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Abstract

It has been known for a long time that vacuum polarization in QED leads to a superluminal low-frequency
phase velocity for light propagating in curved spacetime. Assuming the validity of the Kramers–Kronig
dispersion relation, this would imply a superluminal wavefront velocity and the violation of causality. Here,
we calculate for the first time the full frequency dependence of the refractive index using world-line sigma
model techniques together with the Penrose plane wave limit of spacetime in the neighbourhood of a null
geodesic. We find that the high-frequency limit of the phase velocity (i.e. the wavefront velocity) is always
equal to c and causality is assured. However, the Kramers–Kronig dispersion relation is violated due to a
non-analyticity of the refractive index in the upper-half complex plane, whose origin may be traced to the
generic focusing property of null geodesic congruences and the existence of conjugate points. This makes
the issue of micro-causality, i.e. the vanishing of commutators of field operators at spacelike separated
points, a subtle one in local quantum field theory in curved spacetime.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Quantum field theory in curved spacetime is by now a well-understood subject. However,
there remain a number of intriguing puzzles which hint at deeper conceptual implications for
quantum gravity itself. The best known is of course Hawking radiation and the issue of en-
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Fig. 1. Photons propagating in curved spacetime feel the curvature in the neighbourhood of their geodesic because they
can become virtual e+e− pairs.

tropy and holography in quantum black hole physics. A less well-known effect is the discovery
by Drummond and Hathrell [1] that vacuum polarization in QED can induce a superluminal
phase velocity for photons propagating in a non-dynamical, curved spacetime. The essential
idea is illustrated in Fig. 1. Due to vacuum polarization, the photon may be pictured as an
electron–positron pair, characterized by a length scale λc = m−1, the Compton wavelength of
the electron. When the curvature becomes non-vanishing, the photon dispersion relation is mod-
ified, and in the present work we shall work in the limit of small but non-vanishing R/m2,
where R is a typical curvature scale. The remarkable feature, however, is that this modification
can induce a superluminal1 low-frequency phase velocity, i.e. the photon momentum becomes
spacelike.

At first, it appears that this must be incompatible with causality. However, as discussed in
Refs. [2–4], the relation of causality with the “speed of light” is far more subtle. For our purposes,
we may provisionally consider causality to be the requirement that no signal may travel faster
than the fundamental constant c defining local Lorentz invariance. More precisely, we require that
the wavefront velocity vwf, defined as the speed of propagation of a sharp-fronted wave pulse,
should be less than, or equal to, c. Importantly, it may be shown [2,4,5] that vwf = vph(∞),
the high-frequency limit of the phase velocity. In other words, causality is safe even if the low-
frequency2 phase velocity vph(0) is superluminal provided the high-frequency limit does not
exceed c.

This appears to remove the potential paradox associated with a superluminal vph(0). How-
ever, a crucial constraint is imposed by the Kramers–Kronig dispersion relation3 (see, e.g.
Ref. [6, Chapter 10.8]) for the refractive index, viz.

1 In this paper, we use the term “superluminal” in the sense “greater than c”. Apart from the occasional use of c in the
text for clarity, we set c = 1 throughout. Also, in our conventions, the metric of flat space is η = diag(1,−1,−1,−1) and
the Riemann tensor is Rμ

νσλ = ∂σ Γ
μ
λν + · · · .

2 The term “low frequency” in this context requires some clarification. We work throughout in the WKB short wave-

length approximation ω � R1/2 and in the limit of weak curvature R � m2 where R is a characteristic curvature of the
background (which can also include derivatives of the curvature) and m is the electron mass. The frequency enters in
the dimensionless ration ω2R/m4 and when we talk about “low” and “high” frequency we really mean small and large
values of this dimensionless parameter.

3 Note that we are using “dispersion relation” in two different senses here. For clarity, we will always refer to Eq. (1.1)
explicitly as the Kramers–Kronig or KK dispersion relation to distinguish it from the use of the term dispersion relation
to describe the frequency dependence of the photon light-cone.
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(1.1)Ren(∞) − Ren(0) = − 2

π

∞∫
0

dω

ω
Imn(ω),

where Ren(ω) = 1/vph(ω). The positivity of Imn(ω), which is true for an absorptive medium
and is more generally a consequence of unitarity in QFT, then implies that Ren(∞) < Ren(0),
i.e. vph(∞) > vph(0). So, given the validity of the KK dispersion relation, a superluminal vph(0)

would imply a superluminal wavefront velocity vwf = vph(∞) with the consequent violation of
causality.

We are therefore left with three main options [4], each of which would have dramatic conse-
quences for our established ideas about quantum field theory:

Option 1. The wavefront speed of light vwf > 1 and the physical light cones lie outside the
geometric null cones of the curved spacetime, in apparent violation of causality.

It should be noted, however, that while this would certainly violate causality for theories in
Minkowski spacetime, it could still be possible for causality to be preserved in curved spacetime
if the effective metric characterizing the physical light cones defined by vwf nevertheless allow
the existence of a global timelike Killing vector field. This possible loophole exploits the general
relativity notion of “stable causality” [8,9] and is discussed further in Ref. [2].

Option 2. Curved spacetime may behave as an optical medium exhibiting gain, i.e. Imn(ω) < 0.

This possibility was explored in the context of Λ-systems in atomic physics in Ref. [4], where
laser-atom interactions can induce gain, giving rise to a negative Imn(ω) and superluminal low-
frequency phase velocities while preserving vwf = 1 and the KK dispersion relation. However,
the problem in extending this idea to QFT is that the optical theorem, itself a consequence of uni-
tarity, identifies the imaginary part of forward scattering amplitudes with the total cross section.
Here, Imn(ω) should be proportional to the cross section for e+e− pair creation and therefore
positive. A negative Imn(ω) would appear to violate unitarity.

Option 3. The Kramers–Kronig dispersion relation (1.1) is itself violated. Note, however, that
this relation only relies on the analyticity of n(ω) in the upper-half plane, which is usually con-
sidered to be a direct consequence of an apparently fundamental axiom of local quantum field
theory, viz. micro-causality.

Micro-causality in QFT is the requirement that the expectation value of the commutator of
field operators 〈0|[A(x),A(y)]|0〉 vanishes when x and y are spacelike separated. While this
appears to be a clear statement of what we would understand by causality at the quantum level,
in fact its primary rôle in conventional QFT is as a necessary condition for Lorentz invariance of
the S-matrix (see e.g. Ref. [6], Chapters 5.1, 3.5). Since QFT in curved spacetime is only locally,
and not globally, Lorentz invariant, it is just possible there is a loophole here allowing violation
of micro-causality in curved spacetime QFT.

Despite these various caveats, unitarity, micro-causality, the identification of light cones with
geometric null cones and causality itself are all such fundamental elements of local relativistic
QFT that any one of these options would represent a major surprise and pose a severe challenge
to established wisdom. Nonetheless, it appears that at least one has to be true.
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To understand how QED in curved spacetime is reconciled with causality, it is therefore
necessary to perform an explicit calculation to determine the full frequency dependence of the
refractive index n(ω) in curved spacetime. This is the technical problem which we solve in this
paper. The remarkable result is that QED chooses Option 3, viz. analyticity is violated in curved
spacetime. We find that in the high-frequency limit, the phase velocity always approaches c, so
we determine vwf = 1. Moreover, we are able to confirm that where the background gravitational
field induces pair creation, γ → e+e−, Imn(ω) is indeed positive as required by unitarity. How-
ever, the refractive index n(ω) is not analytic in the upper-half plane, and the KK dispersion
relation is modified accordingly. One might think that this implies a violation of micro-causality,
however, there is a caveat in this line of argument which requires a more ambitious off-shell
calculation to settle definitively [7].

In order to establish this result, we have had to apply radically new techniques to the analy-
sis of the vacuum polarization for QED in curved spacetime. The original Drummond–Hathrell
analysis was based on the low-energy, O(R/m2) effective action for QED in a curved back-
ground,

(1.2)L= −1

4
FμνF

μν + α

m2

(
aRFμνF

μν + bRμνF
μλF ν

λ + cRμνλρFμνFλρ
) + · · · ,

derived using conventional heat-kernel or proper-time techniques (see, for example, [10–14]).
A geometric optics, or eikonal, analysis applied to this action determines the low-frequency limit
of the phase velocity. Depending on the spacetime, the photon trajectory and its polarization,
vph(0) may be superluminal [1,15,16]. In subsequent work, the expansion of the effective action
to all orders in derivatives, but still at O(RF 2), was evaluated and applied to the photon dis-
persion relation [11,12,17,18]. However, as emphasized already in Refs. [2,3,18], the derivative
expansion is inadequate to find the high-frequency behaviour of the phase velocity. The reason is
that we shall find as a result of a calculation that the frequency ω appears in the on-shell vacuum
polarization tensor only in the dimensionless ratio ω2R/m4. The high-frequency limit depends
non-perturbatively on this parameter4 and so is not accessible to an expansion truncated at first
order in R/m2.

In this paper, we instead use the world-line formalism which can be traced back to Feynman
and Schwinger [19,20], and which has been extensively developed in recent years into a powerful
tool for computing Green functions in QFT via path integrals for an appropriate 1-dim world-
line sigma model. (For a review, see e.g. Ref. [21].) The power of this technique in the present
context is that it enables us to calculate the QED vacuum polarization non-perturbatively in the
frequency parameter ω2R/m4 using saddle-point techniques. Moreover, the world-line sigma
model provides an extremely geometric interpretation of the calculation of the quantum correc-
tions to the vacuum polarization. In particular, we are able to give a very direct interpretation
of the origin of the Kramers–Kronig violating poles in n(ω) in terms of the general relativistic
theory of null congruences and the relation of geodesic focusing to the Weyl and Ricci curvatures
via the Raychoudhuri equations.

4 Notice that here we also include derivatives of the curvature in the generic symbol “R”. In fact, in Ref. [18], the

O(R/m2) contribution to the on-shell vacuum polarization was determined in the form Π(ω) ∼ 1
m2 f ( ω

m2 � · D)R,

where � · DR represents the variation of the curvature along the geodesic with tangent vector �μ and the function f

is a form-factor determined from the effective action. This behaviour, where the vacuum polarization depends on the
curvature through its variation ∂uR, where u is a light-cone coordinate adapted to the photon’s original null geodesic, is
reflected in the form of the Penrose limit for general curved spacetimes: see Section 7.



142 T.J. Hollowood, G.M. Shore / Nuclear Physics B 795 (2008) 138–171
Fig. 2. The loop xμ(τ) with insertions of photon vertex operators at τ1 and τ2.

A further key insight is that to leading order in R/m2, but still exact in ω2R/m4, the relevant
tidal effects of the curvature on photon propagation are encoded in the Penrose plane wave limit
[22,23] of the spacetime expanded about the original null geodesic traced by the photon. This is
a huge simplification, since it reduces the problem of studying photon propagation in an arbitrary
background to the much more tractable case of a plane wave. In fact, the Penrose limit is ideally
suited to this physical problem. As shown in Ref. [24], where the relation with null Fermi normal
coordinates is explained, it can be extended into a systematic expansion in a scaling parameter
which for our problem is identified as R/m2. The Penrose expansion therefore provides us with
a systematic way to go beyond leading order in curvature.

The paper is organized as follows. In Section 2, we introduce the world-line formalism and
set up the geometric sigma model and eikonal approximation. The relation of the Penrose limit
to the R/m2 expansion is then explained in detail, complemented by a power-counting analysis
in the appendix. The geometry of null congruences is introduced in Section 3, together with the
simplified symmetric plane wave background in which we perform our detailed calculation of
the refractive index. This calculation, which is the heart of the paper, is presented in Section 4.
The interpretation of the result for the refractive index is given in Section 5, where we plot
the frequency dependence of n(ω) and prove that asymptotically vph(ω) → 1. We also explain
exactly how the existence of conjugate points in a null congruence leads to zero modes in the
sigma model partition function, which in turn produces the KK-violating poles in n(ω) in the
upper-half plane. The implications for micro-causality are described in Section 6. Finally, in
Section 7 we make some further remarks on the generality of our results for arbitrary background
spacetimes before summarizing our conclusions in Section 8.

2. The world-line formalism

In the world-line formalism for scalar QED5 the 1-loop vacuum polarization is given by

(2.1)Π1-loop = α

4π

∞∫
0

dT

T 3

T∫
0

dτ1 dτ2 Z
〈
V ∗

ω,ε1

[
x(τ1)

]
Vω,ε2

[
x(τ2)

]〉
.

5 Since all the conceptual issues we address are the same for scalars and spinors, for simplicity we perform explicit
calculations for scalar QED in this paper. The generalization of the world-line formalism to spinor QED is straightforward
and involves the addition of a further, Grassmann, field in the path integral. For ease of language, we still use the terms
electron and positron to describe the scalar particles.
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The loop with the photon insertions is illustrated in Fig. 2. The expectation value is calculated in
the one-dimensional world-line sigma model involving periodic fields xμ(τ) = xμ(τ + T ) with
an action

(2.2)S =
T∫

0

dτ

(
1

4
gμν(x)ẋμẋν − m2

)
,

where m is the mass of the (scalar) electron and we work in Minkowski signature in both space-
time and on the world-line.6 The factor Z is the partition function of the world-line sigma model
relative to flat space.7 It is an important detail of our calculation that Z will depend implicitly
on ω and the insertion points τ1 and τ2.

The vertex operators have the form

(2.3)Vω,ε[x] = ẋμAμ(x),

where Aμ(x) is the gauge connection of a photon propagating with momentum k and polarization
vector ε. At the one-loop level, we can impose the tree-level on-shell conditions for the gauge
field. This means DμFμν = 0 along with the gauge condition DμAμ = 0. In curved spacetime,
the photon gauge field is not exactly that of a plane wave due to the effects of curvature and in
general it would be impossible to solve for the on-shell vertex operator. However, we will work
in the WKB, or short wavelength, approximation which is valid when ω � R1/2.8 This is the
limit of geometric optics where Aμ(x) is approximated by a rapidly varying exponential times a
much more slowly varying polarization. Systematically, we have

(2.4)Aμ(x) = (
εμ(x) + ω−1Bμ(x) + · · ·)eiωΘ(x).

We will need the expressions for the leading order pieces Θ and ε. This will necessitate solving
the on-shell conditions to the first two non-trivial orders in the expansion in R1/2/ω. To leading
order, the wave-vector kμ = ω�μ, where �μ = ∂μΘ is a null vector (or more properly a null
1-form) satisfying the eikonal equation,

(2.5)� · � ≡ gμν∂μΘ∂νΘ = 0.

A solution of the eikonal equation determines a family or congruence of null geodesics in the
following way.9 The contravariant vector field

(2.6)�μ(x) = ∂μΘ(x),

6 This will require some appropriate iε prescription. In particular, the T integration contour should lie just below the
real axis to ensure that the integral converges at infinity.

7 In general, one has to introduce ghost fields to take account of the non-trivial measure for the fields,∫ [
dxμ(τ)

√
−detg

(
xμ(τ)

) ]
,

in curved spacetime [25–29]. However, in our calculation where we work to leading order in R/m2 in a special set of
coordinates the determinant factor is 1 to leading order.

8 It is important to understand that this notion of high frequency still allows one to expand the effective action in powers

of ω because this latter is actually a function of the dimensionless ratio ω2R/m4 which can be small.
9 The congruence is not, in general, unique due to existence of integration constants. Later we will find that our results

are independent of these integration constants.
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is the tangent vector to the null geodesic in the congruence passing through the point xμ. In
the particle interpretation, kμ = ω�μ is the momentum of a photon travelling along the geodesic
through that particular point. It will turn out that the behaviour of the congruence will have
a crucial rôle to play in the resulting behaviour of the refractive index. The general relativistic
theory of null congruences is considered in detail in Section 3.

Now we turn to the polarization vector. To leading order in the WKB approximation, this is
simply orthogonal to �, i.e. ε ·� = 0. Notice that this does not determine the overall normalization
of ε, the scalar amplitude, which will be a space-dependent function in general. It is useful to
split εμ =Aε̂μ, where ε̂μ is unit normalized. At the next order, the WKB approximation requires
that ε̂μ is parallel transported along the geodesics:

(2.7)� · Dε̂μ = 0.

The remaining part, the scalar amplitude A, satisfies

(2.8)� · D logA = −1

2
D · �.

Eqs. (2.7) and (2.8) are equivalent to

(2.9)� · Dεμ = −1

2
εμD · �.

Since the polarization vector is defined up to an additive amount of k, there are two linearly
independent polarizations εi(x), i = 1,2.

Since there are two polarization states, the one-loop vacuum polarization is actually a 2 × 2
matrix

Π
1-loop
ij = α

4π

∞∫
0

dT

T 3

T∫
0

dτ1 dτ2 Z

(2.10)× 〈
εi

[
x(τ1)

] · ẋ(τ1)e
−iωΘ[x(τ1)]εj

[
x(τ2)

] · ẋ(τ2)e
iωΘ[x(τ2)]〉.

In order for this to be properly defined we must specify how to deal with the zero mode of xμ(τ)

in the world-line sigma model. Two distinct—but ultimately equivalent—methods for dealing
with the zero mode have been proposed in the literature [25–29]. In the first, the position of one
particular point on the loop is defined as the zero mode, while in the other, the “string inspired”
definition, the zero mode is defined as the average position of the loop:

(2.11)x
μ
0 = 1

T

T∫
0

dτ xμ(τ).

We will use this latter definition since it leads to a much simpler formalism. Since we are ef-
fectively calculating an on-shell term in an effective action, the integral over the zero mode is
simply excluded from the functional integral. In other words, our world-line sigma model does
not include an integral over x

μ
0 which one should think of as being a fixed point in spacetime.

Since in curved spacetime there is in general no translational symmetry, the one-loop correction
Π

1-loop
ij (x0) will depend explicitly on x

μ
0 . We will always choose coordinates for which x

μ
0 = 0,

in which case we implicitly impose the constraint
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Fig. 3. The classical saddle-point solution consists of a squashed loop which follows the geodesic γ . The length of the
loop is ∼ ω/m2 which represents a potentially interesting UV–IR mixing effect.

(2.12)

T∫
0

dτ xμ(τ) = 0

on the sigma model fields. The advantage of using the string inspired method is that there is
translational symmetry on the world-line loop. This allows us to fix τ1 = 0. We will then take
τ1 = ξT , 0 � ξ � 1, and replace the two integrals over τ1 and τ2 by a single integral over the
variable ξ .

A key ingredient in our analysis is that in the limit of weak curvature R � m2, the sigma
model based on the general metric gμν can be approximated by the metric in a cylindrical neigh-
bourhood of the geodesic in the null congruence that passes through x

μ
0 = 0. We will call this

particular geodesic γ . The metric in the neighbourhood of γ arises in a very particular way
known as the Penrose limit [22]. Exactly how this limit arises is rather remarkable and means
that the vacuum polarization and refractive index is only sensitive to the Penrose limit of the
original metric. It should be noted that the Penrose limit captures the global behaviour of the
original metric all the way along the geodesic γ .

Now notice that the exponential pieces of the vertex operators in (2.1) act as source terms and
so the complete action including these is

(2.13)S = −T + m2

4T

1∫
0

dτ gμν(x)ẋμẋν − ωΘ
[
x(ξ)

] + ωΘ
[
x(0)

]
.

Here, we have scaled τ → T τ and then T → T/m2, so that τ runs from 0 to 1. T is now di-
mensionless and 1/m2 plays the rôle of a conventional coupling constant. In fact, the effective
coupling constant is actually the dimensionless ratio R/m2, where R is a typical curvature scale.
So when R/m2 is small we can perform a perturbative expansion in the world-line sigma model.
As is usual in a perturbative analysis, it is useful to re-scale the “fields” xμ(τ) appropriately in
order to remove the overall factor of m2/T . The coupling then re-appears in vertices. However,
this re-scaling must be done in a clever way. The reason is that the classical saddle-point solu-
tion following from (2.13) is not simply the constant configuration xμ(τ) = x

μ
0 = 0 because the

sources inject world-line momentum into, and out of, the system. It is not difficult to guess what
the classical saddle-point solution will be because the classical equation of motion that follows
from (2.13) is just the geodesic equation for xμ(τ) with delta-function sources at τ = 0 and ξ .
The solution consists of an electron and positron pair produced at τ = 0 ≡ 1 which propagate
along the photon geodesic γ , with the electron going from τ = 0 to τ = ξ and the positron from
τ = 1 to τ = ξ , before annihilating at τ = ξ back into a photon which then continues along γ . In
other words, the classical loop is squashed onto the geodesic γ as illustrated in Fig. 3. We will
find the explicit solution for this classical loop shortly.
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As we have said, the fact that there is a non-trivial classical solution around which the per-
turbative expansion is performed means that the re-scaling of the fields must be done in an
appropriate way. The problem is solved by choosing from the outset a set of coordinates which
are adapted to the null congruence containing γ . These coordinates (u,Θ,Y a), a = 1,2, are
known as Rosen coordinates. They include two null coordinates: u, the affine parameter along
the geodesics and Θ , the solution of the eikonal equation (2.5). As explained in Ref. [23], the
full metric gμν around γ can always be brought into the form

ds2 = 2dudΘ − C
(
u,Θ,Y a

)
dΘ2 − 2Ca

(
u,Θ,Y b

)
dY a dΘ

(2.14)− Cab

(
u,Θ,Y c

)
dY a dY b.

It is manifest that dΘ is a null 1-form. The null congruence has a simple description as the
curves (u,Θ0, Y

a
0 ) for fixed values of the transverse coordinates (Θ0, Y

a
0 ). The geodesic γ is the

particular member (u,0,0,0). It should not be surprising that the Rosen coordinates are singular
at the caustics of the congruence. These are points where members of the congruence intersect
and will be described in detail in the next section.

With the form (2.14) of the metric, one finds that the classical equations of motion of the
sigma model action (2.13) have a solution with Ya = Θ = 0 where u(τ) satisfies

(2.15)ü = −2ωT

m2
δ(τ − ξ) + 2ωT

m2
δ(τ ).

More general solutions with constant but non-vanishing (Θ,Y a) are ruled out by the constraint
(2.12). The solution of (2.15) is

(2.16)ũ(τ ) = −u0 +
{

2ωT (1 − ξ)τ/m2 0 � τ � ξ,

2ωT ξ(1 − τ)/m2 ξ � τ � 1,

where the constant

(2.17)u0 = ωT ξ(1 − ξ)/m2

ensures that the constraint (2.12) is satisfied. The solution describes a loop which is squashed
down onto the geodesic γ as illustrated in Fig. 3. The electron and positron have to move with
different world-line velocities in order to accommodate the fact that in general ξ is not equal to 1

2 .
In Section 5, we explain how for particular values of T there are more general classical saddle-
point solutions which are consistent with (2.12). However, the solution we have described is the
only one that exists for generic values of T .

What is intriguing about this picture is that the classical loop, which has an affine parameter
length proportional to L ∼ ω/m2, actually gets bigger as the frequency is increased. The reason
is that higher frequency leads to bigger impulses and hence longer loops. This is an interesting
example of the kind of UV–IR mixing that is seen in other contexts, such as non-commutative
field theories or high energy string scattering. Whether the occurrence here is hinting at some-
thing deeper deserves to be investigated in more detail. However, what it will mean is that the
higher frequencies will probe global aspects of the spacetime rather than shorter distance scales
as our intuition might have suggested.

Now that we have defined the Rosen coordinates and found the classical saddle-point solution,
we are in a position to set up the perturbative expansion. The idea is to scale the transverse
coordinates Θ and Y i in order to remove the factor of m2/T in front of the action. The affine
coordinate u, on the other hand, will be left alone since the classical solution ũ(τ ) is by definition



T.J. Hollowood, G.M. Shore / Nuclear Physics B 795 (2008) 138–171 147
of zeroth order in perturbation theory. The appropriate scalings are precisely those needed to
define the Penrose limit [22]—in particular we closely follow the discussion in [23]. The Penrose
limit involves first a boost

(2.18)
(
u,Θ,Y a

) → (
λ−1u,λΘ,Y a

)
,

where λ = T 1/2/m, and then a uniform re-scaling of the coordinates

(2.19)
(
u,Θ,Y a

) → (
λu,λΘ,λY a

)
.

As argued above, it is important that the null coordinate along the geodesic u is not affected by
the combination of the boost and re-scaling; indeed, overall

(2.20)
(
u,Θ,Y a

) → (
u,λ2Θ,λYa

)
.

After these re-scalings, the sigma model action (2.13) becomes

S = −T + 1

4

1∫
0

dτ
[
2u̇Θ̇ − λ2C

(
u,λ2Θ,λYa

)
Θ̇2 − 2λCa

(
u,λ2Θ,λYb

)
Ẏ aΘ̇

(2.21)− Cab

(
u,λ2Θ,λY c

)
Ẏ aẎ b

] − ωT

m2
Θ(ξ) + ωT

m2
Θ(0).

In the limit R � m2, we expand in powers of λ = T 1/2/m and ignore terms of O(λ):

(2.22)S = −T + 1

4

1∫
0

dτ
[
2u̇ Θ̇ − Cab(u,0,0)Ẏ aẎ b

] − ωT

m2
Θ(ξ) + ωT

m2
Θ(0) + · · · .

The leading order piece is precisely the Penrose limit of the original metric in Rosen coordi-
nates. Notice that we must keep the source terms because the combination ωT/m2, or more
precisely the dimensionless ratio ωR1/2/m2, can be large. However, there is a further simplify-
ing feature: once we have shifted the “field” about the classical solution u(τ) → ũ(τ ) + u(τ),
it is clear that there are no Feynman graphs without external Θ lines that involve the vertices
∂n
uCab(ũ,0,0)unẎ aẎ b , n � 1; hence, we can simply replace Cab(ũ + u,0,0) consistently with

the background expression Cab(ũ,0,0). This means that the resulting sigma model is Gaussian
to leading order in R/m2:

(2.23)S(2) = 1

4

1∫
0

dτ
[
2u̇Θ̇ − Cab(ũ,0,0)Ẏ aẎ b

] → −1

4

1∫
0

dτ Cab(ũ,0,0)Ẏ aẎ b,

where finally we have dropped the u̇Θ̇ piece since it is just the same as in flat space and the func-
tional integral is normalized relative to flat space. This means that all the non-trivial curvature
dependence lies in the Ya subspace transverse to the geodesic.10

It turns out that the Rosen coordinates are actually not the most convenient coordinates with
which to perform explicit calculations. For this, we prefer Brinkmann coordinates (u, v, yi). To

10 An alternative proof of this result which relies only on conventional power counting arguments and does not rely on
any a priori knowledge of the Penrose limit is provided in Appendix A.
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define these, we first introduce a “zweibein” in the subspace of the Ya :

(2.24)Cab(u) = δijE
i
a(u)Ej

b(u),

with inverse Ea
i . This quantity is subject to the condition that

(2.25)Ωij ≡ dEia

du
Ea

j

is a symmetric matrix.11 Then the affine coordinate u is common to both systems, while

(2.26)yi = Ei
aY

a, v = Θ + 1

2

dEia

du
Ei

bY
aY b.

Notice that the Brinkmann coordinates are homogeneous under the scaling (2.20):

(2.27)
(
u,v, yi

) → (
u,λ2v,λyi

)
.

In Brinkmann coordinates, the metric takes the form

(2.28)ds2 = 2dudv + hij (u)yiyj du2 − dyi2,

where the quadratic form is

(2.29)hij (u) = −d2Eia

du2
Ea

j .

We have introduced these coordinates at the level of the Penrose limit. However, they have a more
general definition for an arbitrary metric and geodesic. They are in fact Fermi normal coordi-
nates. These are “normal” in the same sense as the more common Riemann normal coordinates,
but in this case they are associated to the geodesic curve γ rather than to a single point. This
description of Brinkmann coordinates as Fermi normal coordinates and their relation to Rosen
coordinates and the Penrose limit is described in detail in Ref. [24]. In particular, this reference
gives the λ expansion of the metric in null Fermi normal coordinates to O(λ2). To O(λ) this is

ds2 = 2dudv − Riujuy
iyj du2 − dyi2

+ λ

[
−2Ruiuvy

iv du2 − 4

3
Ruijky

iyj dudyk − 1

3
Ruiuj ;kyiyj yk du2

]
(2.30)+O

(
λ2),

which is consistent with (2.28) since Riuju = −hij for a plane wave. It is worth pointing out
that Brinkmann coordinates, unlike Rosen coordinates, are not singular at the caustics of the
null congruence. One can say that Fermi normal coordinates (Brinkmann coordinates) are natu-
rally associated to a single geodesic γ whereas Rosen coordinates are naturally associated to a
congruence containing γ .

In Brinkmann coordinates, the Gaussian action (2.23) for the transverse coordinates becomes

(2.31)S(2) = −1

4

1∫
0

dτ
(
ẏi2 − ˙̃u2hij (ũ)yiyj

) + ωT

2m2
Ωijy

iyj

∣∣∣∣
τ=ξ

− ωT

2m2
Ωijy

iyj

∣∣∣∣
τ=0

,

11 Notice that i and j are raised and lowered in this Euclidean 2d subspace by δij and not −δij .
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where the world-line velocity along the loop is

(2.32)˙̃u(τ) =
{

2ωT (1 − ξ)/m2 0 � τ � ξ,

−2ωT ξ/m2 ξ � τ � 1.

Although (2.31) looks more complicated than (2.23), it is actually more useful for explicit calcu-
lations.

3. The symmetric plane wave and null congruences

The analysis above shows that photon propagation in a completely general curved spacetime is
governed to one-loop order by the Penrose limit for the metric in a neighbourhood of the original
null geodesic. The complete one-loop vacuum polarization and photon dispersion relation can
therefore be determined without loss-of-generality by working in a plane wave background.

In Section 7, we briefly discuss the Penrose limits of spacetimes of special physical interest,
such as de Sitter and Schwarzschild, and see how known results for low-frequency photon prop-
agation in these spacetimes are recovered as special properties of the Penrose limit. For the rest
of this paper, however, we specialize to the simplest example of a plane wave—the symmetric
plane wave [23]. In this background, we can evaluate the non-perturbative frequency dependence
of the vacuum polarization explicitly. In doing so, we discover many surprising features of the
dispersion relation that will hold in general.

The symmetric plane wave metric is given in Brinkmann coordinates by (2.28), with the
restriction that hij is independent of u. This metric is locally symmetric in the sense that the
Riemann tensor is covariantly constant, DλRμνρσ = 0, and can be realized as a homogeneous
space G/H with isometry group G.12 With no loss of generality, we can choose a basis for the
transverse coordinates in which hij is diagonal:

(3.1)hij y
iyj = σ 2

1

(
y1)2 + σ 2

2

(
y2)2

.

The sign of these coefficients plays a crucial role, so we allow the σi themselves to be purely real
or purely imaginary.

For a general plane wave metric, the only non-vanishing components of the Riemann tensor
(up to symmetries) are

(3.2)Ruiuj = −hij (u).

So for the symmetric plane wave, we have simply

(3.3)Ruu = σ 2
1 + σ 2

2 , Ruiui = −σ 2
i

and for the Weyl tensor,

(3.4)Cuiui = −σ 2
i + 1

2

2∑
j=1

σ 2
j .

12 Notice that, contrary to the implication in Refs. [4,18], the condition that the Riemann tensor is covariantly constant
only implies that the spacetime is locally symmetric, and not necessarily maximally symmetric [13,23]. A maximally
symmetric space has Rμνρσ = 1

12 R(gμρgνσ − gμσ gνρ) and does not have the required anisotropy for the vacuum
polarization to modify the speed of light.
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The null energy condition, viz. Tμνk
μkν � 0 with kμ a null vector, reduces here to Tuu � 0, so

from Einstein’s equation we require Ruu = σ 2
1 + σ 2

2 � 0. It follows that at least one of the σi

must be real (we will always choose this to be σ1). Special choices of the σi allow the symmetric
plane wave to be either Ricci flat (σ1 = ±iσ2) or conformally flat (σ1 = ±σ2). The Ricci flat case
is the vacuum gravitational wave.

While, as we saw in the last section, the original null geodesic γ (with � = ∂u) defines the
classical solution in the world-line path integral, in order to evaluate the fluctuations we also
need the eikonal phase and wave-vector for deviations from γ itself. We therefore need to study
the congruence of null geodesics in the neighbourhood of γ in Brinkmann coordinates. We first
do this explicitly for the symmetric plane wave background, then explain how the key features
are described in the general theory of null congruences.

The geodesic equations for the symmetric plane wave (2.28), (3.1) are:

ü = 0,

v̈ + 2u̇

2∑
i=1

σ 2
i yi ẏi = 0,

(3.5)ÿi + u̇2σ 2
i yi = 0.

We can therefore take u itself to be the affine parameter and, with the appropriate choice of
boundary conditions, define the null congruence in the neighbourhood of, and including, γ as:

v = Θ − 1

2

2∑
i=1

σi tan(σiu + ai)y
i2,

(3.6)yi = Y i cos(σiu + ai).

The constants Θ and Y i are nothing other than the Rosen coordinates for the symmetric plane
wave. In fact, in Rosen coordinates the symmetric plane wave metric is

(3.7)ds2 = 2dudΘ −
2∑

i=1

cos2(σiu + ai) dY i2.

The integration constants ai can be thought of as redundancies in the definition of the null con-
gruence and the associated Rosen coordinates; in particular, they determine the position of the
caustics. Given this, we have

Ei
a = δia cos(σiu + ai),

Ea
i = δia sec(σiu + ai),

(3.8)Ωij = −δij σi tan(σiu + ai)

and it is immediate that the eikonal phase is

(3.9)Θ(x) = v + 1

2

2∑
i=1

σi tan(σiu + ai)y
i2.

The tangent vector to the congruence, defined as �μ = gμν∂νΘ , is therefore

(3.10)� = ∂u + 1

2

2∑{
σ 2

i

(
tan2(σiu + ai) − 1

)
yi2∂v − σi tan(σiu + ai)y

i∂i

}
.

i=1
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The polarization vectors are orthogonal to this tangent vector, � · εi = 0, and are further con-
strained by (2.9). Solving (2.7) for the normalized polarization (one-form) yields13

(3.11)ε̂i = dyi + σi tan(σiu + ai)y
i du.

The scalar amplitude A is determined by the parallel transport equation (2.8), from which we
readily find (normalizing so that A(0) = 1)

(3.12)A=
2∏

i=1

√
cosai

cos(σiu + ai)
.

The null congruence in the symmetric plane wave background displays a number of features
which play a crucial role in the analysis of the refractive index. They are best exhibited by con-
sidering the Raychoudhuri equation, which expresses the behaviour of the congruence in terms
of the optical scalars, viz. the expansion θ̂ , shear σ̂ and twist ω̂. These are defined in terms of
the covariant derivative of the tangent vector as [30]:

θ̂ = 1

2
Dμ�μ,

σ̂ =
√

1

2
D(μ�ν)Dμ�ν − θ̂2,

(3.13)ω̂ =
√

1

2
D[μ�ν]Dμ�ν.

The Raychoudhuri equations describe the variation of the optical scalars along the congruence:

∂uθ̂ = −θ̂2 − σ̂ 2 + ω̂2 − Φ00,

(3.14)∂uσ̂ = −2θ̂ σ̂ − |Ψ0|.
(We will not need the equation for the twist.) Here, we have introduced the Newman–Penrose
notation (see, e.g. Ref. [30]) for the components of the Ricci and Weyl tensors: Φ00 = 1

2Rμν�
μ�ν ,

Ψ0 = Cμρνσ �μ�νmρmσ .14 As demonstrated in Ref. [31], the effect of vacuum polarization on
low-frequency photon propagation is also governed by the two curvature scalars Φ00 and Ψ0.
Indeed, many interesting results such as the polarization sum rule and horizon theorem [31,32]
are due directly to special properties of Φ00 and Ψ0. As we now show, they also play a key rôle
in the world-line formalism in determining the nature of the full dispersion relation.

By its definition as a gradient field, it is clear that D[μ�ν] = 0 so the null congruence is twist-
free ω̂ = 0. The remaining Raychoudhuri equations can then be rewritten as

∂u(θ̂ + σ̂ ) = −(θ̂ + σ̂ )2 − Φ00 − |Ψ0|,
(3.15)∂u(θ̂ − σ̂ ) = −(θ̂ − σ̂ )2 − Φ00 + |Ψ0|.

The effect of expansion and shear is easily visualized by the effect on a circular cross section
of the null congruence as the affine parameter u is varied: the expansion θ̂ gives a uniform

13 The one-form is exactly what appears in the vertex operator via εiμẋμ .
14 For the symmetric plane wave, the Newman–Penrose null tetrad basis �μ, nμ , mμ , m̄μ comprises � as in Eq. (3.10),

n = ∂v , and m = 1√
2
(ε1 + iε2). The basis vectors satisfy � · n = 1, m · m̄ = −1 and the metric can be expressed as

gμν = 2(�(μnν) − m(μm̄ν)). Since Eqs. (3.3) and (3.4) are the only non-vanishing components of the Ricci and Weyl

tensors, it follows that Φ00 = 1
2 Ruu = 1

2 (σ 2
1 + σ 2

2 ), Ψ0 = 1
2 (Cu1u1 − Cu2u2) = 1

2 (σ 2
2 − σ 2

1 ).
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(a) (b)

Fig. 4. (a) Type I null congruence with the special choice σ1 = σ2 and a1 = a2 so that the caustics in both directions
coincide as focal points. (b) Type II null congruence showing one focusing and one defocusing direction.

expansion whereas the shear σ̂ produces a squashing with expansion along one transverse axis
and compression along the other. The combinations θ̂ ± σ̂ therefore describe the focusing or
defocusing of the null rays in the two orthogonal transverse axes.

We can therefore divide the symmetric plane wave spacetimes into two classes, depending on
the signs of Φ00 ± |Ψ0|. A type I spacetime, where Φ00 ± |Ψ0| are both positive, has focusing in
both directions, whereas type II, where Φ00 ± Ψ0 have opposite signs, has one focusing and one
defocusing direction. Note, however, that there is no “type III” with both directions defocusing,
since the null-energy condition requires Φ00 � 0.

For the symmetric plane wave, the focusing or defocusing of the geodesics is controlled by
Eq. (3.6), yi = Y i cos(σiu + ai). Type I therefore corresponds to σ1 and σ2 both real, whereas in
type II, σ1 is real and σ2 is pure imaginary. The behaviour of the congruence in these two cases
is illustrated in Fig. 4.

To see this explicitly in terms of the Raychoudhuri equations, note first that the curvature
scalars Φ00 − |Ψ0| = σ 2

1 , Φ00 + |Ψ0| = σ 2
2 are simply the eigenvalues of hij . The optical scalars

are

θ̂ = −1

2

(
σ1 tan(σ1u + a1) + σ2 tan(σ2u + a2)

)
,

(3.16)σ̂ = 1

2

(
σ1 tan(σ1u + a1) − σ2 tan(σ2u + a2)

)
and we easily verify

∂uθ̂ = θ̂2 − σ̂ 2 − 1

2

(
σ 2

1 + σ 2
2

)
,

(3.17)∂uσ̂ = −2θ̂ σ̂ + 1

2

(
σ 2

1 − σ 2
2

)
.

It is clear that provided the geodesics are complete, those in a focusing direction will even-
tually cross. In the symmetric plane wave example, with yi = Y i cos(σiu + ai), these “caustics”
occur when the affine parameter σiu = π(n+ 1

2 )−ai , n ∈ Z. At a caustic, the amplitude factor A
in (3.12) diverges and correspondingly the Rosen coordinates are not well defined. In fact, the
existence of conjugate points, i.e. points p and q on a geodesic γ that can be joined by geodesics
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infinitesimally close to γ , is generic in spacetimes satisfying the null energy condition.15 The
result is summarized in the following theorem [8,33]:

Theorem. If a spacetime satisfies the “null generic condition” (i.e. every null geodesic has at
least one point where either

(3.18)Rμν�
μ�ν = 0 or �[λCμ]ρν[σ �τ ]�ρ�ν = 0,

or equivalently Φ00 = 0 or Ψ0 = 0) and the null energy condition, then every complete null
geodesic possesses a pair of conjugate points.

The existence of conjugate points will turn out to be crucial in the world-line sigma model
formalism. It means that for certain values of T (for a given ω), such that u = ±u0 are conju-
gate points, in the Penrose limit around the geodesic, there exists a family of classical solutions
corresponding to the different geodesic paths between the conjugate points.16 This implies the
existence of zero modes which, as explained in Section 5, ultimately controls the location of
singularities of the refractive index in the complex ω plane and is the key to understanding the
violation of the conventional Kramers–Kronig dispersion relation and the fate of micro-causality.

4. World-line calculation of the refractive index

In this section, we calculate the vacuum polarization and refractive index explicitly for a
symmetric plane wave. As we mentioned at the end of Section 2, the explicit calculations are
best performed in Brinkmann coordinates. We will need the expressions for Θ and εi for the
symmetric plane wave background: these are in Eqs. (3.9), (3.11) and (3.12). From these, we
have the following explicit expression for the vertex operator17

Vω,εi

[
xμ(τ)

] = (
ẏi + σi tan(σi ũ + ai) ˙̃uyi

) 2∏
j=1

√
cosai

cos(σj ũ + aj )

(4.1)× exp iω

[
v + 1

2

2∑
j=1

σj tan(σj ũ + aj )y
j2

]
.

The Gaussian action for the transverse coordinates, including the source terms (2.31), is

S(2) =
2∑

i=1

{
−1

4

1∫
0

dτ
(
ẏi2 − ˙̃u2σ 2

i yi2)

(4.2)− ωT σi

2m2

(
tan(σiu0 + ai)y

i(ξ)2 + tan(σiu0 − ai)y
i(0)2)}.

15 This does not necessarily mean that the conjugate points are joined by more than one actual geodesic, only that an
infinitesimal deformation of γ exists. Later we shall see that the existence of conjugate points relies on the existence of
zero modes of a linear problem. Conversely, the existence of a geodesic other than γ joining p and q does not necessarily
mean that p and q are conjugate [8,33].
16 Whether these deformed geodesics become actual geodesics is the question as to whether they lift from the Penrose
limit to the full metric.
17 Notice that at leading order in R/m2 we are at liberty to replace u(τ) by its classical value ũ(τ ). The argument is
identical to the one given in Section 2.
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Notice that the yi fluctuations are completely decoupled. The measure for the field xμ(τ) is
covariant and so includes the factor

√−detg[x(τ)] which can be exponentiated by introduc-
ing appropriate ghosts [25–29]. However, in Brinkmann coordinates after the re-scaling (2.27),
detg = −1 + O(λ) and so to leading order in R/m2 the determinant factor is simply 1 and so
plays no rôle. The same conclusion would not be true in Rosen coordinates.

The yi fluctuations satisfy the eigenvalue equation

ÿi + ˙̃u2
σ 2

i yi − 2ωT σi

m2

(
tan(σiu0 + ai)δ(τ − ξ) + tan(σiu0 − ai)δ(τ )

)
yi

(4.3)= λyi − C,

where C is the Lagrange multiplier that is determined by imposing the constraint
∫ 1

0 dτ yi = 0.
Now we see the utility of the Brinkmann coordinates, because Eq. (4.3) is just that of a simple
harmonic oscillator and the non-trivial aspects of the problem lie solely in the matching con-
ditions at τ = 0 and τ = ξ . On the contrary, in Rosen coordinates the eigenvalue equation has
hypergeometric solutions and is not so straightforward to deal with. Consequently, we search for
a solution in the form

(4.4)yi(τ ) =
{

A1 cos(ω1τ) + B1 sin(ω1τ) − C/ω2
1 0 � τ � ξ,

A2 cos(ω2τ) + B2 sin(ω2τ) − C/ω2
2 ξ � τ � 1,

where ω2
1 = 4ω2T 2σ 2

i (1 − ξ)2/m4 −λ and ω2
2 = 4ω2T 2σ 2

i ξ2/m4 −λ. The matching conditions
at τ = 0(= 1) and τ = ξ are the continuity of yi and the jumps

Δẏi(0) = 2ωT σi

m2
tan(σiu0 − ai)y

i(0),

(4.5)Δẏi(ξ) = 2ωT σi

m2
tan(σiu0 + ai)y

i(ξ).

These conditions, along with
∫ 1

0 dτ yi(τ ) = 0, determine the five unknowns Ai , Bi and C. A so-
lution is only possible if λ satisfies a characteristic equation F(λ) = 0. When F(λ) is suitably
normalized, the determinant of the fluctuation operator is given by F(0). This leads to the re-
markably simple formula for the determinant factor relative to flat space:

(4.6)Z(βl) =
2∏

i=1

√
β3

i cos(βi + ai) cos(βi − ai)

cos2 ai sin3 βi cosβi

,

where

(4.7)βi = ωT ξ(1 − ξ)σi

m2
.

Notice that Z → 1 in the flat space limit σi → 0.
The remaining correlation function piece is determined by the Green function

(4.8)Gij (τ, τ
′) = 〈

yi(τ )yj (τ ′)
〉
.

It is clear that this is diagonal in the polarization indices, where the diagonal components are the
solution of the equation
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[
∂2
τ + ˙̃u(τ)2σ 2

i − 2ωT σi

m2

(
tan(σiu0 + ai)δ(τ − ξ) + tan(σiu0 − ai)δ(τ )

)]
Gii(τ, τ

′)

(4.9)= −2iδ(τ − τ ′) − C.

We can find this by a brute force solution similar to that above, imposing boundary conditions
so that Gii(τ, τ

′) is continuous at τ = 0, τ ′ and ξ and its derivative jumps by the appropriate
amounts at τ = 0, τ ′ and ξ . As before, C is determined by imposing

∫ 1
0 dτ Gii(τ, τ

′) = 0. The
solutions themselves are not very illuminating and so we do not write them down here. The Green
function leads to the following remarkably simple formula for18

Gij (βl) = 〈
εi

[
x(ξ)

] · ẋ(ξ)e−iωΘ[x(ξ)]εj

[
x(0)

] · ẋ(0)eiωΘ[x(0)]〉
= m2δij

T

2∏
l=1

√
cos2 al

cos(σlũ(τ ) + al) cos(σlũ(τ ′) + al)

× [
∂τ ∂τ ′ + σi tan

(
σiũ(τ ) + ai

) ˙̃u(τ)∂τ ′ + σi tan
(
σiũ(τ ′) + ai

) ˙̃u(τ ′)∂τ

+ σ 2
i tan

(
σiũ(τ ) + ai

)
tan

(
σiũ(τ ′) + ai

) ˙̃u(τ) ˙̃u(τ ′)
]
Gii(τ, τ

′)
∣∣
τ=ξ, τ ′=0

(4.10)= 2im2δij

T

(
δ(ξ) − βi

sinβi cosβi

) 2∏
l=1

√
cos2 al

cos(βl + al) cos(βl − al)
.

The i here is crucial and appears because we are working in Minkowski signature.
Putting all these pieces together, the final result for the one-loop correction to the vacuum

polarization is

Π
1-loop
ij = α

4π

∞∫
0

dT

T
ie−iT

1∫
0

dξ Z(βl)Gij (βl)

(4.11)= δij

αm2

2π

∞∫
0

dT

T 2
ie−iT

1∫
0

dξ

{
1 − βi

sinβi cosβi

2∏
l=1

√
β3

l

sin3 βl cosβl

}
.

The term δ(ξ)Z(βl)/(cosβ1 cosβ2) has been replaced by 1 since

(4.12)lim
ξ→0

Z(βi)

2∏
l=1

√
cos2 al

cos(βl + al) cos(βl − al)
= 1.

It is remarkable that the result for the vacuum polarization is independent of ai so the ambiguity
in the choice of the null congruence has no effect on the final result. It is especially noteworthy
that the divergences of the vertex operators due the singularities of the scalar amplitude at the
caustics of the null congruence are completely removed by quantum effects.

The mass-shell conditions for the two polarization states are modified by the one-loop correc-
tion to

(4.13)
1

2

(
ω2 − �k2) + Π

1-loop
ii (ω) = 0.

18 The limits τ → ξ and τ ′ → 0 have to be taken after the derivatives have been evaluated due to implicit dependence
on ξ .
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The phase velocities are vph = ω/|�k| then and hence the refractive indices for the two velocity
eigenstates are

ni(ω) = |�k|
ω

=
√

ω2 + 2Π
1-loop
ii (ω)

ω
= 1 + 1

ω2
Π

1-loop
ii (ω) + · · ·

(4.14)= 1 + αm2

2πω2

∞∫
0

dT

T 2
ie−iT

1∫
0

dξ

{
1 − βi

sinβi cosβi

2∏
l=1

√
β3

l

sin3 βl cosβl

}

to order α. In particular, notice that the polarization vectors εi correspond directly to the two
velocity eigenstates.

5. Analysis and interpretation

The first remark is that the expression for the refractive indices (4.14) is completely UV safe
since the term in curly brackets behaves as T 2 for small T . This can be traced to the fact that we
have imposed the tree-level on-shell condition on the photon momentum.

As we proceed, it is useful to have in mind the behaviour of the refractive index in a simple
model of a dissipative dielectric medium with a single absorption band.19 This is modelled by an
electric permittivity of the form

(5.1)ε(ω) = 1 − ω2
p

ω2 − ω2
0 + iωγ

,

where ω0 is the resonant frequency and γ is the width. For weak coupling,

(5.2)n(ω) = √
ε(ω) = 1 − ω2

p/2

ω2 − ω2
0 + iωγ

+ · · · .

Written in the same form as (4.14) as a T integral, we have

(5.3)n(ω) = 1 − ω2
p

ωω0

∞∫
0

dT e−iT e−ωγT/(2ω2
0) sin(ωT /ω0).

Fig. 5. The real (green) and imaginary (red) parts of n(ω)−1 for a simple model of a single absorption band with ω0 = 1,
ωp = 0.1 and γ = 0.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

19 This simple model forms the basis of many textbook discussions; for example, see Jackson [34], Chapter 7.10.
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In this case, the T integral is perfectly well defined without the need for an iε prescription. The
real and imaginary parts of n(ω)−1 are sketched in Fig. 5. At low frequencies the phase velocity
is subluminal. At frequencies ω ∼ ω0 the imaginary part of n(ω) has an absorption peak and
the phase velocity changes over to being superluminal. At high frequencies, the phase velocity
approaches 1 as 1/ω2. It is important to emphasize that the superluminal phase velocity at high
frequencies is not associated with a violation of causality since asymptotically it approaches c.

5.1. The analytic structure of the integrand

When we compare our result (4.14) to the simple model of a dissipative medium (5.3), the
most striking difference is the existence of singularities in the integrand. When σi is real, the
integrand (4.14) has branch point singularities on the positive real axis at

(5.4)T = πm2n

2ξ(1 − ξ)σiω
, n = 1,2, . . .

and the T integral must be properly defined in order to have a finite result. The correct procedure
is to take the contour to lie just below the real axis. It is significant that these singularities arise
from zeros of the fluctuation determinant (4.6) and have a natural interpretation in terms of zero
modes, viz. non-trivial solutions of (4.3) with zero eigenvalue λ = 0. For the special case when
ξ = 1

2 these zero modes are particularly simple: u = ũ(τ ) as in (2.16) and

(5.5)yi(τ ) = sin(2nπτ).

The expression for v(τ) is then completely determined by solving the geodesic equation

(5.6)v̈ +
2∑

i=1

{
2u̇σ 2

i yi ẏi + ωT σ 2
i

2m
yi2 sec2(σiu + ai)

(
δ(τ − ξ) − δ(τ )

)} = 0.

These solutions are therefore associated with geodesics that are arbitrarily close to γ that inter-
sect γ at both u = ±u0 and for n > 1 at points in between. In other words, u = ±u0 are conjugate
points on the geodesic γ . The n = 1 and n = 2 zero modes are illustrated in Fig. 6.

For generic ξ the solutions are more complicated: again u = ũ(τ ) as in (2.16) while

(5.7)yi(τ ) =
{

A1 sin(σi ũ(τ )) + B1 cos(σi ũ(τ )) 0 � τ � ξ,

A2 sin(σi ũ(τ )) + B2 cos(σi ũ(τ )) ξ � τ � 1

Fig. 6. The n = 1 (red) and n = 2 (blue) zero modes for ξ = 1
2 . The points u = ±u0 are conjugate points for γ . (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. The n = 1 zero mode for the case ξ = 1
4 and ai = 0.2.

and v(τ) solves (5.6). Imposing the continuity of yi and the conditions (4.5) implies that for n

odd we must have

(5.8)A1 = A2 = 1 − 2ξ

1 − ξ
B1 tanai, B2 = − ξ

1 − ξ
B1,

and so there is only a single zero mode. For n even, however, there are two zero modes since
there are only two conditions on the four constants:

(5.9)B1 = B2, (1 − ξ)A1 + ξA2 = B1 tanai.

Once again these solutions are formed from portions of two inequivalent geodesics which in-
tersect at xμ(0) and xμ(ξ): in other words, the points xμ(0) and xμ(ξ) are conjugate, however,
for ai = 0 the conjugate points do not generally lie on γ . An example of the first zero mode is
illustrated in Fig. 7.

Similarly the singularities on the imaginary T axis that arise when one of the σi is imaginary
can be understood in terms of these zero modes, but with imaginary affine parameter u → iu.
It is tempting to think that these solutions in imaginary affine parameter can be associated with
world-line instanton solutions. These kinds of instanton in the world-line sigma model (not to be
confused with instantons in the original field theory) have been discussed in the literature in the
context of non-trivial electromagnetic backgrounds and can be used to describe Schwinger pair
creation in that context [35,36]. Here, we shall shortly see why this interpretation is exactly right,
since the singularities on the imaginary axis determine the imaginary part of the refractive index
which describes the dissipative nature of the propagation that arises from the physical process
γ → e+e−. In the world-line instanton interpretation this is described as a tunneling process.

Now that we have explained the origin of the singularities, we can continue with the analy-
sis of (4.14). In order to produce a convergent integral, the Wick rotation T → −iT can be
performed as illustrated in Fig. 8. Once Wick rotated, the resulting integral has the form of an
inverse Borel transform:

ni(ω) = 1 − αm2

2πω2

∞+iε∫
0

dT

T 2
e−T

(5.10)×
1∫

0

dξ

{
1 − βi

sinhβi coshβi

2∏
l=1

√
β3

l

sinh3 βl coshβl

}
.
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Fig. 8. Wick rotating the integration contour to the negative imaginary axis. The crosses represent branch point singular-
ities.

Fig. 9. After Wick rotation, the contour C that computes the imaginary part of ni(ω).

When σ2 is imaginary, i.e. the type II case, there are branch point singularities on the integration
contour and one has to be careful to take the contour to lie above the real axis as indicated by the
iε prescription.

Since the T integral is of the form
∫ ∞+iε

0 dT e−T f (T ) where the function f (T ) satisfies the
reality condition f (T ∗)∗ = f (T ), it follows that the imaginary part of the integral is equal to
1
2

∫
C dT e−T f (T ), where C is a contour that comes in from ∞ below the cut, goes round the

first branch point singularity and then goes to ∞ above the cut, as illustrated in Fig. 9. Hence,

Imni(ω) = − αm2

4πω2

∫
C

dT

T 2
e−T

(5.11)×
1∫

0

dξ

{
1 − βi

sinhβi coshβi

2∏
l=1

√
β3

l

sinh3 βl coshβl

}
.

The imaginary part of the refractive index has an interesting interpretation because it computes
the probability for pair creation, γ → e+e−. In fact the total cross-section per unit volume, or
inverse mean free path, is

(5.12)�−1
m.f.p. ∼ ω Imn(ω).

Notice that it is only non-vanishing in the type II case when there are singularities on the real
axis in the (Euclidean) T plane. Earlier we pointed out that these singularities correspond to
non-trivial classical loops with imaginary affine parameter. We can now identify these solutions
as world-line instantons that describe the tunnelling process γ → e+e−. The fact that they occur
only when σ2 is imaginary is natural. Remember, when σ2 is imaginary the null congruence
is defocusing in the y2 direction. This suggests the following intuitive picture: after a virtual
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e+e− pair is produced by tunnelling, the pair then follow diverging geodesics and become real
particles.

At low frequencies, the probability is dominated by the position of the first singularity at

(5.13)T = πm2

2ωξ(1 − ξ)|σ2| ,

in Euclidean space, corresponding to the fundamental world-line instanton which looks exactly
like the red loop in Fig. 6 in Euclidean time. The Euclidean action of a zero mode is simply
SE = T , and for small ω we can use the steepest decent method to approximate the ξ integral.
The saddle-point is at ξ = 1

2 and hence the leading order behaviour of (5.11) for small ω will be
of the form of an essential singularity:

(5.14)Imni(ω) ∼ exp

(
−2πm2

ω|σ2|
)

.

5.2. The low frequency regime

Low frequency means that ω2R/m4 � 1. As a consequence of this, the length of the loop
(2.16), L ∼ ω/m2, is much smaller than the curvature scale: LR1/2 = ωR1/2/m2 � 1. The lead-
ing order term in this limit will consequently be insensitive to the u dependence of hij (u) and so
our result for this term is valid for all background metrics and not just ones which yield symmet-
ric plane waves in the Penrose limit.

To calculate the expansion in ω, we expand the Wick rotated integrand in (5.10) in powers
of ω. The first term in the expansion is ω independent:

(5.15)ni(ω) = 1 − α

2π

4σ 2
i + 3

∑2
j=1 σ 2

j

180m2
+O

(
ω2)

and so there is no dispersion in this limit. Using (3.3), this can be written in terms of the curvature,
and the Newman–Penrose scalars, as

ni(ω) = 1 − α

120π

Ruu

m2
− α

90π

Ruiiu

m2
+O

(
ω2)

(5.16)= 1 − α

360π

1

m2

(
10Φ00 ∓ 4|Ψ0|

) +O
(
ω2),

for i = 1,2. In principle, this low frequency expression should follow from the terms in the low
energy one-loop effective action of scalar QED that are quadratic in the field strength F and
linear in the curvature. These terms have been calculated in spinor QED [1,17,18] and may be
extracted for scalar QED from [10].20

It is interesting to consider the higher terms in the frequency expansion in certain particular
examples. For example, for the case of a type I conformally flat background, σ1 = σ2 = R1/2,
the velocity eigenstates for both polarizations have

20 Even given the effective action, one must be very careful in simplifying with integration by parts because the on-shell
photon wavefunction does not fall off at infinity.
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ni(ω) = 1 − αR

2πm2

[
1

18
− 71

14175

ω2R

m4
+ 428

189189

(
ω2R

m4

)2

(5.17)− 15688

6891885

(
ω2R

m4

)3

+ · · ·
]
.

This series is divergent but alternating and this is correlated with the fact that it is Borel sum-
mable, with the sum being defined by the convergent integral in (5.10) which has no singularities
on the real axis. Notice that ni(ω) is real to all orders in the expansion and since there are no cuts
on the real axis the imaginary part vanishes, as is evident in (5.11).

For the type II Ricci flat background, σ1 = iσ2 = R1/2, one polarization is superluminal at
low frequencies with

(5.18)

n1(ω) = 1 − αR

2πm2

[
1

45
− 37

28350

ω2R

m4
+ 34

85995

(
ω2R

m4

)2

− 43

135135

(
ω2R

m4

)3

+ · · ·
]
.

For the second, subluminal, polarization eigenstate,

(5.19)

n2(ω) = 1 + αR

2πm2

[
1

45
+ 37

28350

ω2R

m4
+ 34

85995

(
ω2R

m4

)2

+ 43

135135

(
ω2R

m4

)3

+ · · ·
]
.

The first series (5.18) is just the alternating version of (5.19). In both cases the Borel transforms
have branch point singularities on the real axis and this is indicative of an imaginary part (5.14)
which vanishes to all orders in the ω2R/m4 expansion.

5.3. The high frequency regime

In the high-frequency limit ω2R/m4 � 1, by re-scaling T → m2T/(ωξ(1 − ξ)) and expand-
ing exp(−m2T/(ωξ(1 − ξ))) = 1 + · · · , we can show that the ni(ω) approach 1 like 1/ω:

(5.20)ni(ω) = 1 − αCi

12πω
+O

(
logω

ω2

)
,

where Ci is the integral

(5.21)Ci =
∞+iε∫
0

dT

T 2

{
1 − σiT

sinhσiT coshσiT

2∏
l=1

√
(σlT )3

sinh3 σlT coshσlT

}
.

Notice that the behaviour of the subleading term is softer than 1/ω2. For the conformally flat case
with σ1 = σ2 ≡ R1/2, the integral (5.21) can be evaluated exactly by contour integration yielding

(5.22)Ci =
(

1

3
+ 7π2

36

)
R1/2,

for both i = 1,2.
For the Ricci flat type II case (the vacuum gravitational wave), σ1 = iσ2 ≡ R1/2, although we

cannot evaluate Ci analytically, there is an interesting relation

(5.23)C2 = −iC∗
1 ,
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Fig. 10. The behaviour of n1(ω) − 1 = n2(ω) − 1, in units of αR/(2πm2), as a function of 1
2 logω2R/m4 for the type I

conformally flat case σ1 = σ2 ≡ R1/2. The intercept ni(0) − 1 = − 1
18 � −0.056.

(a) (b)

Fig. 11. (a) The behaviour of Reni(ω) − 1 (i = 1 red, i = 2 green), in units of αR/(2πm2), as a function of
1
2 logω2R/m4 for the type II Ricci flat case (vacuum gravitational wave) σ1 = iσ2 = R1/2. Notice that the intercepts

Ren1(0) and Ren2(0) lie the equal amount 1
45 � 0.023 below and above 1, respectively, in accordance with the po-

larization sum rule [31]. The resolution is not sufficient to show that the low-frequency subluminal photon becomes
superluminal at high frequency. (b) A close-up of the region where Ren2(ω) − 1 changes sign signalling that the sublu-
minal photon becomes superluminal at sufficiently high frequency. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

that follows from the definition of the integrals. A numerical evaluation in this case gives

(5.24)C1 = (0.22 − 0.014i)R1/2, C2 = (0.014 − 0.22i)R1/2,

which implies that both polarization states are superluminal at high frequencies. Hence, n2(ω)

must change from being greater than 1 to less than 1 at some intermediate frequency.

5.4. Numerical analysis

Type I: In this case, the integrand (5.10) is regular on the real axis and so the resulting refractive
indices are real and there is no pair creation. Fig. 10 shows a numerical evaluation n(ω) for the
conformally flat background with σ1 = σ2 ≡ R1/2.
Type II: In this case, the integrand (5.10) has branch point singularities on the real axis. From the
point of view of a numerical evaluation, it is therefore not useful to perform the Wick rotation.
A useful alternative is to perform a “half” Wick rotation by rotating the contour of (4.14) to lie
along T → (1 − i)T /

√
2. The resulting integral is convergent and can then be evaluated numer-

ically. We find that the refractive indices have both a real and imaginary part, as we anticipated
earlier. Figs. 11 and 12 show the real and imaginary parts of ni(ω) for the example of a Ricci flat
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(a) (b)

Fig. 12. The behaviour of (a) Imn1(ω) and (b) Imn2(ω) for the superluminal polarization state, in units of αR/(2πm2),
as a function of 1

2 logω2R/m4 for the type II Ricci flat case (vacuum gravitational wave) σ1 = iσ2 = R1/2. Notice that
the subluminal polarization state, which is aligned with the defocusing direction in the null congruence, has a much larger
value of Imn(ω) than the superluminal state.

(a) (b)

Fig. 13. The integration contour for
∮

dωn(ω)/ω used in the proof of the KK relation for (a) the simple dissipative model
with poles lying under the real axis (b) conformally flat case with poles on the imaginary axis.

background with σ1 = iσ2 = R1/2. Notice that the subluminal polarization state n2(ω) behaves
superficially like our simple model of a dissipative medium in Fig. 5.

6. Micro-causality and the Kramers–Kronig relation

Before we analyse our curved spacetime result, let us first consider the simple model of a
dissipative medium. In that case, from (5.2) we see that n(ω) has simple poles in the lower-half
plane at ω = ±ω0 − iγ /2 (for γ � ω0). Hence, n(ω) is analytic in the upper-half plane and the
Kramers–Kronig relation is trivially satisfied. To see this, consider

∫
C dω/ωn(ω) for a contour

along the real axis, jumping over the simple pole at ω = 0, completed by the large semi-circle in
the upper-half plane, illustrated in Fig. 13. If n(ω) is analytic in the upper-half plane, the total
integral is 0 and so:

0 =
∫

semi-circle

dω

ω
n(ω) − πin(0) +P

∞∫
−∞

dω

ω
n(ω)

(6.1)= πi
(
n(∞) − n(0)

) +P
∞∫

−∞

dω

ω
n(ω).
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Taking the imaginary part, and assuming that n(∞) and n(0) are real and that Imn(ω) is an odd
function, immediately yields (1.1). It is a simple matter to check the relation explicitly for the
dissipative model (5.2).

For curved spacetime this argument fails because there are singularities on the imaginary axis
which have to be included in (6.1), as illustrated in Fig. 13. For example, for the conformally flat
type I case, σ1 = σ2 = R1/2, the singularities are poles whose residues must be included21:

(6.2)πi
(
n(∞) − n(0)

) +P
∞∫

−∞

dω

ω
n(ω) = pole contribution.

Since in this case Imn(ω) = 0, and including the contribution from the poles on the imaginary
axis, (6.2) becomes

Ren(0) − Ren(∞)

(6.3)= αR

πm2

∞∫
0

dT e−T

1∫
0

dξ
(
ξ(1 − ξ)

)2
∞∑

n=1

Resf (iπn/2),

where we have defined the function

(6.4)f (x) = (
1 − x4/

(
sinh4 x cosh2 x

))
/x3.

The residue sum can be regularized by considering f (x)eiax and taking a → 0 at the end. The
result is

(6.5)Ren(0) − Ren(∞) = − αR

36πm2
,

which is in perfect agreement with (5.17) and (5.20). Notice that we have established this result
by interchanging the order of the ω and T integrals in which case the singularities appear as poles
on the imaginary axis. However, if we perform the T integral first, then the singularities become
a branch cut in ω from 0 to ∞ in the upper-half plane.

The fact that n(ω) is not analytic in the upper-half plane is intimately connected with the issue
of micro-causality, as we now explain. In our simple model of a dissipative medium, the Fourier
transform of the susceptibility, χ(ω) = (ε(ω) − 1)/(4π),

(6.6)G(t) = 2

∞∫
−∞

dω e−iωtχ(ω),

plays the rôle of a response function: �D(t) = �E(t) + ∫
dt ′ G(t − t ′) �E(t ′). In the simple model,

n(ω) and hence χ(ω) is analytic in the upper-half plane and so, when t < 0, we can compute the
ω integral by completing the contour with a semi-circle at infinity in the upper-half plane. Since
there are no singularities, the integral vanishes implying G(t) = 0: cause precedes effect. Taking
the explicit Fourier transform, we have

(6.7)G(t) = ω2
p

ω0
e−γ t/2 sin(ω0t)θ(t).

21 For more general examples, the singularities are branch points and the integration contour has to come around them
from ε + i∞ down the imaginary axis before going back to −ε + i∞ and completing the semi-circle.
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Fig. 14. Including vacuum polarization effects, the photon momentum k may lie outside the forward light cone (u > 0,
v > 0) of its original null geodesic v = 0. The potential violation of micro-causality implies that the retarded propagator
is non-vanishing even for v < 0 (the shaded area), which lies outside the forward light cone.

In the curved spacetime case, n(ω) is not analytic in the upper-half plane and so it implies that
the analogue of G(t) will be non-vanishing for t < 0.

We now place this simple analysis in the context of relativistic QFT, where response functions
are more properly understand in terms of (retarded) propagators. The one-loop vacuum polariza-
tion Π1-loop contributes to the propagator via Δ = Δtree −ΔtreeΠ1-loopΔtree +· · · . In a real space
picture, the issue of micro-causality rests on the fact that the retarded propagator Δret(x) is only
non-vanishing in, or on, the forward light cone.22 In prosaic language, an external source can
only influence the fields in the future. For instance, in the present context the real space tree-level
retarded propagator Δtree

ret is only non-vanishing on the forward light cone. However, what about
the one-loop correction? Notice that we have only calculated Π1-loop(ω) on-shell in momentum
space and this means that we do not have access to the complete one-loop real space propaga-
tor. However, we can perform the Fourier transform with respect to ω, which determines the
propagator as a function of the null coordinate v:

(6.8)Π1-loop(v) =
∞∫

−∞
dω e−iωvΠ1-loop(ω).

This is a retarded quantity if the integration contour is taken to avoid singularities by veer-
ing into the upper-half plane, when v < 0, and the lower-half plane, when v > 0. For QFT in
flat spacetime, Π1-loop(ω) is analytic in the upper-half plane and so when v < 0 one computes
the ω integral by completing the contour with a semi-circle at infinity in the upper-half plane.
Since there are no singularities in the upper-half plane, the integral vanishes and consequently
Π

1-loop
ret (v) = 0 for v < 0. This is consistent with the fact that the region v < 0 lies outside the

forward light cone. Hence, in this case micro-causality is preserved as a consequence of analyt-
icity in the upper-half plane in frequency space. In curved spacetime, on the contrary, Π1-loop(ω)

is not analytic in the upper-half plane and consequently it would seem that the one-loop retarded
propagator Π

1-loop
ret (v) must receive contributions from the region v < 0 which lies outside the

forward light cone. See Fig. 14.
The idea here, is that ω is identified with one of the lightcone momenta p+. When the

photon is on-shell at tree level, the other component vanishes, p− = 0. Now by giving p− a

22 When we talk in the following about the “light cone” we mean the geometrical null surface defined by the metric gμν .
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small positive imaginary part a non-analyticity in the upper-half p+ plane would be in the re-
gion Imp+/ Imp− > 0 which means that the retarded propagator is non-vanishing outside the
lightcone. However the loophole in this reasoning is that once the T and ξ integrals have been
performed, the non-analyticities of n(ω) as a function of ω = p+ arises as branch cuts joining
p+ = 0 to p+ = i∞. When taken off-shell, it may be that the branch cut slips into the causally
safe region Imp+/ Imp− < 0. The only way to really settle this issue is to perform a calculation
of the vacuum polarization with the momentum off-shell [39].

One final point to emphasize is that in the type II examples where the imaginary part of the
refractive index is non-vanishing, it is positive as expected from the optical theorem23 which
relates it to the total cross-section per unit volume, or inverse mean free path as in (5.12). In this
sense, spacetime acts as an ordinary dissipative medium. However, unlike the simple dissipative
model where the imaginary part of the refractive index falls off as 1/ω3, for curved spacetime the
imaginary part falls off as αR1/2/ω. This implies that the mean free path saturates to a constant
∼ 1/(αR1/2).

7. Remarks on general backgrounds

In this section, we consider some of the features of our analysis which apply in more general
non-symmetric plane wave backgrounds when hij (u) = Ruiju(u) does not take the special form
(3.1). For the moment, we shall assume that the Penrose limit is non-trivial, i.e. not flat space.
Our purpose is to highlight how the resulting behaviour of the refractive index depends to a large
extent on the properties of the null congruence.

At the beginning of Section 5, we found that the analytic structure of the integrand (4.14)—
more precisely the positions of the singularities—could be traced to the existence of zero modes
of the yi fluctuation equations. In the general case, the equation for these zero modes is

(7.1)ÿi + ˙̃u2
hij y

j + 2ωT

m2
Ωijy

j δ(τ − ξ) − 2ωT

m2
Ωijy

j δ(τ ) = −C.

Considering the solutions of these 2nd order equations in the two regions 0 � τ � ξ and ξ �
τ � 1, and including C and T , there are generically nine unknowns to be fixed, up to overall
scaling of the solution. At τ = 0 and τ = ξ there are a total of eight boundary conditions on yi

and ẏi , with the constraint
∫ 1

0 dτ yi = 0 providing a ninth condition. In general, we therefore
expect solutions to exist only for particular values of T . This is exactly what we found for the
symmetric case where the special values of T are given in (5.4). Although, for n even we found
two zero modes rather than the one expected.

As we have seen, the existence of the zero modes is related to the behaviour of the null
congruence. This can be made more concrete by looking at the special case when ξ = 1

2 (which
is, in any case, picked out by the saddle-point method described above). In this case, by symmetry
we expect a solution of the form that we found in the symmetric plane wave case, (5.5), but where
the transverse geodesic deviation vector yi(u) satisfies the equation for a Jacobi field along the
geodesic γ :

(7.2)
d2yi

du2
= −hij y

j ,

23 It is amusing to note that here we are applying the optical theorem in its original context of the refractive index from
which the name of the theorem is derived.
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subject to the boundary conditions yi(±u0) = 0. Because of the latter, the source terms vanish
and so the derivatives dyi/dτ must be continuous at τ = 0(≡ 1) and τ = ξ , a fact that follows
directly from the ansatz (5.5). In addition, the constraint

∫ 1
0 dτ yi = 0 is automatically satisfied

and the Lagrange multiplier C vanishes. The classical solution is then u = ũ(τ ), (with a slight
abuse of notation) yi(τ ) = yi(ũ(τ )) and v(τ) satisfies its own geodesic equation. Since (7.2)
is a second order linear equation there will in general be solutions only for particular values of
u0 = ωT/(4m2). Since yi(u) vanishes at u = ±u0, at least when the special values of T are
real, these points are precisely conjugate points along γ . Hence, the existence of zero modes
(for real values of T ) is tied directly to the existence of conjugate points. Notice, however, that
the special values of T for which zero modes exist are not necessarily real. This is exactly what
happens in the type II examples, where the singularities corresponding to world-line instantons
have imaginary T .

The zero modes dictate the analytic structure of the T integral which in turn determines the
nature of the physics. In particular, the singularities along the real T axis play a prominent rôle
because, as we have seen, they are responsible for the non-trivial analytic structure of n(ω).
Moreover, as we have argued above, zero modes for real T correspond directly to the existence of
conjugate points along γ . But the existence of these conjugate points, as explained in Section 3,
is generic. Therefore we are led to the following conclusion:

Conclusion. Violations of analyticity and the Kramers–Kronig relation are generic and can be
traced to the focusing nature of null geodesics and the existence of conjugate points implied by
the null energy condition.

As already mentioned, the Penrose limit is ideally suited to the analysis of photon propaga-
tion in arbitrary background spacetimes. Many of the characteristic features of superluminal
low-frequency propagation previously found in specific examples, including Schwarzschild,
Reissner–Nordström and Kerr black holes [1,15,31] as well as gravitational waves [1,16], can
be seen directly in the Penrose limit. For example, a maximally symmetric spacetime such as de
Sitter has vanishing Φ00 and Ψ0 and the low-frequency phase velocity vph(0) receives no correc-
tion from vacuum polarization. Using our formalism, we see immediately that at leading order
in R/m2 this result holds for all frequencies since the Penrose limit of a maximally symmetric
spacetime is flat [23].

In Schwarzschild spacetime, we have previously found that while a photon following a general
null geodesic may experience a superluminal shift in vph(0), the effect vanishes for purely radial
geodesics. (In fact, this remains true for photons following principal null geodesics [30] for
any Petrov type D spacetime such as Schwarzschild or Kerr, again due to the vanishing of the
corresponding Φ00 and Ψ0.) This is clear in our formalism. The Penrose plane wave limit for the
Schwarzschild metric is, in Brinkmann coordinates,

(7.3)ds2 = 2dudv + 3mL2

r(u)5

((
y1)2 − (

y2)2)
du2 − (

dy1)2 − (
dy2)2

,

where L specifies the angular momentum and r(u) is given by the solution of the geodesic
equation. We see immediately that for radial trajectories the Penrose limit is flat and so, at least
at O(R/m2), the phase velocity vph(ω) remains equal to c for all frequencies, not just in the low-
frequency limit. Clearly, in such cases where the Penrose limit is flat, the expansion (2.30) gives
a systematic way to go beyond leading order in R/m2. An interesting feature is the existence
of a “peeling theorem” [23], whereby successive orders in the Penrose expansion involve the
curvatures Ψ0,Ψ1, . . . ,Ψ4.
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This gives a first glance at the power of the Penrose plane wave geometry combined with the
world-line sigma model approach. Moreover, other general features of null congruences will play
an important rôle. For example, we have been implicitly assuming that the geodesics are com-
plete so that the affine parameter varies from −∞ to +∞. However, there are spacetimes where
certain null geodesics are incomplete and the affine parameter has a finite limiting value. This
usually signals the existence of a spacetime singularity, as for example in the case of Schwarz-
schild orbits for L less than a critical value, where the Penrose limit becomes singular [23].
Clearly, this can affect the zero modes in the sigma model and therefore the singularities and
asymptotic behaviour of the refractive index. The rôle of horizons in relation to the Penrose limit
also deserves investigation. All of these issues will be considered in detail elsewhere.

8. Conclusions

In this paper, we have for the first time evaluated the non-perturbative frequency dependence
of the vacuum polarization for QED in curved spacetime and determined the corresponding re-
fractive index for photon propagation. In so doing, we have resolved the outstanding problem
in “quantum gravitational optics” [3,4], viz. how to reconcile the prediction of a superluminal
phase velocity at low frequency with causality. Remarkably, the resolution involves the violation
of analyticity calling into question micro-causality in curved spacetime.

These results have been achieved by combining two powerful techniques: (i) the world-line
sigma model, which enables the non-perturbative frequency dependence of the vacuum polar-
ization to be evaluated by a saddle-point expansion around a geometrically motivated classical
solution, and (ii) the Penrose plane wave limit, which encodes the relevant tidal effects of space-
time in the neighbourhood of the original null geodesic traced by the photon.

The form of the refractive index reflects the nature of the background spacetime. We identify
two classes. In type I backgrounds, which include conformally flat spacetimes,24 both photon
polarizations are superluminal at low frequencies, but the phase velocity approaches c at high
frequency. The imaginary part of the refractive index vanishes. In type II backgrounds, which
include Ricci flat spacetimes, photon propagation may display birefringence with one superlumi-
nal and one subluminal polarization at low frequency. In both cases, however, the high frequency
phase velocity is c. The refractive index develops an imaginary part, indicating a non-zero prob-
ability for pair creation, γ → e+e−. Since the high-frequency limit of the phase velocity is
identified with the wavefront velocity vwf, which is the “speed of light” relevant for causality,
we see explicitly how superluminal propagation in the low-frequency theory is compatible with
causality.

Although these results were obtained using the Penrose limit in locally symmetric spacetimes,
they are expected to be generally true. The reason is that the analytic properties of the refractive
index can be related in the world-line sigma model formalism to general results in the theory of
null congruences. In particular, the distinction between type I and type II spacetimes is whether
the null geodesics in the congruence focus in both transverse directions (type I), or focus in
one and defocus in the other (type II). The result that at least one direction is focusing is a
consequence of the null energy condition. The presence of a focusing direction in the congruence
then implies the existence of conjugate points, which leads to the existence of zero modes and
ultimately yields poles in the refractive index in the upper-half complex plane, violating the

24 Note that the Penrose limit of a conformally flat spacetime is also conformally flat. Similarly for Ricci flat, and also
locally symmetric, spacetimes [23].
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analyticity assumptions used to derive the Kramers–Kronig dispersion relation. The violation of
this dispersion relation in turn allows n(∞) > n(0) and removes the apparent paradox of having
a superluminal phase velocity vph(0) > c while the wavefront velocity vwf = vph(∞) = c.

This is potentially the most far-reaching conclusion of this paper. The null energy condition
and the general relativistic theory of null congruences necessarily imply a non-analyticity of the
refractive index, although the full implications of this for micro-causality and the other axioms
of S-matrix theory will only follow from an off-shell extension of the calculation.

The loss of analyticity in n(ω), or more generally in forward scattering amplitudes, also has
important implications for the idea that constraints may be placed on the parameters of a low-
energy effective field theory by the requirement that it admits a consistent UV completion [4,
37,38]. These constraints are typically derived either by requiring the absence of superluminal
effects in the low-energy theory or assuming analyticity in dispersion relations involving forward
scattering amplitudes. While these remain valid in flat spacetime, we have shown that they are
not applicable to fundamental UV theories involving gravity, including string theory.

The full implications of the calculation of the refractive index and the issues of causality and
micro-causality remain to be explored, especially in relation to horizons and singularities. The
significance of the UV–IR mixing whereby the high-frequency limit probes the global properties
of the null geodesic congruence also deserves to be better understood. What is clear, however,
is that the results described here will have a significant impact on our understanding of quantum
field theories involving gravity.

Note added

We have now completed a full off-shell calculation of the vacuum polarization tensor and find
that precisely this behaviour occurs. The branch point at p+ = i∞ is shifted to p+ = m2/p−
with Imp+/ Imp− < 0. Full details will be presented elsewhere [40].

Acknowledgements

We would like to thank Asad Naqvi for many useful conversations and Sergei Dubovsky,
Alberto Nicolis, Enrico Trincherini and Giovanni Villadoro for pointing out the necessity of
working off-shell in order to completely settle the question of micro-causality. T.J.H. would also
like to thank Massimo Porrati for a helpful discussions and Fiorenzo Bastianelli for explaining
some details of his work on the world-line formalism. This work was supported in part by PPARC
grant PP/D507407/1.

Appendix A. Power counting

In this appendix, we prove in an alternative way one of the key results of this paper: that each
loop in the world-line QFT comes with a power of R/m2 and so loops are suppressed in the limit
of weak curvature R � m2. In order to assess the behaviour of a given graph in perturbation
theory, it is useful to re-scale T → T/m2 and then τ → τT and x → √

T x so that the world-line
action can be split as

(A.1)S = 1

4

1∫
0

dτ ημνẋ
μẋν + Spert,
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where a typical term in Spert arises from expanding the metric around flat space at the point
x0 = 0; schematically,

(A.2)

1∫
0

dτ

(
R

m2

)n/2

xnẋ2,

where Rn/2 denotes powers of the Riemann tensor and its derivatives of mass dimensions n. The
vertex behaves as (R/m2)n/2 and has n + 2 legs. In addition, we have the exponential factors
ωΘ which we can view as additional vertices of the form

(A.3)ωΘ ∼ ω

m

∑
n

(
R

m2

)n/2

xn+1.

Consider such a graph with E external legs, I internal legs and V vertices. If the graphs
consists of Nn vertices of the form (A.2) and Sn vertices of the form (A.3), then

(A.4)
∑
n

(
(n + 2)Nn + (n + 1)Sn

) = 2I + E, V =
∑
n

(Nn + Sn).

The graph behaves as

(A.5)ω
∑

n Snm−∑
n

(
nNn+(n+1)Sn

)
R

∑
n n(Nn+Sn)/2 =

(
ω2R

m4

)∑
n Sn/2(

R

m2

)I−V +E/2

.

Now we use the topological identity, L = I − V + 1, where L is the number of loops, to equate
this to

(A.6)

(
ω2R

m4

)∑
n Sn/2(

R

m2

)L−1+E/2

.

So each loop brings a factor of R/m2. For example, the partition function Z has E = 0 and since
the tree-level contribution is the classical action for the saddle-point which vanishes, the leading
order term comes from one loop and is an arbitrary function of ω2R/m4. The expansion around
the classical saddle-point solution sums up all the one-loop graphs with arbitrary ω insertions.
The leading order contribution to the Green’s function piece, which has E = 2, comes from tree
level. Once again, the expansion around the classical saddle-point solution sums up all these tree
graphs with arbitrary ω insertions.
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