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Abstract A gene encoding a novel serine protease designated as
Harobin is cloned and identified from a sea snake venom gland
bacteriophage T7 library. It has 265 amino acids and shares
50–70% similarity to terrestrial snake serine proteases. In addi-
tion to the 12 conservative Cys, it has three more Cys residues
that may contribute to its higher enzymatic stability. Harobin
is expressed in Pichia pastoris and purified.

Recombinant Harobin exhibits an amidolytic activity, and spe-
cifically degrades Aa, Bb-chain of fibrinogen. It functions as a
defibrase both in vitro and in vivo, and reduces thrombosis. Har-
obin prolongs the coagulation time and the bleeding time of mice
and reduces the fibrinogen levels of rats as well. Meanwhile,
intravenous injection of Harobin leads to the reduction of blood
pressure in SHR rats. It results from the ability of Harobin that
cleaves angiotensin I and release bradykinin from plasma kinin-
ogen in vitro and in vivo. These data suggest that Harobin is a
novel defibrase and has a potential to be an agent for the therapy
of thrombosis and hypertension.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Snake venoms, especially from crotalidae and viperidae fam-

ilies, are abundant in proteolytic enzymes. According to the

difference of the enzymatic active site, these proteases are di-

vided into two groups: serine protease and metalloprotease.

Both of them can interact with at least one sort of coagulation

factors or the other protein components in plasma and cleave

specific peptide bond in their substrates. These substrates are

including coagulation factor II, V, IX, X, plasminogen, protein

C, kininogen and fibrinogen, etc. [1]. Among these venom pro-

teases, some hydrolyze N-terminal end of fibrinogen releasing

fibrinopeptide A or B or both resulting in the formation of fi-

brin. Such an activity resembles that of thrombin and thus is

named thrombin-like enzyme (TLE). Some degrade the Aa-,

Bb- or both chains of fibrinogen at the C-terminus making it
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unclottable by thrombin, and therefore, are called fibrinogen-

ase [2]. Some protease can cleave kininogen releasing bradyki-

nin or kallidin, which is a strong vasodilator and has ability to

reduce blood pressure [3]. These protease are regarded as ki-

nin-releasing enzyme or kininogenase [4].

Generally, each of these proteases exhibits only one specific

enzyme activity. However, up to now, six multifunctional pro-

teases that possess double enzymatic activities have been

reported, including cratalase from Crotalus adamanteus,

KN-BJ from Bothrops jararaca, flavovilase from Trimeresurus

flavoridis (habu), b-fibrinogenase from Tremeresurus mucro-

squamatus, halyse from Agkistrodon halys blomhoffii and

Jerdonase from Tremeresurus jerdonii [5]. The former three

are kinin-releasing and fibrinogen clotting enzyme and the

later three are kinin-releasing and fibrinogenolytic enzymes.

Their enzymatic characteristics have been elucidated but their

physiological functions in experimental animals have not been

fully investigated.

Up to now, most of venom serine proteases characterized are

from the terrestrial snakes [6,7]. Venom serine proteases from

sea snake are seldom reported in the literature. We here report

a novel serine protease from sea snake venom. This protease,

named Harobin, are expressed in yeast and characterized. It

exerts antithrombotic activity by cleaving fibrinogen. Further-

more, Harobin cleaved high molecular weight (HMW) kinino-

gen, angiotensin I and angiotensin II, led to reduced blood

pressure in hypertensive rats. The results demonstrate that

Harobin may have a potential application in the therapy of

thrombosis and hypertension.
2. Methods

2.1. Cloning and preparation of recombinant Harobin
Sea snake Lapemis hardwickii was from the coast area of Guangxi

province of the People’s Republic of China. Venom gland was taken
and subjected to the extraction of total RNA. mRNA was prepared
using mRNA Purification Kit (Amersham Pharmacia). Following
the protocols of OrientExpress Oligo(dT) cDNA synthesizing Kit
(Novagen) and T7 Select packaging Kit (Novagen), a T7 phage display
library was constructed. Human fibrinogen (Sigma) was used as a bait
to screen the library. A positive clone was identified after screening.
The gene was cloned and sequenced.

The mature enzyme gene of Harobin (without the signal peptide
and the pro-peptide) was cloned into P. pastoris expressing vector
pPIC9K (Invitrogen) at the sites of XhoI and EcoRI. The recon-
structed vector was transformed into GS115 by electroporation after
linearized by SalI. Expression of recombinant enzyme was performed
according to the instruction by manufacturer (Invitrogen). Yeast ex-
pressed Harobin was purified with Benzamidine-Sepharose CL-6B
column (Amersham Biosciences, USA) using modified method by
Débora [8].
blished by Elsevier B.V. All rights reserved.
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2.2. Assay for enzymatic activity
Ten micrograms of purified wild type or mutated recombinant Har-

obin were mixed with 0.15 mM of the substrate N-p-tosyl-Gly-Pro-
Arg-p-nitroanilide (Sigma, USA) in 30 mM Tris–HCl buffer (pH
8.0), and incubated at 37 �C for 10 min. The amount of p-nitroaniline
released was determined by measuring the changes in absorbance at
405 nm. One unit of amidolytic activity was defined as the amount
of enzyme needed to hydrolyze 1 lmol substrate per min. Appropriate
amount of the enzyme was incubated with different concentration of
substrates ranging from 20 lM to 200 lM, the enzyme reaction was
plotted in a Lineweaver–Burk manner to obtain the Michaelis constant
Km.

Arginine esterase activity was measured as described by Yabuki
et al. [9], using N-p-tosyl-LL-arginine methylesterase (TAME, Sigma)
as a substrate. The absorbance change was monitored at 247 nm for
10 min.

The optimal pH and temperature for the amidolytic activity of Har-
obin was determined at pH range between 4 and 9, and different tem-
peratures (25, 35, 45, 55, 65, 75, and 85 �C), respectively. For optimal
pH assay, Harobin was dissolved in either citrate buffer (30 mM, pH
4–6) or Tris–HCl buffer (30 mM, pH 7–9) and preincubated at room
temperature for 2 h. For optimal temperature assay, Harobin was dis-
solved in Tris–HCl buffer (pH 8.0). The enzyme was preincubated at
each temperature for 15 min and the reaction was performed for
10 min to measure its amidolytic activity.

PMSF, EDTA and DTT were used to inhibit the enzyme activity of
Harobin. One micrograms of Harobin was incubated with the indi-
cated concentration of inhibitors in 0.4 ml 30 mM Tris buffer, amido-
lytic activity was measured.

Fibrinogen clotting activity was measured as described previously
[10]. The time of coagulation of 0.4 ml human fibrinogen (2 mg/ml,
Sigma product) in 50 mM Tris–HCl (pH 8.0) was determined after
2 lg Harobin were added.

The fibrinogenolytic activity was determined by incubating 5 lg
fibrinogen with 0.5 lg Harobin in 20 ll Tris–HCl buffer (pH 8.0) at
37 �C. An aliquot was taken at 15 min, 30 min, 3 h, 12 h, 18 h, 24 h
and 40 h intervals, respectively, and analyzed on SDS–PAGE.

Fibrinolytic activity was assayed using the fibrin plate technique
[11].
2.3. Cleavage of angiotensin I
Fifty microliters of angiotensin I (1 mg/ml) was incubated with 10 lg

Harobin in Hepes buffer (50 mM, pH 7.5) at 37 �C for 3 h. The mixture
was then analyzed by HPLC (Bio-Rad Bio-Sil ODS-5S C18 column).
HPLC was run for 35 min in a linear gradient of 0–75% solvent B
(95% acetonitrile containing 0.1% trifluoroacetic acid (TFA)) with
5% acetonitrile/0.1% TFA (solvent A) as the starting and equilibration
eluent. The flow rate was set at 1 ml/min. Peak fractions were moni-
tored at UV 214 nm and collected. Amino acid sequences were ana-
lyzed by ABI Precise 491 Protein/Peptide Sequencer.
2.4. Cleavage of single chain HMW kininogen
Five micrograms of single chain HMW kininogen (from human

plasma, The Enzyme Research Laboratory) was incubated at 37 �C
with 0.2 lg Harobin in a total volume of 20 ll buffer (50 mM Tris–
HCl, pH 8.0) for various time intervals. The proteolytic products were
resolved on SDS–PAGE. For the assay of released kinin, the above
reacting mixtures were subjected to HPLC. Each peak fraction was
collected and sequenced.
2.5. Animals and animal models
Male Sprague–Dawley (SD) rats, spontaneously hypertensive rats

(SHR) and male Balb/c mice were obtained from the Vitalriver Exper-
imental Animals Center, Beijing, China. All animals were specific path-
ogen free (SPF). They were bred at the animal center of Peking
University. Procedures involving animals and their care were con-
ducted in accordance with the guidelines for the use of animals in bio-
chemical research.

For tail thrombus model, mice were injected intravenously
of drugs. Thirty minutes later, 300 mg/kg of carrageenan (Sigma,
Co) was subcutaneously injected to induce thrombus. The length
of infarction was measured after 48 h according to the literature
[12].
For the measurement of fibrinogen, 1 ml citrated blood was col-
lected from the carotid artery of rats before administration of drug
and 6 h later, plasma was prepared by centrifugation and used for
the measure of fibrinogen following the protocols of the manufacturer
(Shanghai Suntech. Co.).

For arterio-venous shunt model, it was performed according to the
method of Umetsu and Sanai [13]. Male SD rat (270–310 g) was anes-
thetized with sodium pentobarbital and fixed in the supine position. A
cervical incision was made in the midline to expose the left carotid ar-
tery and right jugular vein. A 20 cm long polyethylene tube with a 6 cm
long silk thread fixed in its lumen was filled with physiological saline.
One end of the tube was inserted into the right jugular vein and tied.
Harobin (400 lg/kg), heparin (50 IU/kg) or physiological saline
(2 ml/kg) was injected from the other end of the tube. The proximal
side of the left carotid artery was clamped to block the blood flow tem-
porarily, while the free end of the tube was inserted into the artery and
tied. The clamp was released and the blood flow through the tube was
confirmed. After 15 min, the silk thread was removed from the tube
and its wet weight was immediately measured. The dry weight was
measured after 24 h at 37 �C.

For vena cava model, the method described by Reyers et al. [14] was
used. Briefly, 50, 200 lg/kg Harobin, 0.5 lg/kg defibrase (from agkis-
trodon halys ussuriensis emelinov, Beijing Institute of Biological Prod-
ucts, China) or saline was injected from the tail venous just before
the surgery. After anesthetization, the abdomen was opened, the vena
cava was isolated and tied just caudally to the left renal vein and the
incision closed. Six hours later, animals were re-anesthetized, abdom-
inal incision was reopened. When thrombus appeared, it was removed
from the segment, blotted on filter paper. The wet weight of the throm-
bus was immediately measured. Its dry weight was measured after 24 h
at 37 �C.

For the hemorrhagic activity assay, mice were killed 24 h after i.p
administration of 5 mg/kg Harobin and checked for subcutaneous
hemorrhage.

For the clotting time (CT) measurements, a drop of whole blood was
added to a glass slide and stirred up every 30 s with a dried needle until
fibrin appeared. The clotting time was recorded in minutes. Bleeding
time (BT) of mice was measured by a modification of the method de-
scribed by Kung et al. [15].
2.6. In vivo hypotension assay
Blood pressure was assayed by the method as described previously

[16]. Male SHR rats (250–300 g) were grouped randomly and anesthe-
tized with sodium pentobarbital. The right carotid artery were cannu-
lated with polyethylene tube and attached to a pressure transducer
(Model YPJ01). The blood pressure was recorded on a RM6240 sys-
tem (Chengdu Keyi Factory). Harobin (2 mg/kg), captopril (1 mg/kg)
or saline was injected from the femoral vein. After the measurement
of blood pressure, rats were killed and blood was collected. The level
of angiotensin II in the blood was measured by radioimmunoassay
kit (North Biotechnology Research Institute, Beijing).
2.7. Statistical analysis
All data was expressed as the mean ± S.D. Student’s t-test was used

to assess the statistical differences. P < .05 was considered to be statis-
tically significant.
3. Results

3.1. Cloning of Harobin

One phage clone from a sea snake venom gland bacterio-

phage T7 library was identified after screening using fibrinogen

as bait. The gene was then cloned and designated as Harobin.

It had an open reading frame of 795 nucleotides coding for 265

amino acid residues (GenBank accession AY835844, Fig. 1A).

It was homologous to terrestrial snake serine enzymes, sharing

78% similarity with kallikrein-phi4 from Philodryas olfersii

[17], 63% similarity with mucrofibrase from Trimeresurus

mucrosquamatus [18], VSP-3 (Venom serine protease 3) from

Trimeresurus gramineus [19] and Pallabin from Gloydius halys
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[20], 62% with CPI-enzyme-2 from Gloydius ussuriensis [21],

60% with calobin from Gloydius ussuriensis [22], 58% with

Tsv-Pa from Trimeresurus stejnegeri [23] and PA-BJ from

Bothrops jararaca [24], 48% with Ancrod from Calloselasma

rhodostoma [25], respectively, indicating that Harobin was a

new member of the serine protease family (Fig. 1B). A putative

signal peptide of 18 residues was predicted according to the

method by Nielsen [26]. The pre-zymogen also had a proposed

pro-peptide of 15 amino acid residues (19–33aa). The predicted

molecular mass of mature enzyme (34–265aa) was 25414 Da.

Based on the sequence similarity, we deduced that the catalytic

triad residues were common to serine proteases. They were

His74, Asp119 and Ser212. Three putative N-glycosylation

sites in Asn-Xaa-Ser/Thr, a Ser and a Thr residue as putative

O-glycosylation sites were identified in the protein through

the analysis using CBS Prediction Server, which was a online

tool and convenient for the analysis of glycosylation site in

protein [27]. Interestingly, this enzyme contained 15 Cys resi-

dues, among which 12 residues were identical to other venom

serine proteases (Fig. 1B). Most of snake venom serine prote-

ases, including TLE [18,20,28], fibrino(geno)lytic serine prote-

ase [29,30], plasminogen activators [31,32] and so on, had six
Fig. 1. Sequence analysis. (A) Gene sequence and deduced amino acid seque
was underlined. The translation stop codon was indicated by asterisk. S
glycosylation sites, respectively. The sequence data had been submitted to
alignment. Three conserved critical catalytic sites were highlighted by asterisk
of the serine proteases were indicated as capital C and C 0 under the aligned
disulfide bonds which were critical for the maintenance of pro-

tein structure.

3.2. Harobin was a thermostable serine protease

To characterize its biological function, recombinant Haro-

bin was successfully expressed in P. pastoris (Fig. 2A) and eas-

ily purified by column chromatograph (Fig. 2B). The

molecular weight of Harobin on SDS–PAGE was as deduced

as about 25 kD. Since Harobin shared high homology with

known serine proteases from terrestrial snake venom, we first

determined if it had enzymatic activity. Harobin was incubated

with N-p-tosyl-Gly-Pro-Arg-p-nitroanilide or TAME, respec-

tively. The results showed that Harobin had an amidolytic

activity and no arginine esterase activity. The amidolytic activ-

ity was about 8.3 ± 0.3 U/mg protein with a Michaelis constant

Km of 0.39 mmol/L, which was higher than naturally purified

defibrase from terrestrial snake venom (Table 1). The optimum

conditions for enzyme activity were pH 8.0 and 65 �C

(Fig. 2C). The effect of the known serine protease inhibitors

on the amidolytic activity of Harobin was evaluated. As shown

in Fig. 2D, PMSF inhibited the enzyme activity nearly 100%,

while EDTA did not affect at all, indicating that Harobin
nce of Harobin. Signal sequence was denoted in boldface. Pro-peptide
olid and open diamonds indicate putative N-glycosylation and O-
the GenBank with the accession number AY835844. (B) Sequence

s. Twelve identical cysteine residues and three different cysteine residues
sequence, respectively.
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was a serine protease but not a metal protease. DTT could

deoxidize disulfate-bond so that it inhibited disulfate-bond

containing serine protease. Defibrase and Calobin were inhib-

ited 80% by 10 mM DTT [33,34], while Harobin was not

affected at the same concentration, indicating that Harobin

was more stable than other six-disulfate-bond serine protease.

To confirm the notion, we made mutation in Harobin. Two of

the additional three Cys in Harobin (106 Cys-Val, 152 Cys-Ser)

were mutated and expressed in P. pastoris. The activity of wild

type and mutant was compared. Harobin mutant was more

sensitive to DTT and less stable in 65 �C (Fig. 2D). It demon-

strated that 106 Cys and 152 Cys participated in the formation
of disulfate-bonds and were required for the stability of the

enzyme. Furthermore, the amidolytic activity of Harobin in

30 mM Tris–HCl buffer maintained for six months at 4 �C

without distinct decrease (Data not shown), indicating that

Harobin was a higher stable protease.

3.3. Harobin functioned as a defibrase in vitro and in vivo

Since Harobin was cloned as a fibrinogen binding protein

and identified to be a serine protease, it was expected to be a

defibrase. Its fibrino(gen)lytic activity was first tested

in vitro. It showed that Harobin digested Bb-chain of fibrino-

gen first and then the Aa-chain. The intensity on the c-chain of



Fig. 2. Expression and activity analysis of Harobin. (A) Expression of Harobin in P. pastoris GS115. Supernatants from the cell culture of clones
were resolved on SDS–PAGE. Lane M: protein markers; Lane 1: parental GS115; Lane 2–6: different clones. (B) Affinity chromatography on
Benzamidine-Sepharose CL-6B column (left panel). The elution C was resolved on SDS–PAGE (right panel). (C) Effects of pH and temperature on
the amidolytic activity of Harobin and Defibrase. Symbols: m pH optimum of Harobin; j temperature optimum of Harobin; d temperature
optimum of Defibrase. (D) Effect of inhibitors on the amidolytic activity of Harobin and Harobin mutant (106 Cys-Val, 152 Cys-Ser).

Table 1
Comparison of enzymatic activity between Harobin and defibrase

Enzyme activity (U/mg)

Harobin Defibrase

Amidolytic activity 8.3 1.5
Arginine esterase activity <0.01 <0.01
TLE activity 0 1250
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fibrinogen was increased with the decrease of the intensity of

fibrinogen Aa-, Bb-chain, indicating that the Aa-chain or
Fig. 3. Analysis of fibrino(geno)lytic activity of Harobin. (a) Cleavage pattern
plasma was incubated with 0.5 lg Harobin in 20 ll Tris buffer (pH 8.0) at 37
C0 and Lane C24 represent fibrinogen alone at 37 �C for 0 h or 24 h. Lane M
Harobin on fibrin plate. Twenty microliters of purified Harobin (0.1 mg/ml) w
presence of 5 ll, 2 U/ml human plasminogen (A) or in the absence of pl
plasminogen solution (D) and the same quantity of plasminogen plus 2 ll, 1
Bb-chain of fibrinogen was cleaved to smaller pieces that were

close to the c-chain size. Finally, the y-chain of fibrinogen was

digested at 18 h and fibrinogen was cleaved to 42 kD fragment.

There was no band corresponding to fibrinogen on SDS–

PAGE at 40 h, suggesting that it was completely degraded

by Harobin (Fig. 3a). As to the specificity of the enzyme, we

tested its cleavage ability on BSA and found that it did not

cleave BSA. Harobin had no fibrinogen clotting ability and

the coagulation of fibrinogen by thrombin was significantly re-

tarded when fibrinogen was incubated with Harobin before

addition of thrombin (data not shown). Fibrinolytic activity
of fibrinogen by Harobin. Five micrograms of fibrinogen from human
�C for 15 min, 30 min, 3 h, 12 h, 18 h, 24 h and 40 h, respectively. Lane
: molecular weight markers. (b) Detection of the enzymatic activity of
as dropped onto the fibrin plate and incubated at 37 �C for 6 h in the

asminogen (B). As controls, 20 ll Tris–HCl buffer (C), 5 ll, 2 U/ml
U/ml urokinase (E) were used.



Table 2
Effect of Harobin on mice tail thrombosis (n = 10)

Groups Dose (lg/kg) Length of thrombus (mm)

Saline – 16 ± 8
Defibrase 0.5 3 ± 2*

Harobin 50 4 ± 2*

Harobin 200 0**

*P < 0.05.
**P < 0.001 vs. saline treated groups.

Table 3
Effect of Harobin on the wet weight of thrombus in vena cava model
(n = 10)

Groups Dose (lg/kg) Wet weight of
thrombus (mg)

Inhibition
rate (%)

Saline – 31 ± 7.3 –
Defibrase 0.5 20.5 ± 3.6* 34
Harobin 50 18.2 ± 2.1* 41
Harobin 200 11.4 ± 5.0** 63

*P < 0.05.
**P < 0.001 vs. saline treated groups.

Table 4
Effect of Harobin on the wet weight of thrombus in arterio-venous
shunt model (n = 10)

Dose Wet weight of thrombosis (mg)

Saline – 41.5 ± 8
Heparine 50 IU/kg 22.1 ± 4.9**

Harobin 400 lg/kg 43.3 ± 5.4

**P < 0.001 vs. saline treated groups.
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was assayed using fibrin plate method. It showed that addition

of Harobin led to the formation of a clear hollow (Fig. 3b).

The size of the clear hollow kept unchanged even in the pres-

ence of plasminogen, suggesting that Harobin was not a plas-

minogen activator.

We next addressed whether Harobin could function as a

defibrase and had antithrombotic effect in vivo. Three animal

models were established and used for the tests. Injection of
Table 5
Effect of Harobin on coagulation time (CT) and bleeding time (BT) on mice

Groups Dose (lg/kg) CT (min) Prolo

Saline – 2.41 ± 0.47 –
Defibrase 0.5 3.81 ± 0.61** 52.4
Harobin 50 3.50 ± 0.39* 39.44
Harobin 200 4.22 ± 0.75** 68.13

*P < 0.05.
**P < 0.001 vs. saline treated groups.

Table 6
Effect of Harobin on the plasma level of fibrinogen of rats after 6hr of treat

Groups Dose (lg/kg)

Saline –
Defibrase 0.5
Harobin 50
Harobin 200

*P < 0.05.
**P < 0.001 vs. saline-treated groups.
Harobin significantly decreased the length of tail thrombus

at the concentration of 50 lg/kg, similar to the effect by com-

mercial defibrase in mouse tail thrombosis model (Table 2). In

the vena cava model of rats, Harobin caused the wet weight of

thrombus decrease by 41% at concentration of 50 lg/kg, and

by 63% at the concentration of 200 lg/kg (Table 3). The pro-

portion of wet weight to dry weight of thrombus was 27%

approximately. In the arterio-venous shunt model of rats, Har-

obin had no effect on the wet weight of thrombus at concentra-

tion of 400 lg/kg, while heparin, the positive control, could

inhibit 50% of the wet weight of thrombus at the concentration

of 50 IU/kg (Table 4). The effect of Harobin on the hemor-

rhagic system was also evaluated. The clotting time and bleed-

ing time of mice were prolonged significantly by Harobin

(Table 5), the level of fibrinogen of rats was also decreased sig-

nificantly (Table 6). However, Harobin did not show hemor-

rhagic activity in mice at a concentration of 5 mg/kg (data

not shown), indicating it was safe as a therapeutic agent.

3.4. Angiotensin I and kininogen were the substrates of Harobin

It had been suggested that defibrase from snake might had

the ability to reduce blood hypertension [16]. The effects of

Harobin on blood pressure were therefore investigated. Injec-

tion of Harobin into SHR rats caused a significant blood pres-

sure drop at a concentration of 2 mg/kg (Fig. 4A). Reduction

of blood pressure started 30 min after injection of Harobin and

lasted at least for 4 h. The change of systolic blood pressure

(SBP) was demonstrated in Table 7.

To explore the mechanism of its anti-hypertensive effect, we

addressed whether angiotensin I and kininogen were the sub-

strates of Harobin. When kininogen was incubated with Har-

obin, the disappearance of kininogen coupled with the

formation of the major fragment of 58 kDa was similar to that

of kallikrein (Fig. 4B). The products after reaction were fur-

ther evaluated by reverse-phase HPLC. One of the released

peptides was identified as bradykinin (data not shown). Incu-

bation of angiotensin I with Harobin resulted in the formation

of four major peptide fragments. The peptides were sequenced,

respectively. They were His-Leu, Asp-Arg-Val-Tyr, Ile-His-

Pro-Phe, and Asp-Arg-Val-Tyr-Ile-His-Pro-Phe (correspond-

ing to the four major peaks in Fig. 4C). The result suggested
(n = 10)

nged CT (%) BT (min) Prolonged BT (%)

3.5 ± 1.13 –
4.43 ± 0.83* 26.57
4.61 ± 0.54* 31.71
5.37 ± 1.32** 53.43

ment (n = 10)

Fibrinogen (g/L) Reducing rate (%)

2.17 ± 0.12 —
1.62 ± 0.11** 25
1.72 ± 0.11** 21
1.3 ± 0.32** 40



Fig. 4. Effect of Harobin on hypertension and its mechanism. (A) A typical example of blood pressure change in SHR rats after treatment of
Harobin (2 mg/kg). (B) SDS–PAGE analysis of kininogen cleaved by Harobin. 5 lg single chain HMW kininogen (from human plasma) were
incubated at 37 �C with 0.2 lg Harobin in a total volume of 20 ll Tris–HCl buffer (50 mM, pH 8.0) for various time intervals. Lane K0: kininogen
alone; Lane 20 min 1 h 12 h represent the time of kininogen cleaved by Harobin. Lane C0 represents kininogen cleaved by kallikrein; Lane H:
Harobin alone. Lane M: molecular weight markers. (C) Analysis of angiotensin I cleaved by Harobin. Angiotensin I (1 mg/ml) was incubated with
10 lg Harobin in 50 ll Hepes buffer (50 mM, pH 7.5) at 37 �C for 3 h. The reaction mixtures were then analyzed by HPLC. Peak fractions were
collected and sequenced. (a) represented angiotensin I alone, (b) represented angiotensin I after digestion by Harobin. The labeled peaks indicated
four major proteolytic fragments from angiotensin I.

Table 7
Effect of Harobin on the SBP of SHR rats (n = 8)

Groups Dose
(mg/kg)

Before i.v.
(mmHg)

4 h after i.v.
(mmHg)

Saline – 242 ± 52 227 ± 40
Captopril 1 260 ± 10 151 ± 15**

Harobin 2 241 ± 45 161 ± 35*

*P < 0.05.
**P < 0.001 vs. before treatment.

Table 8
Effect of Harobin on the level of plasma angiotensin II of SHR rats
(n = 8)

Groups Dose (mg/kg) Angiotensin II (pg/ml)

Saline – 368 ± 44
Captopril 1 172 ± 39**

Harobin 2 246 ± 79*

*P < 0.05.
**P < 0.001 vs. saline-treated groups.
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that angiotensin I was first cleaved to angiotensin II and sub-

sequently cleaved to two fragments by Harobin. We further

tested if such reaction occurred in vivo. The level of angioten-

sin II in the plasma was significantly reduced after the injection

of Harobin (Table 8). It suggested that angiotensin II was the

target of Harobin in vivo.
4. Discussion

In this study, a novel sea snake serine protease that targets

fibrinogen, angiotensin and kininogen is described. To our

knowledge, this is the first report of isolation, cloning and

characterization of a fibrino(geno)lytic and kinin-releasing ser-

ine protease from sea snake venom.
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Snake serine proteases usually contain very conservative 12

Cys besides their highly conservative catalytic sites. However,

the three additional Cys residues in Harobin are very unique

and may contribute greatly to the enzyme stability. 106 Cys

and 152 Cys were selected to mutate because these two are

more close to the conservative Cys and may disturb the normal

disulfate-bonds. The mutation leads to the instability of the

enzyme (Fig. 2D). Further studies on its crystal structure will

highlight its relationship between the structure and function.

Nevertheless, the finding of Harobin enriches the knowledge

of the family of serine protease.

Harobin functions as a defibrase in vitro and in vivo. It di-

gests fibrinogen efficiently in vitro (Fig. 3a). Bb-chain of the

fibrinogen is degraded first followed by the degradation of

Aa-chain. This digestion pattern is consistent to that by Tm-

VIG [16]. It is interesting to show that c-chain is degraded as

well after 18 h incubation with Harobin. Digestion of c-chain

of fibrino(gen) by defibrase has been seldom reported. It might

be one of the differences between the serine protease from ter-

restrial and sea snake. The antithrombotic activity of Harobin

has been evaluated in three animal models. Mice tail thrombus

induced by carageenan is a peri-venous thrombus model and

rat vena cava thrombus is a deep venous thrombus model.

Harobin shows the same effects on antithrombus as natural

purified defibrase does in both animal models (Fig. 4), but

the amount of Harobin is about 100-folds to that of Defibrase.

This is because Harobin has no TLE activity though it pos-

sesses higher amidolytic activity than Defibrase (Table 1).

The mechanism of antithrombus by Harobin can be explained

by that it degrades fibrinogen or fibrin, and leads to the de-

crease of blood viscosity, thus prevents the formation of

thrombus or dissolves the existed thrombus. The antithrombus

effect is not due to the activation of plasminogen (Fig. 3b).

Harobin does not affect the thrombus in the arterio-venous

thrombus model (Table 4). The structure of thrombus formed

in the model is similar to that of white thrombus in vivo model.

This model is widely used for the evaluation of anti-platelet

drugs [13]. It has been suggested that the inability of the drug

in this model can be explained no effect on the aggregation of

the platelet. Therefore, the failure of Harobin in this model

suggests that it has no effect on the aggregation of the platelet.

It is interesting to show that Harobin significantly reduced

the hypertension of SHR rats (Fig. 4A). Since some peptides

from snake venom are able to inhibit the activity of angioten-

sin converting enzyme (ACE) [35]. We first exam whether Har-

obin is an ACE inhibitor. It turns out that Harobin does not

affect ACE (data not shown). We then test the effects of Har-

obin on angiotensin I and kininogen, both of which are impor-

tant factors regulating blood pressure. Angiotensin I is first

cleaved to angiotensin II and the latter is further cleaved to

two tetrapeptides by Harobin in vitro and in vivo (Fig. 4B,

C). Angiotensin II is hypertensive peptide while the tetrapep-

tide is not. Cleavage of angiotensin II to small peptides could

be one way that Harobin reduces blood pressure. On the other

hand, Harobin has inherent kallikrein-like activity, it can

release bradykinin from plasma kininogen in vitro. This

kallikrein-like activity is especially intriguing since a-fibrino-

genases like ancrod does not show such a specificity against

kininogen [16]. Bradykinin is a strong vasodilator, this could

be another way that Harobin regulate the blood pressure. To-

gether with the factor that Harobin is a defibrase to degrade

the fibrinogen, we conclude that anti-hypertension effect of
Harobin at least results from the following three independent

ways. (1) It functions as a defibrase that decreases the concen-

tration of blood fibrinogen leading to the alteration of blood

rheology. (2) It degrades angiotensin I and angiotensin II to

lower the concentration of angiotensin II; (3) It works as kal-

likrein to cleave kininogen and release bradykinin that pro-

motes vasodilatation.

Ancrod and batroxobin are all TLE purified from venom for

clinical usage. Harobin has no TLE activity, but its antithrom-

botic activity is equivalent to naturally purified defibrase. The

unique structure features and the abilities to digest fibrinogen,

angiotensin and kininogen with higher stability suggest that

Harobin is a novel serine protease. It holds a potential to be

an antithrombosis and hypertension agent.
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