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Abstract 

Catalisano, M.V. and A. Gimigliano, On curvilinear subschemes of p2, Journal of Pure and Applied 

Algebra 93 (1994) l-14. 

Let Z be a curvilinear subscheme of P’, i.e. a zero-dimensional scheme whose embedding dimension 

at every point of their support is I 1. We find bounds for the minimum degree of the plane curves 

on which Z imposes independent conditions and we show that the Hilbert function of Z is maximal 
for a “generic choice of Z”. 

1. Introduction 

The starting problems for this paper are the following: 

Let PI,. . . , P, be smooth points of a plane curve C, and let m,, . . . , m, be s positive 

integers. How many conditions are imposed to plane curves of a given degree by 

requiring that they intersect C with multiplicity mi at each Pi? 

Given positive integers s, ml, . . . , m,, d, such that d divides xi= 1 mi, is it possible 

to find an integral curve C of degree d, s distinct simple points P,, . . . , P, on C and 

another curve C’ such that C’ cuts on C the divisor ~~=, m;Pi? 

An answer to the first problem is given by Proposition 3.3, and its sharpness is 

related to the second problem (which already came out in [3]). In the case when 

mi I 2, we are able to give an answer also to the second question, see Proposition 3.6. 

Those questions led us to the study of the postulation of curvilinear subschemes of 

P2, i.e. of zero-dimensional schemes whose embedding dimension at every point of 

their support is _< 1. 

The relevance of such schemes lies in at least two facts: 
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(a) they are the only non-reduced zero-dimensional schemes which lie on non- 

singular plane curves (see [4, Theorem 1.21) i.e. they can be viewed as divisors on 

some smooth plane curve; 

(b) the generic non-reduced zero-dimensional subscheme of P2 is curvilinear (this 

is a consequence of [l], see Section 4 below). 

The paper is organized as follows: Section 2 is dedicated to preliminaries; in 

Section 3 we look for bounds for the value z(Z), the minimum degree of the plane 

curves which the scheme Z imposes independent conditions. We give several bounds 

related to the geometry of the scheme Z (see Propositions 3.3, 3.7, 3.8 and 3.9) and 

a relation between r(Z) and z(Z,,& see Theorem 3.11. The methods used here are 

a generalization of those used for schemes of “fat points” (see e.g. [3, 61). More 

precisely, if one compares Corollary 3.2 below with Corollary 3.2 of [3], one can see 

the analogies in the numerology between the two results. On the other hand, 

a comparison between the proof of Theorem 3.1 here and Theorem 3.1 in [3] shows 

the different, and less immediate, situation in the curvilinear case. 

In the last section we study the “generic situation”, i.e. given s positive integers 

ml,. . , m,, we consider the curvilinear schemes Z with support at s distinct points 

PI,. . . > P, and multiplicity mi at each Pi. We show that the Hilbert function of Z is 

maximal for a “generic choice of Z” (see Theorem 4.1). Note that this implies that 

a generic non-reduced element of HilbNp2 (N = XI=, mi) has maximal Hilbert 

function. 

A question from P. Ellia started us on this work. We would like to thank him for his 

interest and also to thank Tony Geramita for several useful talks. 

2. Preliminaries and notation 

Let P2 be the projective plane over an algebraically closed field k, and let Z be 

a zero-dimensional subscheme of P2. Let 9 c 0p2 and Z c R = k[x,,, x1, x2] be, 

respectively, the ideal sheaf and the homogeneous ideal corresponding to Z. 

For any positive integer t we have that dim I, = h’(Y(t)), and we will refer to I, also 

as “the linear system of all the plane curves of degree t containing Z”, since this is, 

from a geometrical point of view, what the forms in I, correspond to. 

From the exact sequence 0 + 9 + Opz + Oz + 0, by twisting with O,,(t) and 

taking cohomology, one gets 

dimI, = h’(X(t)) = - N + hl(Y(t)), 

where N = h”(Oz) is the degree of Z, while hl(Y(t)) is called the superabundance 
of the linear system given by I,. Recall that when h’(Y(t)) > 0, the system I, is said to 

be superabundant, and that when h’(Y(t)).h’($(t)) = 0, the system is said to be 

regular. 



On curvilinear subschemes of Pz 3 

Finally the function 

H(Z, t) = dimk R,/I, = 

is called the Hilbert function of Z. We can view H(Z, t) as the number of conditions 

that Z imposes to curves of degree t. 

Our aim in the next section will be to find upper bounds for the integer r(Z), or z for 

short. defined as follows: 

r(Z) = min{t 1 h’($(t)) = 01. (2) 

The number r + 1 (often denoted by 0 in the literature) is the least integer for which 

the difference function dH(Z, t) = H(Z, t + 1) - H(Z, t) vanishes. 

In this paper we study a particular case of the above situation: let Pi, P2, . . , P, be 

s distinct points in P2, let ml,. . . , m, be non-negative integers and Ci, . . , C, be 

curves in P2 so that Pi is a non-singular point for Ci, let ci be a polynomial defining Ci 

and Z = n SE 1 ((Ci) + pr’), where pi is the homogeneous prime ideal which corres- 

ponds to Pi. I defines a scheme Z G P2 such that edim Oz,P, I 1 (edim = embedding 

dimension) for any Pi; we will refer to Z as to a curvilinear scheme, and we will write 

Z=(P1,P*,..., P,; ml,. . . , m,; Ci, . . . , C,). 

We recall that, by [4, Theorem 1.21, these are the only zero-dimensional schemes 

such that there exists a non-singular curve C in P2 containing them: Z can be viewed 

as the Cartier divisor on C given by Z = ~~=, miPi. 

We recall that if D is a Cartier divisor on an integral curve C and K is the canonical 

divisor on C, we say that 

h’(LDc(K - D)) = h’(Oc(D)) 

is the index of speciality of D. 

3. Bounds for 7(Z) 

Given a linear system I, associated to some curvilinear scheme Z = (PI, . . , P,; 

m,,. . ,m,; Cl,. . . , C,), our method to study its regularity consists of finding 

a suitable curve r E P2 and “splitting” the problem into studying first the index of 

speciality of Z n r on r and then the superabundance of the linear system I; _ d (where 

d = degr), associated to the residual Z’ of Z with respect to r. 

Our main result (which generalizes methods used with schemes of “fat points”, see 

e.g. [3,6]) is the following (notation as in Section 2): 

Theorem 3.1. Let Z = (PI,. . , P,; m,, . . , m,; Cl,. . . , C,) be a curvilinear scheme 

in P2 and let r be an integral curve of degree d which is smooth at each Pi E r. 
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Let ei = i(T, Ci; Pi), i.e. the intersection multiplicity of r and Ci at Pi and 

ni = min{ei, m,}. Let E be the (Cartier) divisor ~~=, niPi on P and H a generic line 

section of r. 

Set Z’ = (PI,. . . , P,; ml - nl,. . . , m, - n,; Cl,. . . , C,) and let 9,X’ be the ideal 

sheaves corresponding to Z, Z’, respectively. 

(a) 1f t 2 d, then 

h’(O,(tH - E)) I h’&@(t)) I h’(Co,(tH - E)) + h1(9’(t - d)). 

(b) If t < d, then 

I h’(Or(tH - E)) + i (mi - ni). 
i=l 

Proof. Let I, I’ be the homogeneous ideals of Z, Z’ in R, respectively, and let g be 

a polynomial defining r. Multiplication by g gives an injection I’ -+ I, hence we get the 

following short exact sequence of sheaves: 

We want to check that f is canonically isomorphic to Or( -E). Let qi = niOp2,p,, 

then Z6P2,P = ((?i) + 4?‘), z’“P2,p, 
- - 

= ((ci) + qyi-“i), where g, ci are local equations of 

r, Ci in cDPl,Pz. 

To show that f E O,( - E) means showing that, for each Pi, 

is isomorphic to 
m + 92’ 

(9) . 
(4) 

Let us consider the case ei = co first. We will have (4) = (Ci), SO mi = Izi and (4) is 

trivially true. 

Now assume e, < co. Since (Ci) is a prime ideal and g$(Ci), then (gCi) = (S) C-J (Et). 

Moreover, since the intersection multiplicity of r and Ci at Pi is ei, then qFi + (9) = 

(CL) + (S) = qFi + (Ci). 
It follows that for e, > mi, we have ni = mi, and 

a((?,) + qyi-“‘) = (S) = (8) n ((g) + C(l’ + qr’) = (g) n ((ci) + 97’). 

For ei < m,, we have ni = ei and 

g((Ci) + qyiPni) = (@,) + gq;fmni = (S) n (Ci) + (a) n gqyieni 

= (S) n ((Ci) + gqTimni) = (g) n ((Ci) + q~T~n’(g, Ci)) 

= (g) n ((Ci) + q~‘-“i(q~’ + (Et)) = (9) n ((Ci) + qTi). 
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5 

So 9 r Or( -E), which is the sheaf of ideals of E in Or. Now let us twist the 

sequence (3) by C!+(r) and consider the following long exact sequence of cohomology: 

. . . + H’(P2, Y’(t - d)) -+ H’(lP, Y(t)) -+ H’(P2, f(t)) 

+ H2(PJ2, Y’(t - d)) --f P(P, X(t)) -+ . . . 

We have Hi(P2, $(t)) = H’(T, 2(t)), and f(t) = O,(tH - E); now points (a) and 

(b) follow immediately from the above exact sequence by noticing (use the exact 

sequence 0 + 9’ -+ ~9~2 + Oz, + 0) that if t 2 d then H2(P2, 9’(t - d)) = 0, while 

when t < d we have 

h’((P2, s’(t - d)) = h”(P2, Loz,)) = i (mi - ni) and 
i=l 

P((P’, Y(t - d)) = P(lP2, 0p2(d - t - 3)) = (d-i-1). 0 

As an immediate consequence of this theorem we have the following corollary, 

which gives a way, by induction, to look for bounds for z(Z): 

Corollary 3.2. Let Z, Z’ and r be as in Theorem 3.1. Let p be the arithmetic genus of 
r and suppose that 

(i) t 2 4 
(ii) td - CI=, ni 2 2p - 1, 

(iii) h’(9’(t - d)) = 0. 

Then h’(Y(t)) = 0. 

Proof. The conclusion follows immediately from Theorem 3.1, since (ii) implies that 

h’(O,(tH - E)) = 0. q 

Now we are able to give an answer to the first problem we saw in the Introduction. 

Proposition 3.3. Let C E P2 be an integral curve of degree d. Let P,, . . . , P, be smooth 

distinct points of C and consider the curvilinear scheme Z = (Pl, . . . , P,; ml, . . . , m,; 

C, . . . , C) G C. Then 

z(Z) I C;=lmi 
[ 1 +d_2 

d 
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Proof. Let t = [Cf=, mild] + d - 2 and p be the arithmetic genus of C. It suffices to 

show that h’(.Y(t)) = 0. 

We will use Theorem 3.1 with r = C1 = . = C, = C and ni = mi; we have that 

deg(tH - E)= td - i ni = d 
i=l 

2 d2 - 3d + 1 = 2p - 1, 

hence h’(Co,-(tH - E)) = 0. 

Now t 2 d - 2, so for t = d - 1, d - 2, by Theorem 3.1(b), we get h’($(t)) = 0. 

Assume t 2 d. By Theorem 3.1(a) we get h’(s(t)) I h’(Y(t - d)), where 9’ is the 

ideal sheaf of the scheme Z’ = (Pl, . . . , P,; 0,. . . , 0; C, . . . , C), so 4’ = O$Z and 

h’(Y(t - d)) = 0. It follows again that h1(4(t)) = 0. 0 

It is an open problem whether the bound given by Theorem 3.3 is sharp or not, i.e. 

to find, given d, ml, . . . , m,, a curve C and a curvilinear scheme Z s C as in the 

theorem such that we have exactly 

Z(Z)= ‘f mild +d-2 
[ 1 i=l 

(note that it is enough to do that when d divides I;=, mi). 

The question reduces to the second problem we saw at the beginning, and it is 

exactly the same as the one that arises in the study of schemes of “fat points” (defined 

by homogeneous ideals of type I = p;“’ n . n p,“‘). 

Problem 3.4. Given positive integers s, ml, . . . , m,, d, is it possible, when d divides 

c SE 1 mi, to find an integral curve C of degree d, s simple distinct points P,, . . , P, on 

C and another curve C’ such that C’ cuts on C the divisor ~~=, miPi? 

For details on this problem, see [3, Section 51. Let us note that the question 

is obvious for d = 1,2 and it has been solved (if char k = 0) when d = 3 (see 

[3, Proposition 5.61. 

We are able to give a positive answer also when mi I 2, i = 1, . . . , s and char k = 0; 

at this aim we will need the following easy lemma (we give a proof for lack of 

references): 

Lemma 3.5. Let ml,. . . , m,, d be positive integers. Let d = 1 or 2, and e be such that 

xi= 1 mi = ed. Then, for every PI, . . . , P, on a smooth curve C G P2 = ai of degree d, 

with char k = 0, there exists a smooth curve C’ of degree e such that C. C’ = xi= 1 miPi. 

Proof. We can suppose e 2 d, otherwise the conclusion is trivial. 
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Since C is rational, any divisor IF= 1 WiPi is cut on C by curves of degree e. In order 

to check that we have a smooth one among them, let C’ be such that 

C. C’ = Es= 1 miPi and consider the curve C” given by C and (e - d) lines not passing 

through the Pis. The generic curve in the linear system generated by C’ and C” is 

smooth by Bertini’s Theorem and it cuts the divisor zf=, miPi on C, as 

requested. 0 

Now we can give the solution to Problem 3.4 in the case m, I 2: 

Proposition 3.6. Let x, y, d, e be positive integers such that 2x + y = de, and let k be an 

algebrically closed field with char k = 0. Then it is possible to find a smooth curve 

Cd E KF’: of degree d, x + y simple points PI,. . . , P,, Q1,. . . , Qy on Cd and a smooth 

curve C’ of degree e such that Cd * C’ is the divisor cTZ 1 2Pi + cy= I Qj. 

Proof. We may assume that e 2 d. Let x = dq + r, y = dq’+ r’, with 

0 I r,r’ I d - 1. Then we have de = 2x + y = d(2q + q’) + 2r + r’, and let 

2r + r’ = dz. Since 2r + r’ I 3d - 3, then 0 I z I 2. 

Let C, G P2 be a smooth curve of degree z (C, = 8, if z = 0), and consider r + r’ 

distinct points PI, . . , P,; Q1, . . . , QI, on C,. By Lemma 3.5, there exists a smooth 

curve Cd c P2, of degree d, such that 

Now let C, G P2 be a curve of degree q such that 

C*‘Cq = P,,l +. . . + P,, 

and C,, E P2 a curve of degree q’ such that Cd. C,, = Q*,+i + . . . + Qy, where 

P r+l, . . ..px.Qr,+~,. . >Qy are distinct points, and they are also distinct from 

Pi, . ,~,;QI,. . . ,Qr,. 
Let C, G P2 be the curve composed by twice C,, by C,, and C,, i.e. C, = 2C,C,!C,. 

ThenC,.Cd=2P1+...+2PX+Q1+...+Qy. 

In order to find a smooth curve CL which cut the same divisor on Cd, consider the 

curve C formed by Cd and e - d generic lines (not passing through any of the PI s and 

Qls and not intersecting on C,). By Bertini’s Theorem, C and C, generate a linear 

system whose generic element C’ is irreducible (C and C, have no common compon- 

ents) and smooth (C is smooth at every base point of the system). 

Hence C, and C’ are as required. 0 

Now we want to consider the case in which we have a curvilinear scheme Z = 

(Pi,. . . 9 P,; m,, . . , m,; Cl,. . . , C,) and an integral curve passing through the PiS 

and transversal to Ci, for each i. 

In order to do that, we need to define, given ml 2 . 2 m,, the numbers s, = 

max{i E N 1 mi 2 n}. The s,s can be better visualized by considering the block diagram 
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representmg ml, . . . , m, (the next figure shows the case 

3,3,2,2, 1, 1, l), where s1 = s = 11, s2 = 8, s3 = 6, s4 = sg 

ss 
s7 

s6 

s5 

s4 

s3 

s2 

s1 

ml 

m2 m3 

m4 

m5 m6 

ml m8 

(ml,. . . , m,) = (8,7,7,5, 
= 4, s6 = s7 = 3, ss = I): 

m9 ml0 ml1 

Proposition 3.7. Let Z = (PI, . . . , P,; ml, . . . , m,; C1, . . , C,) be a curvilinear 

scheme, with m, 2 . . . 2 m, > 0, and such that PI,. . . , P, are simple points for an 

integral curve C of degree d, with i(C, Ci; Pi) = 1, for every i. Let S, be as above, and 

deJine t as follows: 

(a) for s I d, t = 

(b) for s 2 d, 

= max [sl/d] + d - 2, [s2/d] + 2d - 2, 

. . . ) Csm,Idl + mdd - 2, OQ) -1). 2 

Then we have z(Z) I t. 

Proof. In case s I d, the bound is classically known, see also Remark 3.13 (note that 

for s = d, t is well defined). 

Assume s > d. By induction on m 1 : for ml = 1 the conclusion follows from Proposi- 

tion 3.3, since t = [s/d] + d - 2. 
For ml > 1, let Z’ = (Pl, . . . , P,; ml - 1,. . . , m, - 1; Cr, . . . , C,); it is easy, but 

quite tedious, to verify that by inductive hypothesis we get h1(4’(t - d)) = 0. More- 

over,t>Cf=,mi-l>dand 

td - s 2 ([s/d] + d - 2)d - s 2 d2 - 3d + 1 = 2p - 1. 

Therefore, by Corollary 3.2, we get the conclusion. 0 

In the case of Proposition 3.7 it is not too hard to check that the bound for z(Z) is 

sharp. Namely, we have (notation as in Proposition 3.7) the following: 
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Proposition 3.8. Let C E P2 be an integral curve, L a line which cuts C in Q1,. . , Qd 
distinct points, and F,, an integral curve of degree [s,/d] cutting C in R,, . . . , RdLsnidI 
distinct points. 

Let Z = (PI, . . , P,; ml, . . . , m,; C1, . . , C,) be such that 
(a) ifs < d, then Pi = Qi (1 I i 5 s) and C1 =. . = C, = L, 

(b) i,fs > d and t = X9=1 mi - 1, then Pi = Qi (1 I i I d), and Cl =. . . = Cd = L, 

(c) ifs > d and t = [s,,/d] + nd - 2 (1 I n I md), then Pi = Ri (1 I i < d[sJd]) and 
C1 = ’ . . = Cdts,,dl = F,. 

Then z(Z) = t. 

Proof. It suffices to show that h’(4(t - 1)) # 0. 

In cases (a) and (b), apply Theorem 3.1 with P = L. If P is a point on L, we have 

h’(N(t - 1)) 2 h’ Lot_ 
( ( 

(t - l)P - C miQi # 0 
i<d 1) 

since degO,((t - l)P - Ci,, miQi) = -2. 

In case (c), let q = d[s,,/d] and Z” = (Pr, . . . , Pq; n, . . . , n; F,,, . . . , F,). Since 

Z” E Z, it will be enough to show that z(Z”) = t, i.e. that h’($“(t - 1)) # 0. Now 

n times the curve C gives rise to a curve which cuts on F,, the Cartier divisor IF= 1 nPi, 

i.e. Z” itself. By a well-known theorem of Segre (see [9] or [7, Corollary 3.4]), it 

follows that Z” does not impose independent conditions on the curves of degree 

nd + [sJd] - 3 = t - 1, i.e. h’($“(t - 1)) # 0. 0 

The next result gives a bound on z in the hypothesis that the scheme Z is in “general 

position”, i.e. that it does not intersect any line in more than two points (may be 

infinitely near): 

Proposition 3.9. Let Z = (Pl, . . . , P,; ml, . . . , m,; C1, . . . , C,) be a curvilinear 

scheme such that the multiplicity of intersection of Z with every line L G P2 is I 2. Then 

Z(Z) I i l?li/2 
[ 1 i=l 

Proof. By induction on Es= 1 mi: the conclusion is obvious for Cmi = 1,2, SO assume 

CWli > 2. 

Applying Corollary 3.2 with P = L, a line with deg(L n Z) = 2, the conclusion 

follows. 0 

Remark 3.10. It is not hard to check that the above bound is sharp and it is achieved 

when Z lies on a non-singular conic. 

Finally we want to relate z(Z) with r(Z,,& where Zred is the reduced scheme 

PlU...UP,. 
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Theorem 3.11. Let Z = (PI, . . . , P,; ml, . . . , m,; C 1, . . . , C,) be a curvilinear scheme 

with mli 2 . 2 m, > 0 and let p = z(Z,,& then 

r(Z) I ml +. . + mp+l - 1. 

Proof. It is well known that p I s - 1, so the above summation has exactly p + 1 

terms. 

If s = 1, then p = 0, so the conclusion is obvious. Assume s > 1 and define Z’ as 

follows: 

Z’=(P1 ,..., P,;ml ,..., m,_l,m,-l;C1 ,..., C,) form,>l, 

Z’=(P1,. . ,Ps;ml,. . .,m,_l;Cl,. . .,Csel) 

Let X, 4’ be the ideal sheaves corresponding to Z and Z’ 

a positive integer. We have (see Section 2): 

- i mi + h’(Y(t)), 
i=l 

It follows that 

- it1 mi + 1 + h’($‘(t)). 

h’(,o’(t)) - h’(-a(t)) = 1 + hl(Y(t)) - hl(Y(t)). (5) 

for m, = 1. 

respectively, and let t be 

Now we prove the theorem by induction on Cmi. Since the result is obvious for 

ClYli = 1,2, assume Cmi > 2. 

Let p’ = z(Z:,,), t = ml + . . . + mp+l - 1. By the inductive hypothesis z(Z’) I 

ml +. . + mpzfl - 1 I t. It follows that 

h’(Y’(t)) = 0. (6) 

In order to conclude, by virtue of (5) and (6) it will be enough to prove that 

h”(9’(t)) - h0(9(t)) 2 1, i.e. that there is a curve of degree t containing Z’ and not Z. 

Since z(Z,,,) = p, there exists a curve C of degree p through Pl, . . . , P,_ 1, such 

that Ps$C. Let Li be a line through Pi (1 5 i < p), not passing through P,. Let L, be 

a line through P, meeting transversely C,, and let L be a line not passing through P,. 

Since mp+ 1 times C, (mi - m,+l) t imes Li (1 I i I p), (m, - 1) times L,, and 

(m p+1- m,) times L give rise to a curve of degree t passing through Z’ but not 

through Z, we are done. q 

Remark 3.12. In this case too it is quite easy to show that the above bound is sharp: 

take PI,. . , P,+, lying on a line L, Cl,. . , C,+, = L, and ml,. . . ,mptl > 0. In 

this case T(Z) = ml + . . + mot1 - 1. The proof is quite immediate, using The- 

orem 3.1 with r = L. 
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Another example is given by seven distinct points on a conic C; the scheme 

z = (PI,. . . ) P,; 2,. . . ) 2; c, . . , C) has r(Z) = 7 and here p = 3, so the bound is 

sharp. 

Remark 3.13. A consequence of Theorem 3.11 and of the previous remark is the 

well-known fact that the more general bound for z that can be given for a curvilinear 

scheme Z = (Pi, . . . , P,; m 1, . . . , m,; C 1, . . , C,) is z(Z) I If=, mi - 1, which is 

achieved when Z is on a line. 

4. Hilbert function of a generic curvilinear scheme 

In this section we want to check that, with respect to their postulation, curvilinear 

schemes behave, in general, as reduced points do, i.e. they have maximal Hilbert 

function. 

Namely, let Z = (PI, . . . , P,; ml, . . . , m,; C1, . . . , C,) and d, k be integers defined 

by N = (d:‘) + k, 0 5 k I d; then we want 

H(Z,r)=min{(‘:‘),N} 

which is equivalent to 

h0(9(d - 1)) = h’(Y(d)) = 0. (7) 

Let us work on a fixed plane curve first. 

Theorem 4.1. Let C C_ p2 be a smooth plane curve of degree d. Given s positive integers 

ml,. . . , m, with 

(“~‘)~jlmi<(“:‘>~ 

then for a generic choice of PI,. . . , P, on C, the curvilinear scheme Z = 

(PI, . . . , P,; ml, . . , m,; C, . . . , C) c P2 has maximal Hilbert function. 

Proof. We have seen that what we require from Z amounts to (7) i.e. that the divisor 

dH - ~~=, miPi on C is non-special, while the divisor (d - l)H - ~~=, miPi is 

non-effective. 

We will work by induction on d. If d = 1,2 obviously we have h0(9(d - 1)) = 0, 

while h’(Y(d)) = 0 follows from Proposition 3.3. 

Assume d 2 3 and apply induction on s. Let s = 1, n = d(d - l), r = d(d - 1) - p 

and let g’,, g;‘+“, be the linear series cut on C by the curves of degrees d - 1,d 

respectively. Let 

@={QECIg;-(r+ l)Q#8}, 
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@ and Y have only a finite number of points, see e.g. [lo, p. 1311. Let P E C, P$@, 
P$Y. 

We claim that the divisor Z = m, P of C has maximal Hilbert function. In fact, 

(“:I) + k = ml, then r + 1 5 (“:I) + k = m, 5 r + d; hence, since P#@, then 

g; - miP = 0, 1.e. k”(9(d - 1)) = 0. 

But also g::“, - (r + d + 1)P = 8, so the divisor (r + d + l)P imposes independent 

conditions to curves of degree d. It follows that ml P also imposes independent 

conditions to curves of degree d, i.e. that k’(X(d)) = 0. 
Now let s > 1. We consider the two possible cases: 

(a) :<mi<(“l ‘)9 (b) :<mi>(“l ‘). 
Case (a). Let x = (“ii) - cf_: mi. Since XI:: mi + x = (dz’), by the inductive 

hypothesis for generic P,, . . , P,_ 1 on C we have that the scheme Z’ = 

(P, ,..., Ps_,;ml ,..., ms_2,ms_1+x;C ,... , C) has maximal Hilbert function. 

Let 9’ be the ideal sheaf corresponding to Z’. It follows that k0(9’(d - 1)) = 

0 = k’(4’(d)). Hence, since deg Z’ = (d:‘), we get also k’($‘(d - 1)) = 0. 

LetZ”=(P, ,..., Ps_l;ml,. . . , m,_ 1; C, . . , C) and y” the corresponding ideal 

sheaf. Since Z” G Z’, we have k’($“(d)) = 0 = k’(X”(d - 1)). 

Let n = d(d - 1) - CJI: mi, r = n - p, and gi, giz”, be the linear series cut on C by 

the curves through Z” of degrees d - 1,d respectively. Then let 

@={QeClg',--(r+l)Q#@}, 

y= {QWg;:dd -(r + d + 1)Q # @}. 

These two sets (again by [lo]) have a finite number of points. Let Pse C, with 

PS${Pl,~. . > P,_,}u@uY. We claim that the scheme Z=(Pl,...,Ps; 

ml,. . . , m,; C, . . , C) has maximal Hilbert function. 

Since r + 1 = d(d - 1) - p - x:i: mi+l ~m,<r+d+l =d2-p- 

XI=: mi + 1 and P&Q, then gi - (r + l)P, = 8, so k0(4(d - 1)) = 0. Then, P&Y, SO 

gL=“, - (r + d + l)P, = 8, and (r + d + l)P, imposes independent conditions to 

curves of degree d passing through Z”. It follows that m,P, also imposes independent 

conditions to such curves, i.e. k’($(d)) = 0. 

Case (b). By the inductive hypothesis, for generic PI,. . . , P,_ 1 on C the scheme 

Z” = (Pl, . . , P,- 1; ml,. . . , m,_ l; C, . . . , C) has maximal Hilbert function. 

Let 9” be the ideal sheaf of Z”; it follows that 

k0(9”(d - 1)) = 0 = k’(f’(d)). 

Let giz”,, Y be as in case (a). We have again that Y has a finite number of points, 

and we will choose P, on C, Ps${Pl, . . . , P,_ l} u Y. 
We claim that Z = (Pl, . . , P,; ml, . . . , m,; C, . . , C) has maximal Hilbert func- 

tion. In fact, Z” E Z, so k’($“(d - 1)) = 0 implies that also k0(9(d - 1)) = 0. In 

order to get k1(9(d)) = 0, one works as in the previous case. 0 
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Now, in order to consider “generic” curvilinear subschemes of P *, some considera- 

tions have to be made. 

LetM=(m,,...,m,)E(~*)S,withIMI=~~_,m,=N,andm,~m,~...~m,. 

Let H M E HilbN P2 be the (locally closed) subscheme parameterizing the zero-dimen- 

sional schemes Z with support at s distinct points PI, . . . , P, and degree mi at each Pi. 

It is known that HM is irreducible of dimension xf= 1 (mi + 1) and that its generic 

point represents a curvilinear scheme. The local result can be found in [l], and it can 

be globalized via the morphism HilbNP2 -+ SymmNP2 (see [8]). Moreover, we have 

that fi”’ G fi” if M’ = (m;, . . . , m:,), with s’ I s and rn; 2 mi, and “-” represents the 

closure in HilbN P2 (see [2, Section 21). 

So, given M = (ml,. . . , m,), when we say that a property is true for a “generic 

curvilinear scheme” Z = (PI,. . . , P,; ml,. . . , m,; Cl,. . . , C,), we mean that the 

property is true in an open subset of the dense set representing curvilinear schemes 

inside H”. 

In particular, we want to show that the Hilbert function for a generic curvilinear 

scheme Z G P2 of degree N = xf= 1 mi is the maximal one (i.e. that I, is regular for 

every t), as it happens for the generic (reduced) element of HilbN P2 (see e.g. [S]). This 

is now an easy consequence of Theorem 4.1, since, by semicontinuity of the cohomol- 

ogy on H M, it is enough to find one curvilinear scheme Z for which this happens. 

Note also that, since HilbNP2 ---f SymmNP2 is a morphism, we can rephrase what 

we have seen in term of the genericity of the Pis (instead of the genericity of Z in H”), 

i.e., we have the following: 

Proposition 4.2. Given s positive integers m 1, . . . , m,, for a generic choice of PI, . . , P, 

in p2, there exists a curvilinear scheme Z = (PI, . . . , P,; ml, . . , m,; C, . . . , C) E P2 

with maximal Hilbert function. 0 

Remark 4.3. Actually, in Theorem 4.1 we have done more than just finding a scheme 

with maximal Hilbert function: we have shown that we can find such a scheme on any 

smooth plane curve C of the appropriate degree. If we had wanted only to show the 

existence of such schemes in H”, the following argument would have sufficed. Let us 

consider schemes concentrated at one N-ple point in fi”. It is easy to find one of them 

with maximal Hilbert function (e.g. by an appropriate determinantal ideal), hence to 

conclude by semicontinuity on fi”. 

Moreover, in the same way, we can always find a scheme supported at one point 

and with a degree N structure (for all NE N), such that not only it has maximal Hilbert 

function, but its generators are the expected ones (i.e. the generators in the minimum 

degree span the maximum number of independent forms in the next degree when 

multiplied by linear forms). Since also “having the expected generation” is an open 

property in HilbNP2, we have just shown the following: 

Corollary 4.4. For any NE F+J, the generic non-reduced scheme in HilbN P2 has maximal 

Hilbert function and the expected generators. 
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