
Theoretical Computer Science 282 (2002) 337–352
www.elsevier.com/locate/tcs

A strip-like tiling algorithm

Donatella Merlini ∗, Renzo Sprugnoli, M. Cecilia Verri
Dipartimento di Sistemi e Informatica, via Lombroso 6=17, 50134 Firenze, Italy

Abstract

We extend our previous results on the connection between strip tiling problems and regular
grammars by showing that an analogous algorithm is applicable to other tiling problems, not
necessarily related to rectangular strips. We 0nd generating functions for monomer and dimer
tilings of T- and L-shaped �gures, holed and slotted strips, diagonal strips and combinations
of them, and show how analogous results can be obtained by using di2erent pieces. c© 2002
Elsevier Science B.V. All rights reserved.

Keywords: Strip tilings; Regular grammars; Sch6utzenberger methodology; Generating functions

1. Introduction

An amusing puzzle-problem is to establish in how many di2erent ways a p× n strip
(p∈N 0xed, n∈N) can be tiled with the 19 Tetris pieces:

Typically, we have p= 10 but also a smaller value of p leads to non-trivial puzzles,
due to the large number of solutions as p increases. As a curiosity, here are the 23

∗ Corresponding author. Tel.: +39-55-479-6771; fax: +39-55-479-6730.
E-mail address: merlini@dsi.uni0.it (D. Merlini).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00074 -3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82754930?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

338 D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352

solutions corresponding to p= 4 and n= 3:

In this simple example, proving that these are all the possible solutions is not diAcult,
but in more complex situations how can we prove that the number of solutions is
exactly the one we think? And how can we 0nd the various solutions?

For 0xed p, if we denote by T (t) =
∑

n Tnt
n; the generating function that counts the

number Tn of n-length strip tilings made up of the previous pieces, then we can say
that this puzzle-problem is solved if we are able to 0nd an exact or an asymptotic
value for Tn and a method for building the tilings. It is obvious that if we denote by k
the number of pieces necessary to complete a Tetris puzzle then we must have pn= 4k
(we observe that every one of the previous 23 solutions is made up of three pieces)
but solving the general problem seems not to be trivial at all.

In [9], the authors study the general puzzle-problem (technically called a tiling prob-
lem) of counting the number of di2erent ways a p× n strip (p∈N 0xed, n∈N) can
be tiled with some sort of pieces, i.e., sets of simply connected cells (squares of unit
length sides). The problem is approached by proving the following basic results:
(1) every puzzle-problem is equivalent to a regular grammar (i.e., the set of tilings is

a regular language);
(2) an algorithm exists that can 0nd the regular grammar corresponding to a puzzle-

problem;
(3) as a consequence of (1) and (2), it is possible to 0nd the rational function

T (t) =
∑

n Tnt
n; that counts the n-length strip tilings made up of the assigned

pieces;
(4) it is possible to 0nd out if there is at least one solution (Tn0 = [tn0]T (t) �= 0) for any

value n0 of n; the number of possible solutions can also be determined ([tn]T (t)
denotes the coeAcient of tn in the generating function T (t)).

As far as we know, our algorithm is the 0rst attempt to give a systematic approach
to tiling problems.

By using the previous algorithm we can solve the Tetris puzzle, at least for small
p: For example, for p= 4 we 0nd a quite complex rational function T (t) which has
the following series development:

T (t) = 1 + t + 4t2 + 23t3 + 117t4 + 454t5 + 2003t6 + 9157t7 + 40899t8 + O(t9):

D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352 339

We observe that [t3]T (t) = 23; as expected. By using the obtained grammar, we can
also draw all the di2erent solutions.

In current literature, similar problems have been studied from various points of view:
the reader is referred to [7, 11] for a physical model and to [1, 6, 8] for a combinatorial
approach; tiling problems have also been used as a tool in several 0elds to prove
complexity results and one of the most de0nite works on the subject is [3].

In this paper, we extend our results by showing that a simple variation of the al-
gorithm in point (2) can also be used for puzzle-problems not necessarily related
to a rectangular strip. We do this by developing several examples in which the 0g-
ure to tile has some particular shape: we examine the problem of tiling T-shaped,
L-shaped, holed, slotted and diagonal 0gures (we distinguish between L-shaped strips
and L-shaped 0gures, see Sections 3.1 and 3.2) with monomers and dimers, i.e., rect-
angular pieces having a dimension of 1× 1 and 1× 2. However, we wish to point
out again that our method is not limited to these kinds of pieces. We always begin
by using the algorithm to obtain the regular grammar which de0nes the speci0c
problem. We then apply the Sch6utzenberger methodology [5] to get the generating
functions related to the puzzle-problems and, in some cases, we go on to 0nd
some asymptotic formulas for the coeAcients of these functions. We call strip-like
tiling solvable (SLTS in short) the class of problems we can solve by using the
algorithm.

Our aim in developing these examples is to indicate some techniques for solving
many other problems related to:
• pieces other than monomers and dimers; examples for the case of rectangular strips

are given in [9]; the number and shape of the di2erent pieces increase the problem
complexity, but do not change the grammar’s construction method;

• 0gures obtained by joining elementary structures, as rectangular or diagonal strips.
The L-shaped 0gures example is indicative of how a class of tiling problems, to
which we cannot apply the algorithm directly, can be solved by decomposing the
original 0gure in sub0gures which are SLTS;

• 0gures obtained by some regular variations, such as holes, slots, prominences, hol-
lows, etc;

• 0nite combinations of all these.
The only important point seems to be that growth occurs in only one direction.

This, together with a precise de0nition of the pivot cell, allows us to introduce the
concept of a state, and it is just this concept that relates tiling problems to regular
grammars. In fact, this connection has some important by-products, which are worth of
mention:
• simple programs exist to generate all the tilings of a given length; actually, these

programs generate all the words, up to a given length, belonging to the regular
language; by using the concept of the pivot cell, translation from words into tilings
is immediate;

• it is possible to derive procedures which generate a random tiling in a uniform way
and in linear time. Again, a passage from words to tilings is necessary;

340 D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352

• nowadays, software visualization programs exist which are able to show, in a very
choreographical but meaningful way, a random tiling as it is generated. For example,
we used such a program, developed by Crescenzi et al. [4], to have a didactic
presentation of our algorithm.
The paper is structured into two parts. In Section 2, we explain our algorithm, giving

all the necessary de0nitions. In Section 3, we develop our examples to have fun with
our algorithm!

2. The algorithm

We start out by giving some elementary concepts to formally de0ne a strip tiling
problem; we then discuss how similar concepts can be applied to a strip-like tiling
problem.

A piece P is a set of simply connected cells, i.e., cells having at least one pairwise
common side and no holes; each cell can be represented as a square

In this paper, we only take oriented pieces into consideration and, as a result, we
always consider a horizontal and a vertical dimer as two separate objects. The length
and height of an oriented piece correspond to the number of its columns and rows
(for example, a horizontal dimer has length 2 and height 1 and a vertical dimer has
length 1 and height 2). If a p× n rectangular strip (p∈N a 0xed parameter, n∈N)
and a 0nite set of pieces are given, a p-strip tiling problem consists in 0nding out the
number of ways the strip can be 0lled up by the pieces. We denote this number by T [p]

n

and our algorithm allows us to compute the generating functions T [p](t) =
∑∞

n=0 T
[p]
n tn

and other functions that count various tiling distributions. The 0rst basic step consists
in proving that all the possible tilings of a p× n strip make up a regular language.

Let P= {P1; P2; : : : ; Ps} be the oriented pieces of a given p-strip tiling problem, and
let r be the maximum length of pieces:

r = max{length(Pi) |Pi ∈ P}:

De�nition 2.1 (States). A state is a p× r strip whose cells can be either occupied or
free (in our examples, a free cell is white and an occupied cell is grey).

In order to give an intuitive idea of what we mean by “state”, let us take the striped
cells in the partially 0lled 3× n strip:

relative to the 3-strip tiling problem de0ned by the pieces:

D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352 341

We call the leftmost, highest non-occupied cell (the marked cell in our example) the
pivot cell. In tiling construction, we can always assume that the new piece is added in
such a way that it covers the pivot cell (this position has to be occupied in some way).
Therefore, the added piece cannot extend more than r positions to the right and the
p× r substrip containing the pivot cell in its leftmost column is the only part of the
strip a2ected by the insertion of the new piece (the striped part). This is our concept
of “state”.

The initial state is the state of the strip at the beginning of the tiling process and so
it is a p× r strip containing only free cells. It is worth noting that it is also the “0nal
state”, in the sense that it is the state produced when the strip is full. We denote the
initial state by T [p], or simply T: It plays a fundamental role in our development for
various reasons. First of all, it allows us to de0ne recursively the important concept of
admissible state:

De�nition 2.2 (Admissible states). (1) The initial T [p] state is admissible; (2) a state
is admissible if it is obtained (i) by adding a piece to an admissible state so that it
covers the pivot cell; (ii) by deleting its completely occupied leftmost columns (if any)
and by adding an equal number of free cell columns to its right; (3) there are no other
admissible states.

In our sample problem, the initial state generates 0ve possible admissible states:

We wish to point out that we cannot add the remaining piece to the initial state
because it is unable to cover the pivot cell. From the 0rst admissible state just obtained,
we have:

The transitions denoted by (∗) correspond to the application of rule (ii) in point
2. According to our de0nition, the last generated state is admissible; however, it is
obvious that no piece can be added to it in such a way as to occupy the pivot cell. In
a tiling construction, this would stop the process and so this is not a “good” state.

De�nition 2.3 (Bad admissible states). A bad admissible state is an admissible state
to which no piece able to cover the pivot cell can be added.

342 D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352

If an admissible state only produces bad admissible states, it also stops the correct
tiling process; we therefore give the following de0nitions:

De�nition 2.4 (Iteratively bad admissible states). (1) A bad admissible state is an it-
eratively bad admissible state; (2) if an admissible state only produces iteratively bad
admissible states when we add to it some pieces covering the pivot element, then it
is an iteratively bad admissible state; (3) there are no other iteratively bad admissible
states.

De�nition 2.5 (Good admissible states). A good admissible state is an admissible state
which is not an iteratively bad admissible state.

We now wish to point out the following:
(a) the number of admissible states is 0nite because the total number of possible

states is 2pr; i.e., 6 2pr;
(b) the number of possible combinations (state, piece) to be considered during tiling

construction is also 0nite, and is obviously limited by �; if � is the number of
pieces in a given p-strip tiling problem;

(c) therefore, the number of bad and iteratively bad admissible states is also 0nite; all
iteratively bad admissible states can be found by an iterative process starting with
bad admissible states; this identi0cation process takes 0nite time;

(d) as a consequence, good admissible states can be determined in 0nite time.
We can summarize these concepts in the following (see [9] for the proof):

Theorem 2.6. Let a p-strip tiling problem be de�ned by the set P of its pieces;
then the set of all its possible solutions is a regular language de�ned by the regular
grammar G= {N; T; S0; P} where:
• the set N of non-terminal symbols is the set of good admissible states;
• the set of terminal symbols T is the set P of pieces;
• the initial state S0 is the initial state T [p] of the tiling problem (if the problem has

no solution; T [p] is not a good admissible state);
• the set P of productions is the set of all possible triples X → �Y; where X; Y are
good admissible states and �∈P; plus the null production S0 → �:

By using Theorem 2.6 and some standard methods to go from regular grammars to
counting generating functions (e.g., the Sch6utzenberger methodology [10]), we com-
pletely solve the p-strip tiling problem.

Let us now consider the strip-like problem of tiling a non-rectangular strip. First of
all, we want to clarify what we mean by “non-rectangular strip” and so we describe
the properties we want such a 0gure to have:
• the 0gure is made up of square cells of unit length sides. As a matter of fact, our

algorithm could be used with other types of cells but, for the sake of simplicity, we
limit our study to square cells. If handled with attention, the algorithm could also
be applied in three dimensions, i.e., with three-dimensional cells.

D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352 343

• the 0gure grows in only one direction (as in the p× n rectangular case, in which p
is 0xed and n changes). This condition is essential if we want to be sure that the
number of good admissible states is 0nite.

• the pivot cell can be de0ned in an unambiguous way.
As far as the pieces are concerned, we adopt the same de0nition used for rectangular

strips.
We can now go on and use the above algorithm with the only di2erence that the

process it describes starts out from an “initial” state and ends at one or more “0nal”
states, usually di2erent from the T [p] state previously de0ned. In particular, we can
de0ne the same type of regular grammar described in Theorem 2:1 but which has a
di2erent initial state and a null production F→ � for each 0nal state F: This gram-
mar completely de0nes the strip-like tiling problem. In the next section, we use
several examples to illustrate the algorithm. After the grammar is de0ned, we
immediately go on to 0nd some counting generating functions describing the
problem.

3. Beyond rectangular strips

We now take a series of examples into consideration that show how the algorithm
in Section 2 can be adapted to non-rectangular strips. For the sake of simplicity, we
only examine monomers and dimers, but we would have no problem in treating more
complex pieces also.

3.1. T-shaped strips

The simplest example of a tiling problem unrelated to a rectangular strip consists in
tiling a T-shaped strip by means of monomers and dimers:

By the algorithm, we obtain the following four good admissible states, with Q as
the initial state and J as the 0nal one:

344 D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352

If we use a to denote the monomer, and h and v to denote the horizontal and vertical
dimers, we obtain the following production set:

Q ::= aH | hJ;
H ::= aJ | hM | vH;
J ::= aH | hQ | �;
M ::= aJ | hH:

By the Sch6utzenberger methodology, we can now 0nd the bivariate generating function
Q(t; w) such that [tnwk]Q(t; w) represents the number of possible k-length T-shaped
strip tilings having n pieces. By length we mean the number of cells in the 0rst row,
minus 1: Every piece counts as t; and as wi, i= 0::2 because the piece added either
does not lengthen the strip or it lengthens it by one or two new cells. For the sake
of simplicity, we denote the functions Q(t; w); H (t; w); J (t; w) and M (t; w) by Q;H; J
and M: We obtain the following system (in canonical form):

Q − tH − twJ = 0;

(1 − tw)H − twJ − tw2M = 0;

−twQ − tH + J = 1;

−tH − tJ +M = 0: (3.1)

By solving in Q; we 0nd

Q =
tw(1 + t − tw + t2w − t2w2)

1 − tw − t2w − 2t2w2 − 2t3w2 + t3w3 − t4w3 + t4w4 :

From this generating function, we can obtain monovariate generating functions that
count our tilings by their pieces and length. We set w= 1 to 0nd out the number of
pieces and obtain:

Q(t) =
t

1 − t − 3t2 − t3
= t + t2 + 4t3 + 8t4 + 21t5 + 49t6 + 120t7 + · · · :

For example, we have the following 21 tilings containing exactly 0ve pieces: six with
length 3, 14 with length 4 and one with length 5.

As far as the growth rate goes, we have 1 − t − 3t2 − t3 = (1 + t)(1 − 2t − t2);
therefore, the convergence radius of the series is �=

√
2−1 = 0:41421356237; the root

having smallest modulus. Consequently, the number of tilings according to the number

D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352 345

of pieces increases as (1 +
√

2)n; in fact, by Bender’s theorem [2], we have

Qn = [tn]Q(t) ∼
[

t

(1 + t)(1 + (
√

2 − 1)t)

∣∣∣∣ t =
√

2 − 1
]

[tn]
1

1 − (
√

2 + 1)t

=
(1 +

√
2)n

4
:

Of course, we could have found an exact expression for Qn by a partial fraction
decomposition of Q(t): We set t= 1 to count the strips by their length:

Q̂(w) =
2w − w3

1 − 2w − 4w2 + w4

= 2w + 4w2 + 15w3 + 46w4 + 150w5 + 480w6 + · · · :
For Q̂(w); we 0nd �= 0:3111078174 and therefore Q̂k grows as �−k = (3:214319743)k :

We note that if the initial and=or the 0nal state vary, in (3.1), only the right-hand
member and the symbol (in respect to which we have to solve the system) change.
This implies that we always get a rational function with the same denominator. For
example, for a rectangular strip, (which has H as its initial and 0nal state), the right-
hand member becomes (0; 1; 0; 0); by solving for H we 0nd

H =
1 − t2w2

1 − tw − t2w − 2t2w2 − 2t3w2 + t3w3 − t4w3 + t4w4 :

Let us complete our study by examining the strip:

In this case, the initial state is Q and the 0nal state is H ; therefore we have the
same right-hand member as before but we have to solve for Q: We obtain

PQ =
t + t2w

1 − tw − t2w − 2t2w2 − 2t3w2 + t3w3 − t4w3 + t4w4 :

Finally, the strip:

corresponds to the initial state J and to the same 0nal state J ; the right-hand member
of (3.1) is again (0; 0; 1; 0); but we should solve for J this time:

J =
1 − tw − t2w2

1 − tw − t2w − 2t2w2 − 2t3w2 + t3w3 − t4w3 + t4w4 :

It is worth noting that when the initial state is di2erent from H; the result obtained
does not take the occupied cells of the initial state into account. In other words, w is
not raised to the appropriate power. Consequently, the generating function should be
multiplied by w when the initial state is J or Q; and by w2 when the initial state is M .

346 D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352

3.2. Strip-like tiling solvable problems

In Section 2 we said that our algorithm can be applied to 0gures which grow in
only one direction. This is not completely true and a class of tiling problems associated
to 0gures which grow in more than one direction can be solved by decomposing
the original 0gure into sub0gures which are strip-like tiling solvable. For example,
L-shaped, T-shaped and +-shaped 0gures belong to this class:

Let us study as a meaningful case, the L-shaped 0gure made up of two rectangular
strips joined orthogonally to form an L (T-shaped and +-shaped 0gures are made up
of rectangular strips joined orthogonally to form a T or a +, respectively). We want to
determine the generating function L that counts the tilings in terms of pieces (indeter-
minate t) and length (indeterminate w). In this case, by length we mean the number
of inner cells (i.e., the marked part above, which corresponds to a length of 10; in the
L-shaped 0gure). The problem can be solved by studying the corner’s possible tilings:

This same construction is applicable to the other 0gures. The complexity grows
because the combinations of the central structure are much more than the corner’s
possible tilings, but the reasoning is just the same. Obviously, we have 223

= 256
con0gurations for the T-shaped 0gures and 224

= 65736 con0gurations for the +-shaped
0gures. In the L-shaped 0gure case, the quadruple (a; b; c; d) can be specialized in terms
of 0=1 in the following 16 con0gurations:

D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352 347

Fig. 1. The schema for L-shaped 0gures with monomers and dimers as pieces.

Each of these con0gurations corresponds to some tilings and we are interested in
those con0gurations in which the extension outside the corner can be covered by a
part of a dimer (otherwise, we obtain a tiling which can also be obtained by a di2er-
ent con0guration). Thus, we do not take into consideration the con0gurations (0,1,1,0),
(0,1,1,1), (1,1,1,0) and (1,1,1,1) which can be tiled only by using monomers for the ex-
tension outside the corner. The other con0gurations contribute to the generating function
desired in terms of number of pieces and length: each monomer and dimer contributes
as a t and each extension outside the corner is counted as w :w0 corresponds to the
con0guration (0,0,0,0), w1 corresponds for example to the con0gurations (0,0,0,1) and
(0,1,0,0), w2 corresponds for example to (1,1,0,1), and so on. It is now evident that
a complete tiling of our 0gure can be obtained by joining the tilings counted by the
functions H and PQ (of the previous subsection) to the corner’s possible con0gurations
as follows: we can attach a rectangular strip (counted by H) to any con0guration (0,0)
and (1,1) and any 0gure counted by PQ to any con0guration (0,1) and (1,0). Since the
two parts to be joined are independent of each other, the generating function desired
is the product of the two parts’ generating functions and the corner’s tiling contribu-
tion. The generating function L(t; w) is obtained by summing up all the contributions
illustrated in Fig. 1, in which we distinguish the corner con0gurations, their possible
tilings plus the counting contributions and 0nally the generating functions associated
to the two parts to be joined to get the complete 0gure. We obtain

L(t; w) = (2t2 + 4t3 + t4 + 2t3w + 2t4w)H (t; w)2

+(8t3w + 4t4w + 2t4w2)H (t; w) PQ(t; w) + (2t3w2 + 3t4w2) PQ(t; w)2

=
t2(2 + 4t − 2wt + 2wt2 − 2w2t2 + t2 + 2w3t3 + 2wt3 − 4w2t3)

(1 − 2tw − wt2 − w2t3 + w3t3)2 ;

348 D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352

Fig. 2. The schema for L-shaped 0gures with pieces (3.2).

which can be expanded into the following power series:

L(t; w) = 2t2 + (6w + 4)t3 + (14w2 + 22w + 1)t4

+ (30w3 + 76w2 + 14w)t5 + O(t6):

This, in turn, indicates that there are two 0-length tilings with 2 pieces, four 0-length
tilings with 3 pieces, six 1-length tilings with 3 pieces, and so on.

By proceeding in an analogous way we can obtain counting results for the T-shaped
and +-shaped strips. Obviously, the same method can be applied with di2erent pieces.
For example, if we want to tile the L-shaped strip with the following pieces:

(3.2)

we have to take into consideration Fig. 2 and sum all the contributions together.
Functions H and PQ are analogous to the functions H and PQ of the previous sub-
section but correspond to pieces (3.2). We observe that in this example, we have to
exclude only the corner con0guration (1; 0; 0; 1) which does not correspond to any good
tiling.

D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352 349

3.3. Holed strips

We now study the problem of tiling a 3× n strip having alternate holes (the black
cells) in the second row:

This also is a sample case which can be extended easily to other situations, when
the strip is wider and=or the holes have other patterns. In this case, we obtain the
following grammar whose initial state is A and 0nal state is E:

350 D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352

By applying the Sch6utzenberger methodology and solving for A; we get the following
generating function:

Hol(t; w) =
wt2(2 + t + 2w2t2 + 2w2t3 + w2t4)

1 − 7w2t3 − 6w2t4 − w2t5 + 9w4t6 + 6w4t7 + w4t8 − w6t9

= 2wt2 + wt3 + 2w3t4 + 16w3t5 + 20w3t6 + (8w3 + 14w5)t7 + O(t8):

For example, we have the following 16 3-length tilings made up of 5 pieces:

3.4. Slotted strips

Let us now examine the 2× n strip having alternate slots:

Situations (a) and (b) correspond to two di2erent 0nal states and we are interested
in both. We get the following regular grammar:

in which A is the initial state and A; C the 0nal states. We then obtain the following
generating function:

Slot(t; w) =
tw

(1 − tw)2(1 + tw)2

= 1 + wt + w2t2 + 2w3t3 + w4t4 + 3w5t5 + w6t6

+ 4w7t7 + w8t8 + 5w9t9 + O(t10):

It can be seen that we have a unique solution when the strip length is an even number.
This is immediately evident if we build the tiling from right to left.

D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352 351

3.5. Diagonal strips

Our last example can be represented by the following 0gure shape:

in which the marked line represents the length. The initial state is A and the 0nal one
is D:

We obtain the following counting generating function:

Diag(t; w) =
wt2

1 − 4w2t2 − w2t3 + 2t4w4

=wt2 + 4w3t4 + w3t5 + 14w5t6 + 8w5t7 + (48w7 + w5)t8

+ 44w7t9 + O(t10):

4. Conclusions

In this paper, we focused our attention in showing how the algorithm introduced in
[9] can be applied to 0gures more complex than a rectangular strip. We showed several
examples which we hope are indicative of how many other problems can be solved.
As noted in the Section 1, many interesting by-products can be obtained through the
connection between tiling problems and regular grammars.

Actually, other research directions are possible. An important point would be to
understand how complexity grows as the number of di2erent pieces and=or the width
of the strip increase.

Last, but not the least, we observe that our tiling algorithm can also be applied
to three-dimensional 0gures, and we have some results for linear strips of dimension

352 D. Merlini et al. / Theoretical Computer Science 282 (2002) 337–352

2× 2× n when tiled with three dimensional monomers (i.e., 1× 1× 1 pieces) and
dimers (i.e., 1× 1× 2 pieces, oriented in any direction).

Acknowledgements

We wish to thank the anonymous referees whose comments helped in improving the
contents and readability of our paper.

References

[1] J.H. Ahrens, Paving the chessboard, J. Combin. Theory, Ser. A 31 (1981) 277–288.
[2] E.A. Bender, Asymptotic methods in enumeration, SIAM Rev. 16 (1974) 485–515.
[3] P.E. Boas, The convenience of tilings, Complexity, logic and recursion theory, Lecture notes in Pure

and Appl. Math. 187 (1997) 331–363.
[4] P. Crescenzi, C. Demetrescu, I. Finocchi, R. Petreschi, Reversible execution and visualization of

programs with Leonardo, J. Visual Lang. Comput. 11 (2000) 125–150.
[5] M.P. Delest, X.G. Viennot, Algebraic languages and polyominoes, Theoret. Comput. Sci. 34 (1984)

169–206.
[6] S.W. Golomb, Tiling rectangles with polyominoes, Math. Intell. 18 (1996) 38–47.
[7] P.W. Kasteleyn, The statistics of dimers on a lattice, Physica 27 (1961) 1209–1225.
[8] W.R. Marshall, Packing rectangles with congruent polyominoes, J. Combin. Theory Ser. A 77 (1997)

181–192.
[9] D. Merlini, R. Sprugnoli, M.C. Verri, Strip tiling and regular grammar, Theoret. Comput. Sci. 242

(2000) 109–124.
[10] M.P. Sch6utzenberger, Context-free language and pushdown automata, Inform. and Control 6 (1963)

246–264.
[11] H.N.V. Temperley, M.E. Fisher, Dimer problem in statistical mechanics, an exact result, Philos. Mag.

6 (1961) 1061–1063.

