Tz(N)=\!(z) `
p | (g&1)g \1&

1
pz++

&1

|WD(N)|

_\1+Og, t, z \exp \&c4(log N)1�2 \ log t
log g

&
1
z++++ (2.10)

Note that we have no asymptotics for Tz(N) if (2.9) does not hold. Thus,
e.g., we have not been able to settle the following problem:

Problem 1. Is it true that if g # N, g�6 then there are infinitely many
square-free integers such that every digit of them in the number system to
base g is 0 or 1?

Note that for g=3, 4 and 5 this has been proved by Filaseta and
Konyagin in [FK], and the g=3 special case also follows from Theorem 4
above.

By Theorem 4, if log t�log g is ``large'' then there are many integers free
of z th powers in WD(N). One might like to prove the opposite statement,
i.e., that there are integers with large zth power part in WD(N). Indeed,
if g, t, D are defined as in Theorem 1, z # N and z�2, then by Theorem 1,
for large n WD(N) contains integers with zth power part greater than
exp(c(log N)1�2). We will show that if t is close enough to g and z is small
enough in terms of t and g then WD(N) contains integers with zth power
parts as large as N c (with c=c(g, t, z)):

Theorem 5. If g, t, D satisfy (2.1) and (2.2), and z # N,

z<\2 \1&
log t
log g++

&1

, (2.11)

then there are effectively computable constants N0=N0(g; t; z) and c5=c5(g; t; z)
such that if N>N0 then there is a positive integer n and a prime p with

n # WD(N), p>c5 \N (log t)�(2 log g)

log N +
1�(2z&1)

and

pz | n.

Thus, e.g., if log t�log g> 3
4 then there are integers with large prime

square part in WD(N). On the other hand, we have not been able to settle
the following question:

Problem 2. Is it true that if g # N, g�3 then there is a constant c=c(g)
with the following property: there are infinitely many integers n such that
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every digit of them in the number system to base g is 0 or 1, and there is
a prime with p>nc, p2 | n?

SECTION 3

Three Lemmas. To prove Theorem 1 we shall need three lemmas.

Lemma 1. If g, t and D are defined as in Theorem 1 and : # R, then there
is an integer j such that 2� j�t and

&dj :&�
1

2(g&1)2 &:&. (3.1)

Proof of Lemma 1. We have to distinguish two cases.

Case 1. Assume that

&:&�
1

2(g&1)
,

i.e., : can be written in the form

:=k+%1

with k # Z and

|%1 |=&:&�
1

2(g&1)
. (3.2)

Then we have

d2 :=d2 k+d2%1=d2k+%2 (3.3)

where, in view of (3.2),

|%2 |=|d2 %1 |=d2 |%1 |�(g&1)
1

2(g&1)
=

1
2

. (3.4)

It follows from (3.3) and (3.4) that

&d2:&=|%2 |=|d2%1 |

so that

&d2:&=d2 |%1 |�|%1 |=&:&

which implies (3.1) with 2 in place of j.
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Case 2. Assume now that

&:&>
1

2(g&1)
. (3.5)

If

&d2:&�
1

2(g&1)2 ,

then (3.1) holds with j=2; thus we may assume that

&d2:&<
1

2(g&1)
,

i.e., d2: can be written in the form

d2 :=l+%3 (3.6)

with l # Z and

|%3 |<
1

2(g&1)2 . (3.7)

Dividing (3.6) by d2 we obtain

:=
l

d2

+
%3

d2

. (3.8)

If d2 | l then this implies

&:&�
|%3 |
d2

�|%3 |<
1

2(g&1)2

which contradicts (3.5). It follows that d2 |3 l so that writing l�d2 in the form

l
d2

=
u
v

, u # Z, v # N, (u, v)=1, (3.9)

here we have

v>1 (3.10)

and

v�d2�g&1. (3.11)
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Then by (2.5) and (3.10) there is a j such that j # [2, 3, ..., t] and v |3 dj

whence, by (3.8), (3.9), (3.10) and (3.11),

&dj :&="dj \u
v

+
%3

d2+ "�"dju
v "&

d j

d2

|%3 |

�
1
v

&(g&1)
1

2(g&1)2�
1

g&1
&

1
2(g&1)

=
1

2(g&1)

so that (3.1) holds and this completes the proof of Lemma 1.
Write

u(:)=uD(:)= :
t

k=1

e(dk :)

and

U(:)=UD(:)=
uD(:)

t
.

Lemma 2. If g, t, D, : are defined as in Lemma 1 then we have

|U(:)|�1&
1

(g&1)5 &:&2.

Proof of Lemma 2. By Lemma 1 there is a j satisfying 2� j�t and
(3.1). Then we have

|U(:)|=
1
t } :

t

k=1

e(dk :) }�1
t \ |e(d1:)+e(d1 :)|+ } :

k{j
2�k�t

e(dk :) }+

�
1
t

( |1+e(dj:)|+(t&2)) (3.12)

For all ; # R we have

|1+e(;)|2=2+2 cos 2?;=4(1&sin2 ?;)

�4(1&(2 &;&)2)=4(1&4 &;&2)
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whence

|1+e(;)|�2(1&4 &;&2)1�2�2(1&2 &;&2).

Thus it follows from (3.1) and (3.12) that

|U(:)|�
1
t

(2(1&2 &dj :&2)+(t&2))=1&
4
t

&dj:&2

�1&
4

g&1 \
1

2(g&1)2 &:&+
2

=1&
1

(g&1)5 &:&2

which completes the proof of Lemma 2.

Lemma 3. If g, m, j, \ # N, g�2, ((g&1)g, m)=1, m�2, 1� j�m&1,

\�2
log m
log g

+8 (3.13)

and ; # R, then

:
\&1

u=0
";+ gu j

m"
2

�
(g&1)2

128g4

\
log m

.

Proof of Lemma 3. This is Lemma 2 in [MS2].

SECTION 4

Proof of Theorem 1. Consider the generating function

G(:)= :
n # WD(N)

e(n:)

so that

G(0)=|WD(N)| (4.1)

and for all h # Z, m # N we have

|[n: n # WD(N), n#h(mod m)] |=
1
m

:
m&1

j=0

e \&
hj
m+ G \ j

m+ . (4.2)
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It follows from (4.1) and (4.2) that

} |[n: n # WD(N), n#h(mod m)]|&
1
m

|WD(N)| }
= } |[n: n # WD(N), n#h(mod m)]|&

1
m

G(0)}
�

1
m

:
m&1

j=1
}G \ j

m+ } (4.3)

so that it remains to estimate |G( j�m)| for

j # [1, 2, ..., m&1]. (4.4)

As in [MS2], write N in the form

N= :
s

j=1

bjg&j,

&1>&2> } } } >&s , b j # [1, 2, ..., g&1] for j=1, 2, ..., s

so that

g&1�N<g&1+1

whence

&1=_log N
log g & .

Moreover, for l=1, 2, ..., s, let Al denote the set of the integers n that can
be represented in the form

n= :
l&1

i=1

bi g&i+xg&l+ :
&l&1

u=0

yu gu

where

x # D & [0, 1, ..., bl&1], yu # D for u=0, 1, ..., &l&1,

and let

As+1={[N]
<

if N # WD(N)
if N � WD(N).
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Then clearly we have

WD(N)= .
s+1

i=1

Al

and

A1 & Al=< for 1� j<l�s+1

so that for all : # R,

Gl (:)= :
n # WD(N)

e(n:)= :
s+1

l=1

:
n # Al

e(n:)= :
s+1

l=1

Gl (:). (4.5)

Here for 1�l�s we have

Gl (:)=:
x

:
y0

} } } :
y&l&1

e((b1g&1+ } } } +b l&1g&l&1+xg&
l + y0g0

+ } } } + y&l&1g&l+1):)

=e(b1g&1+ } } } +b l&1g&l&1 \ :
x # D & [0, 1, ..., bl&1]

e(xg&l)+
_ `

&l&1

u=0
\ :

yu # D

e( yu gu:)+
=e(b1g&1+ } } } +b l&1g&l&1) \ :

x # D & [0, 1, ..., bl&1]

e(xg&l)+ `
&l&1

u=0

uD(gu:)

whence

|Gl (:)|�|D| `
&l&1

u=0

|uD(gu:)|�gt&l `
&l&1

u=0

|UD(gu:)|. (4.6)

Thus by t�2 we have

:
l: &l�1�2 log N�log g

|Gl (:)|� :
l: &l�1�2 log N�log g

gt&l `
&l&1

u=0

1<g :
+�

j=0

t(log N)�(2 log g)& j

�2gt(log N)�(2 log g)& j<2g(t&1+1)1�2<2g2(t&1)1�2

�2g2 |WD(N)| 1�2 (for : # R) (4.7)

since clearly

|WD(N)|�t&1. (4.8)
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If &l>
1
2 log N�log g, then by (2.6),

&l>
1
2

log N
log g

>2
log m
log g

+8

so that (3.13) holds with &l in place of \. Thus using Lemma 2 and 3, by
(4.6) and 1&x�e&x (for x�0) for l�s, &l>

1
2 log N�log g, 1� j�m&1

we have

}G l \ j
m+ }�gt&l `

&l&1

u=0
\1&

1
(g&1)5 "gu j

m"
2

+
�gt&l exp \&

1
(g&1)5 :

&l&1

u=0
"gu j

m"
2

+
�gt&l exp \&

1
128g4(g&1)3

& l

log m+
�gt&l exp \&

1
256g4(g&1)3 log g

log N
log m+

whence, by (2.1), (2.6) and (4.8),

:

&l>1�2 log N�log g
l�s }Gl \ j

m+ }�g exp \&
log N

c10 log m+ :
+�

j=0

t&1& j

�t&1 exp \&
log N

c11 log m+
�|WD(N)| exp \&

log N
c11 log m+

for j # [1, 2, ..., m&1] (4.9)

(where c10 , c11 depend on g and t). Finally, clearly we have

|Gs+1(:)|= } :
n # As+1

e(n:)}� :
n # As+1

1=|As+1 |�1 (for : # R). (4.10)

It follows from (4.5, (4.7), (4.9) and (4.10) that for j satisfying (4.4) we
have
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}G \ j
m+}�2g2 |WD(N)| 1�2+|WD(N)| exp \&

log N
c11 log m++1

=
1
m

|WD(N)| (2mg2) |WD(N)| &1�2

+m exp \&
log N

c11 logm++m |WD(N)|&1) (4.11)

By t�2 and (4.8), there are positive constants c12=c12(g) and c13=c13(g)
such that

|WD(N)|�t&1�2[(log N)�log g)]>c12N c13. (4.12)

If c1 in (2.6) is chosen small enough, then (2.7) follows from (2.6), (4.3),
(4.11) and (4.12), and this completes the proof of Theorem 1.

SECTION 5

Proof of Theorem 2. The proof will be based on the Cauchy�Davenport
lemma and Gallagher's ``larger sieve:''

Lemma 4 ([DAV1], [DAV2]). Let p be a prime number and let A and
B sets of distinct modulo p residue classes: A and B # Zp . Then

|A+B|�min( |A|+|B|&1, p)

(where A+B=[a+b: a # A, b # B]).

If A/Z, m # N then let &(A, m) denote the number of residue classes
modulo mthat contain at least one element of A.

Lemma 5 ([GAL]). Let M # R, N # N and let A be a set of integers in
the interval [M+1, M+N]. Then for any finite set of primes S we have

|A|�
�p # S log p&log N

�p # S (log p�&(A, p))&log p

provided that the denominator is positive.

Write

$=
log t

2 log g
&

1
k
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so that

$>0 (5.1)

by the definition of k, and set

x=_ log N
k log g&

so that

gx�N1�k<gx+1. (5.2)

Finally, write

y=N (log t)�(2k log g). (5.3)

We start out the indirect assumption that there is no p with y<p� y2

such that WD(N) meets every residue class modulo p:

&(WD(N), p)<p for all y<p� y2. (5.4)

For j=1, 2, ..., k, write

Aj=[(gx) j&1 n: n # WD(gx&1)]

so that, in view of (5.2),

:
k

j=1

Aj /WD(N), (5.5)

and clearly,

&(Aj , p)=&(WD(gx&1), p) (5.6)

for j # [1, 2, ..., k] and all p>g.
By the Cauchy�Davenport lemma (Lemma 4) it follows from (5.4), (5.5)

and (5.6) that

p>&(WD(N), p)�& \ :
k

j=1

Aj , p+� :
k

j=1

&(Aj , p)&(k&1)

=k&(WD(gx&1), p)&(k&1)
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whence

&(WD(gx&1), p)<
p
k

+1 (for all y<p� y2).

Thus by using Gallagher's ``larger sieve'' (Lemma 5) with &1, gx, WD(gx&1)
and [ p: pprime, y<p� y2] in place of M, N, A and S, respectively, by the
prime number theorem and since

:
p�u

log p
p

=log u+O(1),

in view of (5.2) and (5.3) we obtain for N � +� that

|WD(gx&1)|�
�y<p� y2 log p&log gx

�y<p� y2 (log p�( p�k)+1)&log gx

=
1+o(1)) y2&(log N)�k+O(1)

(1+o(1))k log y&(log N)�k+O(1)

=
(1+o(1)) N (log t)�(k log g)

(1+o(1)) $ log N+O(1)

where, by (5.1), indeed the denominator is positive for large N. By (5.2), it
follows that

|WD(gx&1)|=Og, t \(gx) (log t)�(log g)

log N +=Og, t \ tx

log N+ (5.7)

On the other hand, clearly we have

|WD(gx&1)|=tx

which contradicts (5.7), and this contradiction completes the proof of the
theorem.

SECTION 6

Proof of Theorem 3. Let g be a (fixed) positive integer large enough in
terms of = and let k # N. Write N= g(g&2)k&1 and m= gk&1 so that

|WD(N)|=2(g&2)k
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(with D=[0, 1]) whence, for k � +�,

m= gk&1=(1+o(1))|WD(N)| (log g)�((g&1)(log 2)).

If g>g0(=) then, indeed,

log g
(g&2)(log 2)

<=

so that (2.8) holds for every large k.
To show that WD(N) does not meet every residue class modulo m,

observe that every n # WD(N) is of the form

n= :
(g&2) k&1

i=0

=i g i

where =i=0 or 1 for all i. It follows that

n= :
g&3

l=0

:
k&1

j=0

=lk+ j (gk) l g j# :
k&1

j=0
\ :

g&3

l=0

=lk+ j+ g j (mod m).

Here the coefficient of g j satisfies

:
g&3

l=0

=lk+ j # [0, 1, ..., g&2]

so that it may assume g&1 incongruent values modulo m. Thus this last
sum may assume at most

(g&1)k=(1+o(1)) m(log(g&1))�log g)

incongruent values, so that at most so many residue classes modulo m may
meet WD(N) which completes the proof of the theorem.

SECTION 7

Proof of Theorem 4. First we will prove

Lemma 6. If g, t satisfy (2.1) and D # [0, 1, ..., g&1], |D|=t, then for
n # N, m # N,

m�N, (7.1)
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h # Z we have

|[n: n # WD(N), n#h(mod m)] |<2g |WD(N)| m&(log t)�(log g).

Proof of Lemma 6. For m # N, define r by r # N

gr�m<gr+1, (7.2)

and for all n # N, define x=x(n) and y= y(n) by n=xgr+ y, x, y # Z,
0� y<gr. If x0 # Z is such that there is at least one n with n # WD(N),
xn=x0 , then clearly

|[n: n # WD(N), x(n)=x0]|{=|WD(gr&1)|=tr

�|WD(gr&1)|=tr

for x0<[N�gr]
for x0=[N�gr].

It follows that

|[x0 : there is n with n # WD(N), x(n)=x0] | tr�|WD(N)|+tr

whence, by (7.1) and (7.2),

|[x0 : there is n with n # WD(N), x(n)=x0]|

�|WD(N)|t&r+1=|WD(N)| (gr)&(log t)�(log g)+1

<|WD(N)| (m�g)&(log t)�(log g)+1<g |WD(N)| m&(log t)�(log g)+1

By (7.1) and (7.2),

m&(log t)�(log g)<tr+1�g |WD(m)|�g |WD(N)|

so that

|[x0 : there is n with n # WD(N), x(n)=x0] |<2g |WD(N)| m&(log t)�(log g).

(7.3)

By (7.2), for all x0 # Z clearly we have

|[n: n # WD(N), x(n)=x0 , n#h(mod m)] |�1. (7.4)

It follows from (7.3) and (7.4) that

|[n: n # WD(N), n#h(mod m)]|

=:
x0

|[n: n # WD(N), x(n)=x0 , n#h(mod m)]|

�:
x0

1<2g |WD(N)| m&(log t)�(log g)
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(where in �x0
, x0 runs over the integers such that there is n with

n # WD(N), x(n)=x0), which completes the proof of Lemma 6.
In order to prove (2.10), observe that clearly we have

Tz(N)= :
n # WD(N)

:

(d, ( g&1) g)=1
dz | n

+(d)= :
(d, (g&1) g)=1

+(d) |[n: n # WD(N), d z | n]|

=:
1

+:
2

+:
3

(7.5)

with

:
1

= :

(d, ( g&1) g)=1
d<exp(c1(log N) 1�2�z)

+(d )
WD(N)|

d z ,

:
2

= :

(d, ( g&1) g)=1
d<exp(c1(log N) 1�2 �z)

+(d ) \ |[n: n # WD(N), d z | n]|&
|WD(N)|

d z +
and

:
3

= :

(d, ( g&1) g)=1
d�exp(c1(log N) 1�2 �z)

+(d ) |[n: n # WD(N), d z | n] |.

Clearly we have

:
1

=|WD(N)| \ :
(d, (g&1) g)=1

+(d )
d z +O \ :

d�exp(c1(log N)1�2 �z)

1
d z++

=\\`(z) `
p | (g&1) g \1&

1
pz++

&1

+Oz \exp \&c1 \1&
1
z+ (log N)1�2+++ |WD(N)| (7.6)

Moreover, it follows from Theorem 1 that

:
2

=O \ |WD(N)| :
d<exp(c1(log N) 1�2�z)

d &z exp(&c14(log N)1�2)+
=Oz( |WD(N)| exp(&c15(log N)1�2)). (7.7)
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Finally, in view of (2.9), by Lemma 6 we have

:
3

� :
exp(c1(log N) 1�2 �z)�d

2g |WD(N)| d &z(log t)�(log g)

=Og, t, z \ |WD(N)| exp \c1(log N)1�2 \1
z

&
log t
log g+++ , (7.8)

(2.10) follows from (7.5), (7.6), (7.7) and (7.8), and this completes the proof
of Theorem 4.

SECTION 8

Proof of Theorem 5. The proof will be based on the following prime
power moduli version of the large sieve (see, e.g., [SAR]):

Lemma 7. If K # Z, M # N, A/[K+1, K+2, ..., K+M], z # N and
v # R, then, writing

Z=|A| and Z(q, h)=|[a: a # A, a#h(mod q)]| ,

we have

:
p�v

pz :
p z&1

h=0
\Z( pz, h)&

Z
pz+

2

�(v2z+M)Z.

Indeed, this is a straightforward consequence of the analytic form of the
large sieve.

We will prove Theorem 3 by contradiction. Write

y=c16(N (log t)�(2log g)�log N)1�(2z&1),

and assume that

y<p�2y, n # WD(N) imply pz |3 n; (8.1)

it suffices to show that if c16 is small enough in terms of g, t and z, then
this assumption leads to a contradiction.

Define the integer k by

g2k�N<g2k+2 (8.2)

so that k=[log N�2 log g]. Then clearly u, v # WD(gk&1) implies that
u+ gkv # WD(N). Assume that p is a prime greater than g, and WD(gk&1)
meets more than pz�2 residue classes modulo pz. Then by p>g, the set
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[& gkv: v # WD(gk&1)] meets the same number of residue classes module pz.
Thus by the pigeon hole principle, there are u, v # WD(gk&1) with

u#&gkv (mod pz)

so that pz | (u+ gkv) # WD(N). Thus by our indirect assumption (8.1),

|[h: 0�h<pz, there is n # WD(gk&1) with

n#h(mod pz)]|�
pz

2
for all y<p�2y (8.3)

(note that p> y implies p>g).
Now we apply Lemma 7 with &1, gk, WD(gk&1) and 2y in place of

K, M, A and v, respectively. By (8.2) we obtain

:
p�2y

pz :
pz&1

h=0 \Z( pz, h)&
Z
pz+

2

�((2y)2z+ gk)Z�((2y)2z+N1�2)Z. (8.4)

On the other hand, by (8.3) and the prime number theorem for large N we
have

:
p�2y

pz :
pz&1

h=0
\Z( pz, h)&

Z
pz+

2

� :
y<p�2y

pz :

Z( p2, h)=0
0�h<p z&1

Z2

p2z

=Z2 :
y<p�2y

p&z |[h: 0�h<pz&1, Z( pz, h)=0]|

�Z2 :
y<p�2y

p&z pz&1
2

>
1
3

Z2 :
y<p�2y

1

=
1
3

Z2(1+o(1))
y

log y
>

1
4

Z2 y
log y

. (8.5)

It follows from (8 4) and (8.5) that

Z<4
log y

y
((2y)2z+N 1�2)<4

log N
y

((2y)2z+N1�2). (8.6)

On the other hand, by (8.2) clearly we have

Z=|WD(gk&1)|=tk=(g2k) (log t)�(2 log g)>g&2N (log t)�(2 log g). (8.7)

119DISTRIBUTION IN RESIDUE CLASSES



File: DISTL2 222922 . By:CV . Date:14:05:98 . Time:10:56 LOP8M. V8.B. Page 01:01
Codes: 5149 Signs: 1908 . Length: 45 pic 0 pts, 190 mm

It follows from (8.6) and (8.7) that

N (log t)�(2 log g)<4g2 log N
y

(( y)2z+N1�2).

However, in view of (2.11), an easy computation shows that if c16 in the
definition of y is small enough then this inequality cannot hold, and this
completes the proof of the theorem.
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