
Discrete Applied Mathematics 154 (2006) 452–470
www.elsevier.com/locate/dam

Linear splicing and syntactic monoid�

P. Bonizzonia, C. De Feliceb,∗, G. Mauria, R. Zizzab

aDipartimento di Informatica Sistemistica e Comunicazione, Università degli Studi di Milano Bicocca, Via Bicocca degli Arcimboldi 8,
20126 Milano, Italy

bDipartimento di Informatica e Applicazioni, Università di Salerno, 84081 Baronissi (SA), Italy

Received 5 September 2003; received in revised form 28 April 2005; accepted 20 June 2005
Available online 26 September 2005

Abstract

Splicing systems were introduced by Head in 1987 as a formal counterpart of a biological mechanism of DNA recombination under
the action of restriction and ligase enzymes. Despite the intensive studies on linear splicing systems, some elementary questions
about their computational power are still open. In particular, in this paper we face the problem of characterizing the proper subclass
of regular languages which are generated by finite (Paun) linear splicing systems. We introduce here the class of marker languages L,
i.e., regular languages with the form L=L1[x]1L2, where L1, L2 are regular languages, [x] is a syntactic congruence class satisfying
special conditions and [x]1 is either equal to [x] or equal to [x] ∪ {1}, 1 being the empty word. Using classical properties of formal
language theory, we give an algorithm which allows us to decide whether a regular language is a marker language. Furthermore, for
each marker language L we exhibit a finite Paun linear splicing system and we prove that this system generates L.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Automata; Regular languages; Molecular computing

1. Introduction

Linear splicing systems are generative devices of formal languages, introduced by Head in 1987 to model the
recombinant behaviour of DNA molecules under the action of restriction and ligase enzymes (splicing operation).
Two strands of DNA are cut at specified substrings (sites) by restriction enzymes that recognize a pattern inside the
molecule and then the fragments are pasted by ligase enzymes. In particular, Head was concerned with the structure of
the languages of those DNA molecules (strings) which could be produced through the splicing operation, performed
by a splicing system consisting of a finite set of initial DNA molecules (initial language) and a finite set of enzymes
(set of rules). He showed that under some conditions, the generated language is strictly locally testable [12]. As a result
of his pioneering work, several variants of the splicing operation were proposed, some of which by Paun and Pixton.
Moreover, different variants of splicing systems were introduced together with the more general model of a splicing
system which has an infinite set of initial strings and an infinite set of rules (see [19] for a survey).

� Partially supported by MIUR Project “Linguaggi Formali e Automi: Metodi, Modelli e Applicazioni” (2003), by the contribution of EU
Commission under The Fifth Framework Programme (project MolCoNet IST-2001-32008) and by 60% Project “Linguaggi formali e codici: modelli
e caratterizzazioni strutturali” (University of Salerno, 2004).

∗ Corresponding author.
E-mail addresses: bonizzoni@disco.unimib.it (P. Bonizzoni), defelice@dia.unisa.it (C. De Felice), mauri@disco.unimib.it (G. Mauri),

zizza@dia.unisa.it (R. Zizza).

0166-218X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2005.06.008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82754916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:bonizzoni@disco.unimib.it
mailto:defelice@dia.unisa.it
mailto:mauri@disco.unimib.it
mailto:zizza@dia.unisa.it

P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470 453

The computational power of splicing systems, recently called H systems, i.e., triples H = (A, I, R) where A is a
finite alphabet, I is the initial language over A, and R is the set of rules, has been investigated and this computational
power also depends on which level in Chomsky hierarchy I, R belong. In particular, these systems can be as powerful
as the Turing machines [14,19]. At the lowest level of the hierarchy, the regularity of splicing languages generated by
regular initial languages and a finite set of rules is proved in [19,22]. On the other hand, it is known that finite linear
splicing systems, i.e., H systems with both I, R finite sets, generate languages which belong to a proper subset of the
family of regular languages, but the complete structure of these regular languages is still unknown [6,14,16]. This is
the problem we deal with in this paper and definitions and results from classical formal language theory are used in
order to obtain our results. In particular, we will consider the notion of a constant for a regular language L, given by
Schützenberger in [23] and the notion of syntactic congruence for a regular language L (see Sections 2.2 and 8 for the
definitions). These notions seem to play an important role in the description of the structure of the above-mentioned
class of regular languages.

To be more precise, we say that [x] is a marker if [x] is a syntactic congruence class satisfying some conditions.
Specifically, in the transition diagram of the minimal finite state automaton A recognizing L, we find only a path � with
label x. We also suppose that either x is the label of a closed path or {x′ ∈ A∗ | x′≡Lx} is a finite set, where ≡L denotes
the syntactic congruence of L. Under these hypotheses, we set [x]1 = [x] ∪ {1} in the former case and [x]1 = [x] in the
latter case, where 1 is the empty word. In this paper we will consider marker languages L, i.e., regular languages with
the form L = L1[x]1L2, where L1, L2 are regular languages and [x] is a marker. We show that we can generate each
marker language L through a finite linear Paun splicing system which is defined by means of some particular closed
paths (cycles) in the minimal finite state automaton recognizing L (Definition 6.3, Theorem 6.1).

A special case is worthy of note. If [x] is a marker, we can show that for each x′ ∈ [x], x′ is a constant for L. Now,
when {x′ ∈ A∗ | x′≡Lx} is a finite set, the marker language L=L1[x]1L2 =L1[x]L2 belongs to a family of languages
proved to be generated by finite linear Paun splicing systems in [13] by Head. As a matter of fact, L is a finite union of
languages named constant languages in [3]. Therefore, it is natural to compare these two classes of languages—marker
languages and constant languages—with respect to the order of set inclusion. In connection with this problem, we
show that constant languages exist which are not marker languages and marker languages exist which are not constant
languages (see Propositions 8.2, 8.3).

Concepts, techniques and statements proved in this paper also intervene in a recent result, which characterizes
reflexive languages (i.e., languages generated by finite reflexive Paun linear splicing systems), a class which properly
contains the family of languages generated by finite Head splicing systems [3,5]. Once again this characterization,
given in [3,5], is obtained via constants (see also [9,10] for other results on reflexive languages).

Decision problems also arise in a natural way. We recall that deciding whether a regular language is a constant
language is a question which was first asked in [13]. In [10] the authors have given an answer to this question, along
with a solution to the analogous question for reflexive languages. In this framework, we design an algorithm which
shows that it is decidable whether a regular language is a marker language (Proposition 5.3).

This paper is organized as follows. Section 2 contains some basics on words and finite automata together with all
the necessary preliminary definitions on the splicing operation. The other sections are devoted to marker languages.
Precisely, in Section 3 we give an outline of the results. Section 4 contains some definitions and properties of particular
closed paths in a graph (cycles) which will be used in the proofs of our results. In Sections 6–7 we prove that marker
languages, defined in Section 5, are generated by special finite linear Paun splicing systems which are constructed in
Section 6.1. Finally, in Section 8 we discuss the notion of marker and the relationship between constant languages and
marker languages. An extended abstract of most of the results contained in this paper has been presented at DLT02 [2].

2. Basics

2.1. Words and finite automata

We denote by A∗ the free monoid over a finite alphabet A with the concatenation (or product) operation, and we set
A+ =A∗\1, where 1 is the empty word. For a word w ∈ A∗, |w| is the length of w and, for a subset L of A∗, we denote
by |L| the cardinality of L. A word x ∈ A∗ is a factor of w ∈ A∗ if u1, u2 ∈ A∗ exist such that w = u1xu2; x is a prefix
(resp. suffix) of w ∈ A∗ if u1 = 1 (resp. u2 = 1); x is a proper prefix (resp. proper suffix) of w ∈ A∗ if u2 �= 1 = u1

454 P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470

(resp. u1 �= 1 = u2). We denote Fact(L) = {w ∈ A∗ |A∗wA∗ ∩ L �= ∅} the set of all the factors of the elements of
L ⊆ A∗ and we set Fact({w}) = Fact(w). We also recall that the reverse wR of w ∈ A∗ is defined as follows: 1R = 1
and, for all x ∈ A∗, a ∈ A, (xa)R = axR . Then, for a language L ⊆ A∗, LR = {lR | l ∈ L} is the reverse of L.

We refer the reader to [8,11,15,20] for the notations and results which will be used in the next part of this section.
In the following A = (Q, A, �, q0, F) will be a finite state automaton, where Q is a finite set of states, q0 ∈ Q is the
initial state and F ⊆ Q is the set of final states. The transition function � is defined in the classical way. A finite state
automaton A is deterministic if, for each q ∈ Q, a ∈ A, there exists at most one state p ∈ Q such that �(q, a)=p. The
triple (q, a, p) is called an edge of the automatonA. Furthermore,A is trim if each state is accessible and coaccessible,
i.e., if for each state q ∈ Q there exist x, y ∈ A∗ such that �(q0, x) = q and �(q, y) ∈ F . As usual, in the transition
diagram of a trim deterministic automaton A, each final state will be indicated by a double circle and the initial state
will be indicated by an arrow without a label going into it. In this paper, each automaton will be supposed to be
deterministic and trim. A path � in an automaton A is a finite sequence � = (q1, a1, q2)(q2, a2, q3) . . . (qn, an, qn+1)

of consecutive edges, i.e., for each i = 1, . . . , n we have �(qi, ai) = qi+1. An abbreviated notation for a path is
� = (q1, a1a2 · · · an, qn+1) and a1a2 . . . an is called the label of �. Moreover, we say that q1, . . . , qn+1 are the states
crossed by the path (q1, a1 · · · an, qn+1) and, for each i ∈ {2, . . . , n}, qi is an internal state crossed by the same
path. For each state q, we consider also the null path 1q with label 1. A path � = (q, x, p) is a closed path if � �= 1q

and q = p.
If not stated, L ⊆ A∗ will always be a regular language, at times represented by means of a regular expression. Well

known results state that, if L is regular then LR is regular and, for any set M, M−1L = {y ∈ A∗ | xy ∈ L, x ∈ M},
LM−1 = {y ∈ A∗ | yx ∈ L, x ∈ M} are also regular [11]. Given a regular language L ⊆ A∗, it is also well known that
there exists a minimal finite state automaton A recognizing it, i.e., such that L = L(A). This canonical automaton is
determined uniquely up to a renaming of the states and (when we make it trim) it has the minimal number of states. It
is related to the syntactic monoid of L (the definition of which will be recalled in Section 2.2) and can be obtained by
standard construction algorithms. One of these algorithms uses the property reported in Proposition 2.1 [1,15]. Given
a deterministic finite state automaton A = (Q, A, �, q0, F), for all q ∈ Q, we denote Lq = {w ∈ A∗ | �(q, w) ∈ F }.

Proposition 2.1. Let A = (Q, A, �, q0, F) be a trim deterministic finite state automaton recognizing the regular
language L = L(A). Then, A is minimal if and only if, for every q, p ∈ Q, we have Lq �= Lp.

Unless otherwise stated, for a regular language L ⊆ A∗, we will always refer to the minimal finite state automaton
A recognizing L. In particular, A will be deterministic and trim.

2.2. Syntactic monoid

The investigation of a regular language L ⊆ A∗ has been thoroughly developed by using the algebraic theory of finite
monoids via the so-called syntactic monoid associated with L [20]. This is the quotient monoidM(L) with respect to the
syntactic congruence ≡L, defined as follows: two words w, w′ are equivalent with respect to the syntactic congruence
if they have the same set of contexts, i.e.,

w≡Lw′ ⇔ [∀x, y ∈ A∗, xwy ∈ L ⇔ xw′y ∈ L] ⇔ C(w) = C(w′).

Here, we denote C(w) = {(x, y) ∈ A∗ × A∗ | xwy ∈ L} the set of contexts C(w) of w ∈ A∗ for L ⊆ A∗ and
[w] = {w′ ∈ A∗ |w′≡Lw} the class of w modulo ≡L. If L is a regular language then the index (i.e., the number of
congruence classes) of the syntactic congruence is finite and so M(L) is a finite monoid. Theorem 2.1, proved in [17],
will be widely used in the next part of this paper.

Theorem 2.1. Let L be a regular language and let A= (Q, A, �, q0, F) be the minimal automaton recognizing L. We
have w≡Lw′ if and only if for all q ∈ Q we have �(q, w) = �(q, w′).

Let us introduce some notations which will be used in the following sections. We set Qw(A) = {q ∈ Q | �(q, w)

is defined}, simply denoted Qw when the context makes the meaning evident. Furthermore the observation below
defines the notation Q[w] with w ∈ A∗.

P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470 455

Remark 2.1. If w≡Lw′ then Qw =Qw′ . By contradiction, suppose that there exists q ∈ Qw\Qw′ and let �(q, w)=p.
Since q is accessible and p is coaccessible, then there exist x, y ∈ A∗ such that �(q0, x) = q, �(p, y) ∈ F . Thus,
(x, y) ∈ C(w), but (x, y) /∈ C(w′), since �(q0, x)=q and �(q, w′) is not defined. In conclusion, Qw ⊆ Qw′ . Similarly,
Qw′ ⊆ Qw and so Qw = Qw′ .

Finally, a word w ∈ A∗ can be a label of zero, one path or more in A, but since A is deterministic, for a given
q ∈ Qw, we have that w is the label of a unique path in A starting from q.

2.3. Linear splicing

In Section 3 we present the main result of this paper, namely we describe a new class of languages which can be
generated by a finite linear splicing system. As a matter of fact, there are three definitions of the linear splicing operation
given by Head, Paun and Pixton, respectively [14]. We will only consider the second definition, also reported in [18].

Paun’s definition. Given a finite alphabet A and two special symbols |, $ /∈ A, a splicing rule (over A) is
denoted r = u1 |u2 $ u3 |u4, (ui ∈ A∗, i = 1, 2, 3, 4). For such a rule r we write (x, y)�r (w

′, w′′) if and only if
x1, x2, y1, y2 ∈ A∗ exist such that x = x1u1u2x2, y = y1u3u4y2, w′ = x1u1u4y2 and w′′ = y1u3u2x2. A splicing system
SPA = (A, I, R) consists of a finite alphabet A, an initial language I ⊆ A∗ and a set R of rules. Furthermore, given
a language L ⊆ A∗, we denote by �′(L) = {w′, w′′ ∈ A∗ | ∃x, y ∈ L, ∃r ∈ R : (x, y)�r (w

′, w′′)}. Then, we define
�0(L) = L, �i+1(L)= �i (L) ∪ �′(�i (L)), i�0, and then �∗(L) = ⋃

i �0�
i (L).

Definition 2.1. Given a splicing system SPA = (A, I, R), the language L(SPA) = �∗(I) is the language generated by
the system SPA. A language L is SPA generated (or L is a Paun splicing language) if a splicing system SPA exists such
that L = L(SPA).

Given a splicing system SPA = (A, I, R), let us consider a rule r =u1 |u2 $ u3 |u4 ∈ R. Clearly r may be considered
a word, so the reverse rR = uR

4 |uR
3 $ uR

2 |uR
1 of r may also be defined. Thus, we can define the splicing system

SR
PA = (A, IR, RR) where RR = {rR | r ∈ R}. Proposition 2.2 is more or less folklore.

Proposition 2.2. Let L ⊆ A∗ be a language, let SPA = (A, I, R) be a splicing system. We have (L(SPA))R =L(SR
PA).

In addition, if L ⊆ L(SPA) then LR ⊆ L(SR
PA).

Proof. Given a splicing system SPA = (A, I, R) and a language L ⊆ A∗, we denote by �′
R(L) (resp. �R(L)) the

function �′ (resp. �) when we refer to SR
PA, i.e., �′

R(L) = {w′, w′′ ∈ A∗ | ∃x, y ∈ L, ∃rR ∈ RR : (x, y)�rR (w′, w′′)}.
Furthermore, we have �0

R(L) = L, �i+1
R (L) = �i

R(L) ∪ �′
R(�i

R(L)), i�0.
It is clear that �0

R(IR) = IR = (�0(I))R . Furthermore, given x, y ∈ L, r ∈ R, w′, w′′ ∈ A∗, we obviously have
(x, y) �r (w′, w′′) if and only if (xR, yR) �rR ((w′)R, (w′′)R). This observation shows that �′

R(LR) = (�′(L))R . Then,
looking at Definition 2.1, we have (L(SPA))R = L(SR

PA).

Suppose that L ⊆ L(SPA). Then, for each wR ∈ LR , we have either w ∈ I or there exist x, y ∈ L(SPA), r ∈ R

and w′ ∈ A∗ such that (x, y)�r (w, w′) (the other case (x, y)�r (w
′, w) is analogous). Consequently, either wR ∈ IR

or there is a rule rR ∈ RR , xR, yR ∈ (L(SPA))R = L(SR
PA) and (w′)R ∈ A∗ such that (xR, yR)�rR (wR, (w′)R), i.e.,

wR ∈ L(SR
PA). �

In the next part of this paper we deal only with finite linear splicing systems, i.e., with both I, R ∈ Fin, where Fin
is the class of finite languages. The corresponding class of generated languages will be denoted SPA(Fin, Fin).

3. Outline of the results

As already said, the main result of this paper is the construction of a family of languages generated by finite Paun
linear splicing systems and called marker languages (Definition 5.4). These languages are defined starting with a regular

456 P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470

language L = L(A) and a particular syntactic congruence class [x] with respect to L. To be more specific, we give
the definition of a marker for L (Definition 5.3). Intuitively, given x ∈ A∗, [x] is a marker for L if, in the transition
diagram of the minimal finite state automaton A recognizing L, there is only one path � with label x. Furthermore,
either [x] is a finite set or x is the label of a closed path in A. Under these hypotheses, we set [x]1 = [x] in the former
case and [x]1 =[x]∪ {1} in the latter case. A marker language L will have the form L1[x]1L2, where L1, L2 are regular
languages and [x] is a marker.

We give an algorithm which shows that we can decide whether a regular language is a marker language. Furthermore,
for each marker language L we exhibit a finite linear splicing system (Section 6.1) and we show that this system generates
L (Theorem 6.1). Propositions 8.2 and 8.3 prove that the class of marker languages is different from the class of constant
languages introduced in [13] and mentioned in Section 1.

4. Cycles

Let L be a regular language and let A = (Q, A, �, q0, F) be the minimal finite state automaton recognizing L.
Intuitively, if a regular infinite language L is generated by a finite linear splicing system, we must exhibit a finite set of
rules which are able to produce words with a non-bounded number of occurrences of labels of closed paths as factors.
This is the reason for which in [4] the authors give a definition for referring to some of these labels (cycles) in A.

The result which follows, also reported in [5], can be easily proved and will be used in Section 6 in the proofs of
Proposition 6.2 and Lemma 6.1.

Lemma 4.1. Let A = (Q, A, �, q0, F) be a deterministic finite state automaton. For each w ∈ A+, q, p ∈ Q such
that �(q, w) = p there exist a positive integer k, u1, . . . , uk+1, d1, . . . , dk ∈ A∗, p0, p1, . . . , pk, pk+1 ∈ Q such that

• p0 = q, pk+1 = p,
• w = u1d1u2 · · · ukdkuk+1,
• �(pi, di) = pi , 1� i�k, �(pj−1, uj) = pj , 1�j �k + 1.

Furthermore, w′ = u1u2 · · · ukuk+1 satisfies the conditions that follow.

(a) �(q, w′) = p,
(b) each state crossed by the path (q, w′, p) is also crossed by the path (q, w, p),
(c) the internal states crossed by the path (q, w′, p) are different from one another and with respect to q, p,
(d) either w = w′ = u1u2, k = 1 or k�1, d1, . . . , dk ∈ A+ and, if k�2, u2, . . . , uk ∈ A+.

As we have already said, since A is deterministic, a path � = (q, c, p) is uniquely defined by the pair (q, c).

Definition 4.1 (q-label). Let q ∈ Q. A word c ∈ A+ is a q-label in A (or simply a q-label, if A is understood) if c
is the label of some closed path � = (q, c, q) in A. A q-label c is elementary if the internal states crossed by the path
(q, c, q) are different from q, otherwise it is non-elementary.

It is obvious that, for a non-elementary q-label c, there exist (not necessarily different) elementary q-labels c1, . . . , cn,

n > 1, such that c = c1 · · · cn. A cycle is a special elementary q-label, its definition, given in [4] and reported below, is
mutually recursive with the definition of a semi-cycle.

Definition 4.2 (Simple cycle). The word c ∈ A+ is a simple cycle on q if c is an elementary q-label and the internal
states crossed by the path (q, c, q) are different from one another.

(Semi-cycle) The word c ∈ A+ is a semi-cycle on q if there exist (not necessarily different) cycles c1, . . . , cn on q
such that c = c1 · · · cn and, if ci = cj for 1� i < j �n, then ci = ck for k ∈ {i, i + 1, . . . , j}. If n > 1 then c is a proper
semi-cycle on q.

(Cycle) The word c ∈ A+ is a cycle on q if c is an elementary q-label such that either c is a simple cycle on q or
there exist u1, u2, . . . , uk, uk+1, s1, . . . , sk ∈ A+ such that c =u1s1u2 · · · ukskuk+1, with k�1, u1u2 · · · ukuk+1 being
a simple cycle on q, sj being a semi-cycle on pj = �(pj−1, uj), 1�j �k and p0 = q.

P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470 457

3

0
b

b

aa

b

b
1 2

Fig. 1. Automaton A1.

1

e

0

a

a

a

b

b
e

e

d 2 3

Fig. 2. Automaton A2.

A cycle c on q is simply named cycle when the context makes the meaning evident.

Example 4.1. The word c = ba2b2a2b is a (non-simple) cycle on state 0 in A1 (Fig. 1). Indeed, c = bs1b
2s2b, where

bb2b is a simple cycle on 0, s1 = a2 is a simple cycle on 1 and s2 = a2 is a simple cycle on 3. Notice that we can also
state that c is a cycle on 0 by observing that c = basb, where bab is a simple cycle on 0 and s = abbaa is a semi-cycle
on 3. The same word c = ba2b2a2b is a (non-simple) cycle on 2 since c = bs1b

2s2b, where bb2b is a simple cycle on
2, s1 = a2 is a simple cycle on 3 and s2 = a2 is a simple cycle on 1.

Example 4.2. As another example, consider the automaton A2 (Fig. 2). It is easy to see that the elementary 0-labels
adeaa, adddeeaa are cycles on 0. On the contrary, c = adedaa is not a cycle on 0 since there is a unique simple cycle
on 0 having a as a prefix, namely a3, and ded is not a semi-cycle on 1.

The 0-label c=ad2e3a(be2b)(be3b)(be4b)a is a cycle on 0. Indeed, we have c=as1as2a, with a3 being a simple cycle
on 0, s1 =d2e3 being a semi-cycle on 1, s2 =c3c4c5 being a semi-cycle on 2 since c3 = (be2b), c4 = (be3b), c5 = (be4b)

are different cycles on 2. On the contrary, c = ad2e3a(be2b)(be3b)(be2b)a is not a cycle on 0 since, once again, there
is a unique simple cycle on 0 having a as a prefix, namely a3, and (be2b)(be3b)(be2b) is not a semi-cycle on 2.

Cycles satisfy a combinatorial property which is described in the lemma below. This lemma, which will be used in
the proof of Proposition 4.1, states that a proper semi-cycle on q is not a cycle on q and that a cycle on q cannot be a
proper prefix of another cycle on q.

Lemma 4.2. Let A = (Q, A, �, q0, F) be a deterministic finite state automaton, let q ∈ Q. A cycle on q is never a
proper prefix of another cycle on q.

Proof. Let c, d be two cycles on q with c �= d and, by contradiction, suppose that there exists w ∈ A+ such that
c = dw or d = cw. Let us suppose that the first case holds (the second case is analogous). Consequently, we have
q = �(q, c) = �(q, dw) = �(�(q, d), w) = �(q, w), i.e., c = dw is not an elementary q-label and this is a contradiction
(see Definition 4.2). �

458 P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470

The definition which follows intervenes in the statement of Proposition 4.1. In this proposition, we will state a
property of q-labels that are not cycles on q which, in turn, will be used in the proof of the main result of this
paper.

Definition 4.2 (Forbidden q-label). A q-label c is a quasi semi-cycle on q if there exist (not necessarily different)
cycles c1, . . . , cn on q such that c=c1 · · · cn. If n > 1 then c is a proper quasi semi-cycle on q. A q-label c is a forbidden
q-label if c = c1�c1, where c1 is a cycle on q and � is a q-label which is not a power of c1 (i.e., � �= ct

1, t �1).

Remark 4.1. We notice that if c is a cycle on q then c is not a proper quasi semi-cycle on q. Furthermore, using the
same notations as in Definition 4.2, there exists a factorization of c, say u1s1 · · · skuk+1, such that no sj is a forbidden
pj -label. Nevertheless, examples of cycles c on q exist such that we can write c =hfg with f being a forbidden p-label
and �(q, h)=p. For instance, let A1 be the automaton in Fig. 1. Then c=ba2b2a4b is a cycle on 0 since c=bs1b

2s2b,
where bb2b is a simple cycle on 0, s1 =a2 is a cycle on 1 and s2 =a4 is a semi-cycle on 3. On the other hand, c=bf ab,
where f = a2b2a3 is a forbidden 1-label with c1 = a2, � = b2a. As another example, consider the automaton A2 and
the cycle c = ad2e3a(be2b)(be3b)(be4b)a on 0. We have c = (ad2e3abe2)f (e4ba), where f = b2e3b2 is a forbidden
3-label. Proposition 4.1 states that, if a q-label c is not a quasi semi-cycle on q then the above-mentioned factorization
hfg of c always exists.

Proposition 4.1. Let L be a regular language and let A = (Q, A, �, q0, F) be the minimal finite state automaton
recognizing L. Let c be a q-label in A. If c is not a cycle, then one of the following two cases occurs.

(1) c is a proper quasi semi-cycle on q.
(2) c = hfg, whereh, g ∈ A+, f is a forbidden p-label and �(q, h) = p.

Proof. Let c be a q-label in A which is not a cycle. By using induction over |c|, we prove that condition (1) or (2)

holds.
Let c be the shortest string among all those strings that are p-labels in A and that are not cycles on p, with p ∈ Q.

If c is not an elementary q-label, i.e., c = c′c′′ with c′, c′′ being q-labels, then c′, c′′ are cycles on q (since c′, c′′
are shorter than c) and c is a proper quasi semi-cycle on q. Otherwise, c is not a simple cycle on q and, for each
u1, u2, . . . , uk, uk+1, s1, . . . , sk ∈ A+ such that c = u1s1u2 · · · ukskuk+1, with k�1, u1u2 · · · ukuk+1 being a simple
cycle on q, there exists j, 1�j �k such that, for pj = �(pj−1, uj), sj is a pj -label which is not a semi-cycle, in
particular sj is not a cycle, a contradiction since |sj | < |c|.

Suppose now that the conclusion holds for words d ∈ A∗, |d| < |c| and let us prove the conclusion for c. The
following preliminary observations hold as direct results.

(a) If c′, c′′ are q-labels such that each of them is a quasi semi-cycle on q or is a product h′f ′g′, with h′, g′ ∈ A+,
f ′ being a forbidden p-label, �(q, h′) = p, then c = c′c′′ satisfies condition (1) or condition (2).

(b) If c = hh′fg′g, where h, g ∈ A+, h′, g′ ∈ A∗, f is a forbidden p-label, �(q, hh′) = p, then c satisfies
condition (2).

If c is not an elementary q-label, i.e., c = c′c′′ with c′, c′′ being q-labels shorter than c, then item (a) along with
the induction hypothesis allows us to infer that c satisfies condition (1) or condition (2). Suppose now that c is an
elementary q-label. Once again, c is not a simple cycle on q and, for each u1, u2, . . . , uk, uk+1, s1, . . . , sk ∈ A+ such
that c = u1s1u2 · · · ukskuk+1, with k�1, u1u2 · · · ukuk+1 being a simple cycle on q, there exists j, 1�j �k, such
that, for pj = �(pj−1, uj), sj is a pj -label which is not a semi-cycle on pj . In particular, c = hsjg with h, g ∈ A+,
sj is not a cycle on pj and |sj | < |c|. Thus, by induction hypothesis, either sj = h′fg′, where h′, g′ ∈ A+, f is a
forbidden p-label, �(pj , h

′) = p or sj is a proper quasi semi-cycle on pj . In the latter case, we still have sj = h′fg′
with h′, f, g′as above, except that h′ or g′ can now be the empty word. Indeed, since sj is a proper quasi semi-cycle on
pj , we have sj = c′

1 · · · c′
n, with n > 1 and c′

k being cycles on pj . Furthermore, since sj is not a semi-cycle on pj , there
exists i1, i2, 1� i1 < i2 �k, such that c′

i1
= c′

i2
while c′

i1+1, . . . , c
′
i2−1 are different from c′

i1
. Then, the above-mentioned

factorization exists with f = c′
i1
�c′

i2
, since � = c′

i1+1 · · · c′
i2−1 ∈ A+ is a pj -label and � is not a power of c′

i1
(in view

of Lemma 4.2).

P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470 459

Thus, in view of item (b), c satisfies condition (2). �

In Remark 4.1 we have already observed that Proposition 4.1 does not lead to a characterization of cycles since we
have given examples of cycles which satisfy condition (2) contained in the statement of Proposition 4.1.

Example 4.3. Consider A2 (Fig. 2). We observe that aea2, aedabeba are elementary 0-labels, while ea3 is not an
elementary 0-label.

Each word ci,j = diej , with i, j �1, is a proper semi-cycle on 1, hence ci,j is not a cycle on 1. On the other hand,
each word ci,j,k = diej dk , with i, j, k�1, is a forbidden 1-label. Hence, once again, ci,j,k is not a cycle on 1 since
ci,j,k is not an elementary 1-label. Note, that diej satisfies condition (1) in Proposition 4.1, while adiej dka2 satisfies
condition (2) in the same proposition.

The word c = adeda2 is an example of an elementary 0-label that is not a cycle on 0. Indeed, since there is a
unique simple cycle on 0 having a as a prefix, namely a3, there is only one factorization of c which we should consider
and that is c = as1a

2, with s1 = ded. On the other hand, s1 is not a semi-cycle on state 1 and so, c is not a cycle
on 0.

5. Markers and languages defined by markers

In this section we will give some preliminary definitions in order to define the class of languages we deal with, i.e.,
marker languages (Definition 5.4).

Definition 5.1 (Cyclic class). A class [x] ∈ M(L) is called cyclic if there exists q ∈ Q and y ∈ [x] such that y is a
q-label in A.

For instance, given the finite state automaton A3 depicted in Fig. 3, [cb] = ((cb)∗(dh)∗)∗\{1} is a cyclic class since
cb, dh are cycles.

Definition 5.2 (Singular class). A class [x] ∈ M(L) is called singular if |Q[x]| = 1.

Proposition 5.1 states a property of a cyclic class which is singular: every word y in [x] is a q-label.

Proposition 5.1. Let [x] be a singular and cyclic class and let Q[x] = {qx}. For every y, z ∈ [x], we have �(qx, y) =
�(qx, z) = qx and yz ∈ [x].

Proof. In virtue of Definition 5.1, we have �(qx, x)= qx . Let y, z ∈ [x]. Thus, using Theorem 2.1, we have �(qx, y)=
�(qx, z)= qx and also �(qx, yz)= �(�(qx, y), z)= qx . Since Remark 2.1 allows us to state that Qx =Qy =Qz ={qx},
we also have Qyz = {qx}. Thus, yz ∈ [x] in virtue of Theorem 2.1. �

Definition 5.3 (Marker). Let L be a regular language and let x ∈ A+ be such that Qx �= ∅. The set [x] is a marker for
L if [x] ∈ M(L) is a singular class that is finite or cyclic. We also set [x]1 =[x] if [x] is finite, otherwise [x]1 =[x]∪{1}.

2

c b

d

h

0
a f

1 3 4

Fig. 3. Automaton A3 for a((cb)∗(dh)∗)∗df .

460 P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470

Example 5.1. For instance, given the finite state automaton A3 depicted in Fig. 3, [cb] is a marker for L = a((cb)∗
(dh)∗)∗df since [cb] = ((cb)∗(dh)∗)∗\{1} is a cyclic class and |Q[cb]| = 1. In addition, for each x ∈ {a, b, c, d, f, h}
we have that [x] is a marker for L since |Q[x]| = 1 and [x] = {x} is a finite class.

Notice that a marker for L may be a word (when |[x]| = 1) or a finite set of equivalent words with respect to ≡L

(when [x] is a finite class) or a set of equivalent words with respect to ≡L which are qx-labels of closed paths (when
[x] is a cyclic class). Furthermore, we have [x] �= [1] unless we have |Q| = 1, where Q is the set of the states in A.
In the next part of this paper we will suppose |Q| > 1. Proposition 5.2 states that the existence of a marker for L is
decidable.

Proposition 5.2. It is decidable whether a regular language L has a marker. There exists an algorithm for constructing
the set of markers for L.

Proof. Given a regular language L, the structure of the syntactic monoid M(L) of L and, for each [x] ∈ M(L), the
structure of the regular language [x] can be obtained by standard construction algorithms [21]. Let {x1, . . . , xk} be
a complete set of representatives of the syntactic congruence classes of L. Obviously, for all i ∈ {1, . . . , k}, we can
decide whether |Qxi

| = 1 in the minimal automaton A recognizing L. For this xi we can also decide whether [xi] is
a cyclic class since, in view of Proposition 5.1, [xi] is a cyclic class if and only if xi is a q-label. In addition, we can
decide whether [xi] is a finite class since it is decidable whether a regular set is finite. Therefore, in view of Definition
5.3, it is decidable whether [xi] is a marker. The argument above allows us to design an algorithm for constructing the
set of markers for L. �

Let L be a regular language and let [x] be a marker for L. We now define a regular language L([x]) associated with
a marker and in Theorem 6.1 we will prove that L([x]) is generated by a finite Paun splicing system. We will also
introduce notations which will be used in the next part of this paper. In view of Definition 5.3, Theorem 2.1 and Remark
2.1 there exist qx, px ∈ Q such that Q[x] = {qx} and for each x′ ∈ [x] we have �(qx, x

′) = px . In addition, in view of
Proposition 5.1, if [x] is a cyclic class then px = qx .

Definition 5.4 (Marker language). Let L be a regular language and let [x] be a marker for L. Denote L1 = {y ∈
A∗ | �(q0, y) = qx}, L2 = {y ∈ A∗ | �(px, y) ∈ F } = Lpx . If L = L1[x]1L2, then L is the marker language L([x])
associated with [x]. L is a marker language if there exists a marker [x] for L such that L is the marker language
associated with [x].

Example 5.2. Consider the finite state automaton A3 depicted in Fig. 3. The language L([cb]) = a((cb)∗(dh)∗)∗df
is the marker language associated with [cb] and we have L1 = a((cb)∗(dh)∗)∗ and L2 = ((cb)∗(dh)∗)∗df . The same
language L([f])=a((cb)∗(dh)∗)∗df is also the marker language associated with [f] and we have L1=a((cb)∗(dh)∗)∗d
and L2 = {1}.
Remark 5.1. Let L = L1[x]1L2 be the marker language associated with a marker [x]. Since the minimal automaton
recognizing L is trim and Qx �= ∅ (Definition 5.3), there exist y, z ∈ A∗ such that y[x]z ⊆ L, i.e., we have L1 �= ∅
and L2 �= ∅. In addition, L1 = L([x]1L2)

−1, L2 = (L1[x]1)
−1L and L1, L2 are regular languages (see Section 2.1).

Remark 5.2. Let L be the marker language associated with a marker [x]. For z ∈ L, we could have two different
factorizations z = x1xx2 = x′

1x
′x′

2 with x, x′ ∈ [x], x1, x
′
1 ∈ L1, x2, x

′
2 ∈ L2, i.e., the product L1[x]L2 is not

necessarily unambiguous.

Proposition 5.3. It is decidable whether a regular language L is a marker language.

Proof. Given a regular language L, in Proposition 5.2 we have proved that there exists an algorithm for constructing
the set of markers [x] for L. In the proof of this result we have observed that the structure of the regular language [x]
can also be described.

Given a marker [x] for L, let us consider the regular sets F([x]) = A∗[x]A∗ ∩ L, Suf([x]) = (A∗[x])−1F([x]),
Pref([x]) = F([x])([x]A∗)−1. Then, L is a marker language if and only if there exists a marker [x] for L such that

P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470 461

L=F([x]) if [x] is a finite class, L=F([x])∪Pref([x])Suf([x]) otherwise (Definition 5.4). Thus, the conclusion holds
since given two regular languages X, Y, it is decidable whether X = Y [15]. �

6. Main result

The main result of this section is stated in Theorem 6.1 which will be proved in Sections 6.2 and 7.

6.1. Definition of a splicing system for marker languages

Let L be a regular language, let A = (Q, A, �, q0, F) be the minimal finite state automaton recognizing L and let
p ∈ Q. We will consider the following set Ip,A associated with A and p, simply denoted Ip when A is understood.

Ip,A = {y ∈ A∗ |p ∈ Qy, ∀u, v ∈ A∗, q ∈ Q if y = uctv

with �(p, u) = q and c being a q-label, then c is a cycle on q in A and t = 1}. (1)

The result that follows will be used in the next part of this section.

Proposition 6.1. Let y ∈ A∗. We have y ∈ Ip,A if and only if p ∈ Qy and each q ∈ Q is crossed at most twice by
the path (p, y, �(p, y)).

Proof. Suppose that y ∈ Ip,A. Then, by definition p ∈ Qy . By contradiction, suppose that q ∈ Q exists such that q is
crossed at least three times by the path (p, y, �(p, y)). Then, z1, z2 ∈ A∗ and c1, c2 ∈ A+ exist such that y = z1c1c2z2,
�(q, c1) = q, �(q, c2) = q, which contradicts y ∈ Ip,A when we take c1c2 = ct .

Conversely, let y ∈ A∗, p ∈ Qy and suppose that each q ∈ Q is crossed at most twice by the path (p, y, �(p, y)).
Then, y ∈ Ip,A since otherwise, there exist u, v ∈ A∗, q ∈ Q and a q-label c such that y = uctv and either c is
not a cycle on q or t > 1. In view of Definition 4.2 and Proposition 4.1, q is crossed at least three times by the path
(p, y, �(p, y)): a contradiction. �

Remark 6.1. Each word y ∈ Ip,A is named a reduced label on p in [5].

Let [x] be a marker for L and suppose that L = L([x]) = L1[x]1L2 is the marker language associated with [x]. We
now define a splicing system S[x] = (A, I, R) and we will prove that L([x]) ⊆ L(S[x]). In the next part of this paper,
AR = (QR, A, �R, q0R

, FR) will be the minimal finite state automaton recognizing (L1)
R and we will use the notation

(IR)p for the set Ip,AR
, the definition of which is recalled below.

(IR)p = {y ∈ A∗ |p ∈ (QR)y, ∀u, v ∈ A∗, q ∈ QR if y = uctv

with �R(p, u) = q and c being a q-label in AR, then c is a cycle on q in AR and t = 1}. (2)

Definition 6.1 (Initial language). Let L = L1[x]1L2 be the marker language associated with [x] and let xM be a fixed
element in [x]. The initial language I associated with L[x] is the set

I = I1M([x])I2, (3)

where the sets I1, I2, M([x]), are defined as follows:

I1 = (IR)Rq0R
∩ L1 = {y ∈ (IR)Rq0R

| yR ∈ L(AR)},
I2 = Ipx ∩ L2 = {y ∈ Ipx | �(px, y) ∈ F },

M([x]) =
{

xM if [x] is cyclic,
[x] if [x] is finite.

Proposition 6.2. The initial language I is not empty.

462 P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470

Proof. Let L = L1[x]1L2 be the marker language associated with [x] and let A = (Q, A, �, q0, F) be the minimal
finite state automaton recognizing L. By Remark 5.1, we have L1 �= ∅ and L2 �= ∅, so let l1, l2 ∈ A∗ be such that
�(px, l2) = qF ∈ F , �R(q0R

, lR1) = pF ∈ FR . In view of Lemma 4.1, there exists l′2 ∈ A∗ (resp. (l′1)
R ∈ A∗) such

that �(px, l
′
2) = qF ∈ F (resp. �R(q0R

, (l′1)
R) = pF ∈ FR) and the internal states crossed by the path (px, l

′
2, qF)

(resp. by the path (q0R
, (l′1)

R, pF)) are different from one another and with respect to px, qF (resp. q0R
, pF). Then, by

Proposition 6.1, l′1 ∈ I1 and l′2 ∈ I2. Finally, M([x]) �= ∅ and for each x′ ∈ M([x]), we have l′1x′l′2 ∈ I . �

In Proposition 6.3 we also prove that the initial language I is finite.

Definition 6.2 (Set of rules). Let [x] be a marker and let I be the initial language associated with L([x]).
For every z = z1x

′z2 ∈ I , with z1 ∈ I1, x′ ∈ M([x]), z2 ∈ I2, for every factor cj of z2, i.e., z2 = z′cj z
′′, which is a

cycle on q in A, q = �(px, z
′), let

rcj
= x′z′ | 1 $ x′z′cj | 1. (4)

For every z = z1x
′z2 ∈ I , with z1 ∈ I1, x′ ∈ M([x]), z2 ∈ I2, for every factor cj of (z1)

R , i.e., (z1)
R = z′′cj z

′, which
is a cycle on q in AR , q = �R(q0R

, z′′), let

r ′
cj

= 1 | (cj)
R(z′′)Rx′ $ 1 | (z′′)Rx′. (5)

In addition, if [x] is a cyclic class, let

rxM,xM
= xM | 1 $ 1 | xM . (6)

Finally, for each z= z1x
′z2 ∈ I , let Rz be the set of rules rcj

, r ′
cj

defined by Eqs. (4), (5). We define R =⋃
z∈IRz when

[x] is a finite class and R = (
⋃

z∈IRz) ∪ {rxM,xM
} when [x] is a cyclic class.

We also observe that there could be more than one occurrence of cj as a cycle in z. For instance, we could have
z = z1xz2 = z1xz′cj z

′′ = z1xz′
3cj z

′′
3 with z′ �= z′

3. Thus, in this case we have two rules rcj
(at least) and we should

denote them rz′,cj
, rz′

3,cj
. As a matter of fact we will adopt the same notations as in Eqs. (4), (5) since the context will

not make them ambiguous.
In Proposition 6.3 we prove that S[x] = (A, I, R) is a finite splicing system by using an argument already given in

[4]. In the statements of the propositions proved in this section we will use all the notations introduced in Section 5
and in the first part of this section.

Proposition 6.3. The languages I and R are finite.

Proof. We know that I = I1M([x])I2, where I2 (resp. IR
1) is a subset of Ipx (resp. (IR)q0R

). Furthermore, M([x]) is
a finite set. Thus, if we prove that Ipx (resp. (IR)q0R

) is a finite set, then I is also a finite set. On the other hand, each
y ∈ Ipx is the label of a path � in A such that every q ∈ Q is crossed at most twice by the path � (see Proposition 6.1).
Consequently, |y|�2|Q| and Ipx is a finite set. The same argument maintains for (IR)q0R

, which is in turn a finite
set. Furthermore, for each z ∈ I , Rz is finite since the number of the elements in Rz is at most equal to the number of
the factors of z. Finally, if [x] is a finite class then R is finite since R is the union of a finite number (� |I |) of the finite
sets Rz. Clearly, R is also finite when [x] is a cyclic class. �

Definition 6.3 (Paun splicing system for marker languages). Let I be as in Definition 6.1 and let R be as in Definition
6.2. Then, S[x] = (A, I, R) is the finite Paun splicing system associated with L([x]).

Theorem 6.1. Let L be a regular language. Let [x] be a marker for L and suppose that L = L([x]) is the marker
language associated with [x]. Let S[x] = (A, I, R) be the finite Paun splicing system associated with L([x]). Then, we
have L([x]) = L(S[x]).

Example 6.1. Let L = a((cb)∗(dh)∗)∗df be recognized by A3 (Fig. 3). As observed in Example 5.2, L = L([f]) =
L1[f]1L2 = L1[f]L2 is the marker language associated with [f], where L1 = a((cb)∗(dh)∗)∗d and L2 = {1}. The

P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470 463

minimal finite state automaton A3,R recognizing (L1)
R may be easily obtained by reversing all the edges in A3, by

removing state 4 and by taking 3 as initial state and 0 as the unique final state. Therefore, I1={acbd, adhd, ad} andS[f]=
(A, I, R) with I ={acbdf , adhdf , adf }, R ={1 | cbdf $ 1 | df , 1 | dhdf $ 1 | df }. By Theorem 6.1, S[f] generates L.
In Example 5.2, we have observed that L=L([cb])=L1[cb]1L2 is also the marker language associated with [cb] and, in
this case, we have L1 = a((cb)∗(dh)∗)∗ and L2 = ((cb)∗(dh)∗)∗df . The same automaton A3,R once again recognizes
(L1)

R , when we take 1 as the initial state. We have I1 = {acb, adh, a}, I2 = {cbdf , dhdf , df } and, when we set
M([cb])=cb, we have S[cb]=(A, I, R) with I ={acb, adh, a}cb{cbdf , dhdf , df }, R={cb | 1 $ cbcb | 1, cb | 1 $ cbdh

| 1, 1 | cbcb $ 1 | cb, 1 | dhcb $ 1 | cb, cb | 1 $ 1 | cb}. By Theorem 6.1, S[cb] generates L.

6.2. Generation

In this section we prove that, given a marker language L([x]) = L1[x]1L2 and the splicing system S[x] associated
with L([x]) by Definition 6.3, we have L([x]) ⊆ L(S[x]). The proof of this result is divided into five steps and the
hypothesis that L([x]) is a marker language is unnecessary in the first step. Lemma 6.1 will be used in the proof of
Proposition 6.4.

Lemma 6.1. Let L be a regular language, let A= (Q, A, �, q0, F) be the minimal finite state automaton recognizing
L and let p ∈ Q. Let w1, w2 ∈ A∗ be such that w1 ∈ Ip,A = Ip, w1w2 ∈ Lp and �(p, w1) = q1, �(q1, w2) = qF .
Suppose that for every q ′ ∈ Q\{q1}, if q ′ is crossed by the path (q1, w2, qF), then q ′ is crossed at most once by the
path (p, w1, q1). Then, there exists v′ ∈ A∗ such that w1v

′ ∈ I′
p = Ip ∩ Lp.

Proof. If q1 = qF the conclusion holds with v′ = 1. So, suppose q1 �= qF . Let v′ be the word satisfying conditions
(a).(d) in Lemma 4.1 applied to w2 and �(q1, w2) = qF . In view of condition (a) in Lemma 4.1 we have w1v

′ ∈ Lp

and, in view of condition (b) in the same lemma, w1, v
′ satisfy the hypothesis in the statement. In addition, by using

condition (c) in Lemma 4.1 and since q1 �= qF , the states crossed by the path (q1, v
′, qF) are different from one another.

We claim that w1v
′ ∈ I′

p, i.e., w1v
′ ∈ Ip. Indeed, q1 is crossed at most twice by the path (p, w1, q1) (Proposition

6.1) and q1 is crossed only once by the path (q1, v
′, qF), so q1 is crossed at most twice by the path (p, w1v

′, qF).
Analogously, for each q ′ ∈ Q\{q1}, either q ′ is not crossed by the path (q1, v

′, qF) and q ′ is crossed at most twice
by the path (p, w1, q1) (Proposition 6.1) or q ′ is crossed (only once) by the path (q1, v

′, qF) and so, in view of the
hypothesis, q ′ is crossed only once by the path (p, w1, q1). We conclude that each q ′ ∈ Q is crossed at most twice by
the path (p, w1v

′, qF). Since p ∈ Qw1v′ , by using Proposition 6.1, we have w1v
′ ∈ Ip. �

Proposition 6.4. Let L([x]) be a marker language and let S[x] = (A, I, R) be the splicing system associated with
L([x]). Then we have L([x]) ⊆ L(S[x]).

Proof. The proof is divided into the following five steps.
Step 1. Let M be a finite subset of A∗, with M �= ∅. Let L be a regular language, let A = (Q, A, �, q0, F) be the

minimal finite state automaton recognizing L and let p ∈ Q. LetIp=Ip,A and letI′
p=Ip∩Lp. Let SPA=(A, I ′, R′)

be a splicing system such that for every x′ ∈ M , z2 ∈ I′
p, for every factor cj of z2, i.e., z2 = z′cj z

′′, which is a cycle
in A on q = �(p, z′), the rule rcj

= x′z′ | 1 $ x′z′cj | 1 belongs to R′.
For all Y ⊆ A∗, if YMI′

p ⊆ L(SPA), then YMLp ⊆ L(SPA).
Step 2. I1M([x])L2 ⊆ L(S[x]).
Step 3. L1M([x])L2 ⊆ L(S[x]).
Step 4. If [x] is a cyclic class then L1M([x])[x]L2 ⊆ L(S[x]).
Step 5. L1[x]1L2 ⊆ L(S[x]).
As a matter of fact, Steps 1–3 allow us to prove the statement when [x] is a finite class (in this case M([x])=[x]=[x]1).

Steps 4–5 are necessary in order to end the proof when [x] is a cyclic class.
Step 1. Let y ∈ Y , x′ ∈ M , l ∈ Lp, z = yx′l ∈ YMLp. We prove that z ∈ L(SPA) by induction over |z|. If l ∈ I′

p,
then by hypothesis z ∈ L(SPA). Assume that l ∈ Lp\I′

p and that, for each z′ ∈ YMLp\YMI′
p with |z′| < |z|, we

have z′ ∈ L(SPA).
Since l ∈ Lp\I′

p, then l /∈Ip. Let l1 be the shortest prefix of l that is a word not in Ip. Then p ∈ Ql1 and, looking
at Eq. (1) and Proposition 4.1, we have that either q, u, c1, c2, v exist such that l1 = uc1c2, l = uc1c2v, c1, c2 (not

464 P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470

necessarily different) cycles on q = �(p, u) or l1 = uhc1�c1g, where h, g ∈ A+ and d = c1�c1 is a forbidden q ′-label,
with q ′ = �(q, uh). Now, the latter case cannot occur since l′ = uhd is a proper prefix of l1 and l′ /∈Ip (Proposition
6.1), a contradiction with the minimality of |l1|.

In addition, by using the minimality of |l1|, we have that each proper prefix of l1 is in Ip. In particular, we have
uc1 ∈ Ip, while uc1v ∈ Lp. Furthermore, uc1v satisfies one of the following two conditions.

(a) There exists a state q1 which is crossed by the path (q, v, �(q, v)), with q1 �= q and such that q1 is crossed at
least twice by the path (p, uc1, q).

(b) For each state q1 crossed by the path (q, v, �(q, v)), q1 �= q, q1 is crossed at most once by the path (p, uc1, q).
Case (a). Suppose that Case (a) occurs. Then, there exist u1, u2, v1, v2 ∈ A∗ such that uc1 = u1du2, v = v1v2,

with d, u2v1 being q1-labels and �(p, u1d) = q1 = �(p, u1) = �(q, v1), �(q1, u2) = q, �(q1, v2) ∈ F . So, u2 �= 1
since q1 �= q. Suppose u1d of minimal length with respect to this condition, that is each state q ′ crossed by the path
(q, v, �(q, v)), q ′ �= q, q ′ �= q1 is crossed at most once by the path (p, u1d, q1) and q1 is crossed exactly twice by
the path (p, u1d, q1). Furthermore, observe that since u1d is a proper prefix of uc1 then |u1d| < |l1| and so u1d ∈ Ip,
d is a cycle on q1. In addition, q is crossed at most once by the path (p, u1d, q1). Indeed, otherwise, u1d being a
proper prefix of uc1, q would be crossed more than twice by the path (p, uc1, q): this is a contradiction since uc1 ∈ Ip

(Proposition 6.1). Moreover, obviously l′′=u1dv2 ∈ Lp. Thus, w1 =u1d, w2 =v2 satisfy the hypothesis of Lemma 6.1:
for every q ′ ∈ Q\{q1}, if q ′ is crossed by the path (q1, w2, qF), then q ′ is crossed at most once by the path (p, w1, q1).
Consequently, there exists v′ such that u1dv′ ∈ I′

p. So, for each x′ ∈ M we have rd = x′u1 | 1 $ x′u1d | 1 ∈ R′. On
the other hand, we obviously have l′ = u1u2c2v ∈ Lp and l′′ = u1dv2 ∈ Lp. Thus, z′ = yx′l′, z′′ = yx′l′′ ∈ YMLp

with |z′| < |z|, |z′′| < |z| and, consequently, by the induction hypothesis, z′, z′′ ∈ L(SPA). By applying rule rd to the
pair (z′, z′′) we generate z, i.e., z ∈ L(SPA).

Case (b). Obviously we have uc1v, uc2v ∈ Lp. Then z′ = yx′uc1v, z′′ = yx′uc2v ∈ YMLp and by induction
hypothesis, z′, z′′ ∈ L(SPA).

Since uc1 ∈ Ip, uc1v ∈ Lp and Case (b) occurs, the words w1 = uc1 and w2 = v satisfy the hypothesis of Lemma
6.1. Consequently, v′ ∈ A∗ exists so that uc1v

′ ∈ I′
p. Then, the rule rc1 = x′u | 1 $ x′uc1 | 1 is in R′. By applying rc1

to z′′ and z′, we generate z, i.e., z ∈ L(SPA).
Step 2. By choosing Y = I1, M = M([x]), p = px in Step 1, we have Lp = L2 and I′

p = I2. Furthermore, S[x]
satisfies the hypothesis in Step 1. Since I1M([x])I2 ⊆ L(S[x]), by using Step 1, we obtain I1M([x])L2 ⊆ L(S[x]).

Step 3. By using Step 2, we have I1M([x])L2 ⊆ L(S[x]) and so, by using Proposition 2.2, (L2)
R(M([x]))R(I1)

R ⊆
L(SR[x]). By choosing Y = (L2)

R , M = (M([x]))R , A=AR , p = q0R
in Step 1, we have Lp = (L1)

R , Ip = (IR)q0R

and I′
p = (I1)

R . Furthermore, SR[x] satisfies the hypothesis in Step 1. Then, since (L2)
R(M([x]))R(I1)

R ⊆ L(SR[x]),
by using Step 1, we obtain (L2)

R(M([x]))R(L1)
R ⊆ L(SR[x]) and, by using once again Proposition 2.2, we have

L1M([x])L2 ⊆ L(S[x]).
Step 4. Let [x] be a cyclic class and let z = l1xMxl2 ∈ L1M([x])[x]L2 with l1 ∈ L1, l2 ∈ L2 and x ∈ [x]. In view

of Proposition 5.1, �(qx, x) = qx and so, px = qx . Furthermore, since l2 ∈ L2, we have �(px, l2) = �(qx, l2) ∈ F .
Consequently, we have �(px, xl2) = �(qx, xl2) = �(�(qx, x), l2) = �(qx, l2) ∈ F . In conclusion, xl2 ∈ L2, i.e.,
z = l1xMxl2 ∈ L1M([x])L2 and, by using Step 3, z ∈ L(S[x]).

Step 5. If [x] is a finite class then [x]1 = [x] = M([x]), so, by using Step 3, L1[x]1L2 ⊆ L(S[x]). Thus, suppose that
[x] is a cyclic class. Let z = l1xl2 ∈ L1[x]L2 (resp. z = l1l2) with l1 ∈ L1, l2 ∈ L2. Let us prove that z ∈ L(S[x]).
By using Step 4 (resp. Step 3) we have z′ = l1xMxl2 ∈ L(S[x]) (resp. z′ = l1xMl2 ∈ L(S[x])). On the other hand,
rxM,xM

= xM | 1 $ 1 | xM ∈ R and by applying the rule rxM,xM
to the pair (z′, z′) we generate z, i.e., z ∈ L(S[x]). �

7. Consistency and syntactic monoid

In this section we give results which allow us to end the proof of Theorem 6.1, namely to prove that L(S[x]) ⊆ L([x]).
Once again, we will refer to the minimal finite state automaton A recognizing a regular language L. Let us also recall
the definition of the left and right contexts of a word z ∈ A∗.

CL(z) = {u ∈ A∗ | ∃q ∈ Qz : �(q0, u) = q},
CR,q(z) = {v ∈ A∗ | �(q, zv) ∈ F }, CR(z) =

⋃
q∈Qz

CR,q(z).

P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470 465

Remark 7.1. Since the automaton is trim, then it is evident that Qz ={q |CR,q(z) �= ∅}. Obviously, if Qz =Qz′ , then
CL(z)=CL(z′). Furthermore, it is easy to see that z≡Lz′ if and only if Qz=Qz′ , (CL(z)=CL(z′)), CR,q(z)=CR,q(z′),
for any q ∈ Qz =Qz′ . Indeed, in view of Remark 2.1, if z≡Lz′ we have Qz =Qz′ and so, CL(z)=CL(z′). Moreover,
CR,q(z) = CR,q(z′), otherwise there exist (u, v) ∈ C(z) and (u, v) /∈ C(z′) or vice versa. Indeed, let u be such that
�(q0, u)=q. If v ∈ CR,q(z)\CR,q(z′), we have �(q0, uzv) ∈ F and �(q0, uz′v) /∈ F , since �(q, z′v) /∈ F . Vice versa, let
Qz = Qz′ , (CL(z) = CL(z′)), CR,q(z) = CR,q(z′), for any q ∈ Qz = Qz′ . If (u, v) ∈ C(z) then u ∈ CL(z) = CL(z′)
and v ∈ CR,q(z) = CR,q(z′), for q = �(q0, u) ∈ Qz = Qz′ . Thus �(q0, uz′v) ∈ F , i.e., (u, v) ∈ C(z′). Using a
symmetric argument, we can prove that C(z′) ⊆ C(z).

In the next part of this paper we suppose that each rule r, in a given splicing system SPA, is useful, i.e., there exist
x, y ∈ L(SPA) such that (x, y)�r (w

′, w′′). As already mentioned, in this section we will prove that L(S[x]) ⊆ L([x]),
i.e., by applying rules in S[x] to words in L([x]) we still obtain words in L([x]). The definition below naturally arises.
It has also been independently introduced with a different name in [9], along with the notion of a useful rule.

Definition 7.1. A language L ⊂ A∗ is closed with respect to a rule r if and only if for each x, y ∈ L, if (x, y)�r (w
′, w′′)

then w′, w′′ ∈ L.

Let SPA = (A, I, R) be a splicing system. Let r = u1 |u2 $ u3 |u4 be a rule in R. By definition, if r is applied to
x = x1u1u2x2 and y = y1u3u4y2, then r generates w′ = x1u1u4y2 and w′′ = y1u3u2x2. Now, if x, y, w′, w′′ ∈ L(A),
the right context x2 of u1u2 is a right context of u3u2 and the right context y2 of u3u4 is a right context of u1u4. (In
other words, splicing allows us to exchange right contexts between strings.) This observation leads to the following
result which links the concept of a language closed with respect to a rule with states in the minimal automaton
recognizing L.

Proposition 7.1. Let SPA = (A, I, R) be a finite Paun splicing system, let L ⊆ A∗ be a regular language and let A be
the minimal finite state automaton recognizing L. Then L = L(A) is closed with respect to a rule r = u1 |u2 $ u3 |u4
if and only if for each pair (p, q) ∈ Qu1u2 × Qu3u4 , we have (p, q) ∈ Qu1u4 × Qu3u2 and

(1) CR,p(u1u2) ⊆ CR,q(u3u2),
(2) CR,q(u3u4) ⊆ CR,p(u1u4).

Furthermore, if I ⊆ L(A) and L(A) is closed with respect to each rule in R, then L(SPA) ⊆ L(A).

Proof. Since each rule is useful, for each r = u1 |u2 $ u3 |u4 we have that Qu1u2 �= ∅ and Qu3u4 �= ∅.
Assume that L is closed with respect to the rule r = u1 |u2 $ u3 |u4. Let (p, q) ∈ Qu1u2 × Qu3u4 and x1, y1 ∈ A∗

such that �(q0, x1) = p and �(q0, y1) = q (A is trim). For each x2 ∈ CR,p(u1u2) and y2 ∈ CR,q(u3u4) we have
x1u1u2x2 ∈ L and y1u3u4y2 ∈ L. Since L is closed with respect to r, we have x1u1u4y2 ∈ L and y1u3u2x2 ∈ L.
Consequently, p ∈ Qu1u4 and y2 ∈ CR,p(u1u4), q ∈ Qu3u2 and x2 ∈ CR,q(u3u2), which proves (1) and (2).

Assume now that (1) and (2) hold for the rule r =u1 |u2 $ u3 |u4. Let w′, w′′ ∈ A∗ be such that x, y ∈ L exist so that
(x, y)�r (w

′, w′′). By definition, x=x1u1u2x2, y=y1u3u4y2, w′=x1u1u4y2 and w′′=y1u3u2x2. Now, for p=�(q0, x1)

and q=�(q0, y1), we have (p, q) ∈ Qu1u2 ×Qu3u4 , x2 ∈ CR,p(u1u2) ⊆ CR,q(u3u2), y2 ∈ CR,q(u3u4) ⊆ CR,p(u1u4).
This means that w′′ = y1u3u2x2 ∈ L and w′ = x1u1u4y2 ∈ L, which proves that L is closed with respect to the rule r.

Now, let I ⊆ L and let L be closed with respect to each rule in R. Let us prove that L(SPA) = ⋃
i �0�

i (I) ⊆ L,
i.e., that for each w′ ∈ L(SPA) we have w′ ∈ L, by induction on the minimal i such that w′ ∈ �i (I). Clearly, if i = 0,
then w′ ∈ I ⊆ L. Assume now that i > 0. Then there exists a rule r and x, y ∈ �i−1(I), w′′ ∈ L(SPA) such that
(x, y)�r (w

′, w′′) or (x, y)�r (w
′′, w′). By induction hypothesis, x, y ∈ L and by using Definition 7.1, w′, w′′ ∈ L. �

Let S[x] = (A, I, R) be the splicing system associated with L([x]). In the next two propositions we prove that L([x])
is closed with respect to each rule in R. Since I ⊆ L([x]), in view of Proposition 7.1, we obtain L(S[x]) ⊆ L([x]).

Proposition 7.2. Let L([x]) ⊆ A∗ be the marker language associated with a marker [x]. Let S[x] = (A, I, R) be the
splicing system associated with L([x]). Then L([x]) is closed with respect to each rule as in Eq. (5).

466 P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470

Proof. Let r ′
cj

= 1 | (cj)
R(z′′)Rx′ $ 1 | (z′′)Rx′ be as in Eq. (5). By definition, there exists z = z1x

′z2 ∈ I and a factor

cj of (z1)
R , i.e., (z1)

R = z′′cj z
′, which is a cycle in AR on q =�R(q, cj)=�R(q0R

, z′′) ∈ (QR)cj
. Let x1, x2 ∈ L([x])

be such that (x1, x2)�r ′
cj

(w′, w′′). By definition, k, h, y2, y
′
2 ∈ A∗ exist so that

x1 = k(cj)
R(z′′)Rx′y2, x2 = h(z′′)Rx′y′

2,

w′ = k(z′′)Rx′y′
2, w′′ = h(cj)

R(z′′)Rx′y2.

Furthermore, since x′ ∈ M([x]) and [x] is a marker, we have �(px, y2) = �(q0, k(cj)
R(z′′)Rx′y2) = �(q0, x1) ∈ F ,

i.e., y2 ∈ L2 and �(px, y
′
2) = �(q0, h(z′′)R x′y′

2) = �(q0, x2) ∈ F , i.e., y′
2 ∈ L2. In addition, �(q0, k(cj)

R(z′′)R) =
qx = �(q0, h(z′′)R), i.e., k(cj)

R(z′′)R, h(z′′)R ∈ L1.
In order to prove that L([x]) is closed with respect to r ′

cj
, we must prove that k(z′′)Rx′y′

2, h(cj)
R (z′′)Rx′y2 ∈ L([x]).

Then, since y′
2, y2 ∈ L2 and x′ ∈ [x], we must prove that k(z′′)R, h(cj)

R (z′′)R ∈ L1, i.e., z′′kR, z′′cjh
R ∈ L(AR).

By hypothesis, z′′cj k
R, z′′hR ∈ L(AR). Thus, since cj is a cycle in AR on q and AR is deterministic, we have

�R(q0R
, z′′kR) = �R(�R(q0R

, z′′), kR)

= �R(�R(q0R
, z′′cj), k

R) = �R(q0R
, z′′cj k

R) ∈ FR

and

�R(q0R
, z′′cjh

R) = �R(q, cjh
R) = �R(q, hR) = �R(q0R

, z′′hR) ∈ FR .

So z′′kR ∈ (L1)
R , z′′cjh

R ∈ (L1)
R , i.e., w′ = k(z′′)Rx′y′

2 ∈ L([x]) and w′′ = h(cj)
R(z′′)Rx′y2 ∈ L([x]). �

Proposition 7.3. Let L([x]) ⊆ A∗ be the marker language associated with a marker [x]. Let S[x] = (A, I, R) be the
splicing system associated with L([x]). Then L([x]) is closed with respect to each rule r ∈ R and so L(S[x]) ⊆ L([x]).

Proof. We refer to the set of the states in the minimal finite state automaton A recognizing L([x]). In Proposition 7.2,
we have proved the statement for the rules as in Eq. (5). So, let us consider the rules as in Eqs. (4), (6), i.e., rcj

and, if
[x] is a cyclic class, rxM,xM

.
Let us firstly prove that for each rule r =u1 |u2 $ u3 |u4 as in Eqs. (4), (6), we have Qu1u2 =Qu3u4 =Qu1u4 ⊆ Qu3u2 .

Indeed, since |Qx′ | = 1, for rcj
= x′z′ | 1 $ x′z′cj | 1 we have Qx′z′ = Qx′z′cj

= {qx} and for rxM,xM
= xM | 1 $ 1 | xM

we have QxM
= QxMxM

= {qx} ⊆ Q1 = Q.
Now, let us prove that CR,q(u1u2) = CR,q(u3u2) and CR,q(u3u4) = CR,q(u1u4) for q = qx , r = rcj

and, if [x] is
a cyclic class, for r = rxM,xM

. Indeed, for rcj
we have CR,qx

(x′z′) = CR,qx
(x′z′cj) (cj is a cycle) and for rxM,xM

we
have CR,qx

(xM) = CR,qx
(1)= CR,qx

(xMxM) (xM and xMxM are qx-labels, in view of Proposition 5.1).
As a result, since I ⊆ L([x]) and L([x]) is closed with respect to each rule in R, then L(S[x]) ⊆ L([x]) in view of

Proposition 7.1. �

Proof of Theorem 6.1. By using Propositions 6.4 and 7.3, Theorem 6.1 can be proved. �

The next result shows a relationship between the splicing operation and classes in a syntactic monoid: if L(A)

is closed with respect to r = u1 |u2 $ u3 |u4 then L(A) is closed with respect to [r] = [u1] | [u2] $ [u3] | [u4]. This
statement has been independently proved also in [9].

Proposition 7.4. Let SPA = (A, I, R) be a finite Paun splicing system, let L ⊆ A∗ be a regular language. If L is closed
with respect to r = u1 |u2 $ u3 |u4 and, for u′

i ∈ A∗, i ∈ {1, 2, 3, 4}, we have ui≡Lu′
i , then L is closed with respect to

u′
1 |u′

2 $ u′
3 |u′

4.

Proof. Let us suppose that L is closed with respect to r = u1 |u2 $ u3 |u4 and let u′
i ∈ A∗ be such that ui≡Lu′

i ,
i ∈ {1, 2, 3, 4}. Then, in virtue of Remark 2.1, we have Qu′

1u
′
2
= Qu1u2 and Qu3u4 = Qu′

3u
′
4
. Furthermore, by using

Proposition 7.1 and Remark 7.1, for each pair (p, q) ∈ Qu1u2 × Qu3u4 = Qu′
1u

′
2
× Qu′

3u
′
4

we have (p, q) ∈ Qu1u4 ×

P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470 467

Qu3u2 = Qu′
1u

′
4
× Qu′

3u
′
2
, CR,p(u′

1u
′
2) = CR,p(u1u2) ⊆ CR,q(u3u2) = CR,q(u′

3u
′
2) and CR,q(u′

3u
′
4) = CR,q(u3u4) ⊆

CR,p(u1u4) = CR,p(u′
1u

′
4). Thus, in view of Proposition 7.1, L is closed with respect to u′

1 |u′
2 $ u′

3 |u′
4. �

8. Marker and constant languages

As mentioned in Section 1, it is natural to investigate the relationship between constant languages and marker
languages. In this section we will give results in this direction along with some observations about the definition of a
marker. Let us first recall the notion of a constant for a regular language, given by Schützenberger in [23].

Definition 8.1. A word z ∈ A+ is a constant for a regular language L if A∗zA∗ ∩ L �= ∅ and C(z) = CL(z) × CR(z).

Definition 8.2. Let L be a regular language, let A = (Q, A, �, q0, F) be the minimal automaton recognizing L. A
word w ∈ A+ is singular if |Qw| = 1.

Remark 8.1. Let w ∈ A+. By Remark 2.1, we already know that [w] is a singular class if and only if w is a singular
word.

Remark 8.2. Obviously, if z is a constant for L and z′ ∈ A∗ is such that zz′, z′z ∈ Fact(L), then zz′ and z′z are
also constants [7]. Furthermore, if z≡Lz′, then z′ is also a constant for L (A is trim) [7]. Finally, if [x] is a singular
class (in particular, if [x] is a marker for L), it is clear that x is a constant for L. Indeed, for each z ∈ A∗, we always
have C(z) ⊆ CL(z) × CR(z). In addition, if (z1, z2) ∈ CL(x) × CR(x), then �(q0, z1) = qx , �(px, z2) ∈ F and
�(q0, z1xz2) ∈ F , where Qx = {qx} and px = �(qx, x).

A characterization of constants, which is more or less folklore, is given in Proposition 8.1.

Proposition 8.1. Let L ⊆ A∗ be a regular language and let A be the minimal finite state automaton recognizing L.
A word z ∈ A+ is a constant for L if and only if Qz �= ∅ and there exists qz ∈ Q such that for all q ∈ Qz we have
�(q, z) = qz.

Proof. Let z ∈ A+ and suppose that z is a constant for a regular language L. By definition, Qz �= ∅. By contradiction,
suppose that q, p, q1, q2 exist with q, p ∈ Qz, q1, q2 ∈ Q, q1 �= q2 and �(q, z) = q1, �(p, z) = q2. Let y ∈ Lq1 . Then,
y ∈ CR(z). In addition, since A is trim, x′ ∈ A∗ exists such that �(q0, x

′) = p. Since (x′, y) ∈ CL(z) × CR(z) and z
is a constant, we have �(q0, x

′zy) = �(q2, y) ∈ F , i.e., y ∈ Lq2 . Thus, Lq1 ⊆ Lq2 . A symmetrical argument shows that
Lq2 ⊆ Lq1 , i.e., Lq1 = Lq2 , which is in contradiction with Proposition 2.1. Conversely, let z ∈ A+. Suppose Qz �= ∅
and that qz ∈ Q exists such that, for all q ∈ Qz, �(q, z) = qz. Then, A∗zA∗ ∩ L �= ∅, since A is trim. Furthermore,
we always have C(z) ⊆ CL(z) × CR(z). In addition, for each y ∈ CR(z), we have that �(qz, y) ∈ F . Thus, for each
(x, y) ∈ CL(z) × CR(z), it holds that �(q0, xzy) = �(qz, y) ∈ F and (x, y) ∈ C(z), i.e., C(z) = CL(z) × CR(z).
Then, z is a constant for L. �

In Section 1, we mentioned that Head gave a class of regular languages which belong to SPA(Fin, Fin) [13]. To be
more precise, Head showed that a regular language L is generated by finite linear splicing systems with some special
rules (one-sided context) if and only if L = ⋃

m∈ML(m) ∪ X, where X is a finite subset of A∗, M ⊆ A∗ is a finite set
of constants for L and, for each m ∈ M, there exist L1,m, L2,m ⊆ A∗ such that L(m) = L1,mmL2,m. We say that L(m)

is a constant language and L is a finite union of constant languages.
Some marker languages are constant languages. For example, if [x] is a marker with [x] being finite, then the marker

language L([x]) associated with [x] is a finite union of constant languages. Nevertheless, the class of marker languages
is not comparable with the class of constant languages with respect to the order of set inclusion, as Propositions 8.2
and 8.3 show.

Proposition 8.2. Let A = {a, b, c}, let L = a∗bc + cbc = (a∗ + c)bc ⊆ A∗. The regular language L is a constant
language which is not a marker language.

468 P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470

310 4

2

b

b c

b

a

a

c

Fig. 4. A constant language which is not a marker language.

c

c c

b

b

b

b b b b b b

b

a

a a ad d

Fig. 5. A marker language which is not a finite union of constant languages.

Proof. It is easy to see that the finite state automaton depicted in Fig. 4 is the minimal automaton recognizing L.
Then, in view of Proposition 8.1, b is a constant for L and L = L1bL2 is a constant language, where L1 = a∗ + c and
L2 = {c}. By contradiction, suppose that L is a marker language, i.e., L = L′

1[x]1L
′
2 with [x] being a marker. No word

in {a, b}A∗ ∩ Fact(L) is singular and c is not singular. Then, looking at Definition 5.3, either [x] = [cb] or [x] = [cbc].
In addition, by using Theorem 2.1, we have [cb] = {cb} and [cbc] = {cbc}. As a result, we have either L = L′

1cbL′
2 or

L = L′
1cbcL′

2 and in each case we have a contradiction since abc ∈ L and abc ∩ A∗{cb, cbc}A∗ = ∅. �

The next proposition shows that there exist marker languages which are not a finite union of constant languages.

Proposition 8.3. The regular language L = L1(ab∗c)∗L2 = L1(ab∗c)∗L1ab∗, with L1 = b+cb∗ab∗d and L2 =
b+cb∗ab∗dab∗ = L1ab∗, is a marker language which is not a finite union of constant languages.

Proof. It is easy to see that the finite state automaton depicted in Fig. 5 is the minimal automaton recognizing L. Then,
let x ∈ (ab∗c)+. We have |Qx | = 1. Moreover, in view of Theorem 2.1, for each y ∈ A∗ we have x≡Ly if and only if
y ∈ (ab∗c)+, i.e., [x] = (ab∗c)+. Since [x] is a cyclic and singular class, then [x] is a marker for L (Definition 5.3).
Since L = L1(ab∗c)∗L2, then L is a marker language (Definition 5.4).

If m is a constant for L, then m ∈ Fact(L) and we now prove that either there exist x, x′ ∈ A∗, i ∈ N such that
m = xabicx′ or there exist y, y′ ∈ A∗,j, j ′ ∈ N, j ′ > 0, such that m = ybj cbj ′

cy′. Indeed, on the one hand if z is
a word which has no factor with the form abic or with the form bj cbj ′

c and z ∈ Fact(L), i.e., z1zz2 = l1l3l2, with
z1, z2 ∈ A∗, l1 ∈ L1, l2 ∈ L2, l3 ∈ (ab∗c)∗, then either a prefix abk of l3 exists such that z is a factor of l1abk or z
is a factor of l2 and in both the cases z ∈ Fact(L2). On the other hand, each word z ∈ Fact(L2) cannot be a constant
for L. Indeed, by contradiction, suppose that there exists z ∈ Fact(L2) such that z is a constant for L. Let l2 ∈ L2 be
such that l2 = z1zz2, z1, z2 ∈ A∗. Thus, there exist l1 ∈ L1 and k ∈ N such that l2 = l1abk = z1zz2. We also know that
l1abkcl1abk = z1zz2cl1abk = l1abkcz1zz2 ∈ L. As a result, we have z1 ∈ CL(z), z2 ∈ CR(z), but (z1, z2) /∈ C(z),
since z1zz2 = l2 /∈ L. Moreover, each element in (ab∗c)+ is a constant for L, since (ab∗c)+ is a marker and so, if
m = xabicx′ ∈ Fact(L) then m is a constant for L (Remark 8.2). Also each element z′ in b∗cb+c is a constant for L,
since |Qz′ | = 1 and so, if m = ybj cbj ′

cy′ ∈ Fact(L) then m is a constant for L (Remark 8.2). Consequently, each finite
set of constants for L is a subset of Fact(L) with the form {xiabki cx′

i | ki ∈ K}∪ {yib
si cbji cy′

i | si ∈ S, ji ∈ J },K, S, J

being finite subsets of N with 0 /∈ J .

P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470 469

Let us now show that L is not a finite union of constant languages. By contradiction, let M be a finite set of constants
such that L = ⋃

m∈ML(m) ∪ X, X being a finite set. As we have already said, there exist finite subsets K, S, J, of N,
with 0 /∈ J , such that M = {xiabki cx′

i | ki ∈ K}∪ {yib
si cbji cy′

i | si ∈ S, ji ∈ J }.
With the same notations as in M, let wt = zabt+kmcbt+kmcz′ ∈ L with z ∈ L1, bt+kmcz′ ∈ L2, t > 0 and km =

max({ki | ki ∈ K} ∪ {ji | ji ∈ J } ∪ {si | si ∈ S}). Observe that z′ ∈ b∗ab∗dab∗. Let us prove that for each f ∈ M we
have wt /∈ A∗f A∗.

Indeed, we cannot write zabt+kmcbt+kmcz′ = y′f x′, with f ∈ {xiabki cx′
i | ki ∈ K} (since abki c /∈

Fact(z), abki c /∈ Fact(bt+kmcz′), no proper suffix (resp. prefix) of abt+kmc can be a proper prefix (resp. suffix) of
abki c and km + t /∈ K). Nor can we write zabt+kmcbt+kmcz′ = y′yib

si cbji cy′
ix

′. Indeed, since z′ ∈ b∗ab∗dab∗ then
c /∈ alph(z′) = Fact(z′) ∩ A and so z′ is a suffix of y′

ix
′. Consequently, x′′ ∈ A∗ exists such that zabt+kmcbt+kmc =

y′yib
si cbji cx′′. In addition, since z ∈ L1 and za is a prefix of y′yib

si cbji cx′′, then z is a prefix of y′yi , i.e.,
y′′ ∈ A∗ exists such that abt+kmcbt+kmc = y′′bsi cbji cx′′. Therefore, bsi cbji c ∈ Fact(abt+kmcbt+kmc), which is a
contradiction.

As a result, wt ∈ X. Since {wt |wt = zabt+kmcbt+kmcz′, t > 0} is not a finite set, this is a contradiction. �

We end this section with observations concerning the definition of a marker. Precisely, we can imagine different
variants of the definition of a marker given in this paper and of the class of languages associated with it. We intro-
duce two of these variants along with results concerning the corresponding families of languages (Propositions 8.4
and 8.5).

Firstly, consider regular languages L with the form L = L1mL2, m being a singular word. By Remark 8.2, m is
a constant for L and, in view of the above-mentioned Head’s result, L is generated by finite Paun splicing systems.
Therefore, we can enlarge the class of markers for a regular language by adding singular classes (not necessarily finite
or cyclic). Thus, Proposition 8.4 shows that these new marker languages are once again generated by finite Paun splicing
systems.

Proposition 8.4. Let L = L1mL2 be a regular language with m being a singular word. Then, L = L1[m]L2 with [m]
being a singular class and L is generated by a finite Paun splicing system.

Proof. Let L be a regular language. We already know that m is singular if and only if [m] is singular (Remark 8.1).
Furthermore, in view of Remark 8.2, for each m′ ∈ [m], m′ is a constant for L. In addition, in view of Remark 2.1, for
each m′ ∈ [m], we have Qm′ =Qm ={q} and in view of Theorem 2.1, we have �(q, m)=p = �(q, m′). Consequently,
if L = L1mL2 we have L1 = {x ∈ A∗ | �(q0, x) = q} = CL(m′), L2 = {y ∈ A∗ | �(p, y) ∈ F } = CR(m′). So, looking
at Definition 8.1, for the regular languages L1 = L(mL2)

−1, L2 = (L1m)−1L we have L1[m]L2 ⊆ L = L1mL2, i.e.
L = L1[m]L2. �

As another example, we can define a marker as a set w[x], (resp. [x]w) where wx (resp. wx) is a singular word,
[x] ∈ M(L), and Qwx �= ∅ (resp . Qxw �= ∅). A further investigation should be done in order to state whether the
corresponding languages are generated by a finite Paun linear splicing system.

Proposition 8.5. Let L = L1w[x]L2 be a regular language where wx is a singular word and [x] ∈ M(L). Then, we
have L = L1[wx]L2.

Proof. Since w[x] ⊆ [w][x] ⊆ [wx], we obviously have L1w[x]L2 ⊆ L1[wx]L2. Now, we can use the same argument
as in Proposition 8.4. In view of Remark 2.1, for each m′ ∈ [wx], we have Qm′ = Qwx = {q}. Furthermore, in view of
Theorem 2.1, we have �(q, wx) = p = �(q, m′). In addition, by using Remark 8.2, each element in [wx] is a constant
for L. Consequently, if L=L1w[x]L2, we have L1 ={y1 ∈ A∗ | �(q0, y1)= q}=CL(m′), L2 ={y2 ∈ A∗ | �(p, y2) ∈
F } = CR(m′).

So, looking at Definition 8.1, for the regular languages L1=L(w[x]L2)
−1, L2=(L1w[x])−1L we have L1[wx]L2 ⊆

L = L1w[x]L2, i.e. L = L1[wx]L2. �

Clearly, a dual version of Proposition 8.5 can be stated by considering [x]w instead of w[x], once again with xw

being a singular word and [x] ∈ M(L).

470 P. Bonizzoni et al. / Discrete Applied Mathematics 154 (2006) 452–470

Acknowledgements

The authors wish to thank J.E. Pin for useful discussions on properties of the syntactic monoid and D. Pixton who
allowed us to avail reference [9]. Many thanks to the anonymous referees. The authors are truly indebted to one of them
in particular: his/her careful work of reading the submitted version of this paper allowed them to get a more readable
paper.

References

[1] J. Berstel, D. Perrin, Theory of Codes, Academic Press, New York, 1985.
[2] P. Bonizzoni, C. De Felice, G. Mauri, R. Zizza, Decision problems on linear and circular splicing, in: M. Ito, M. Toyama (Eds.), Proceedings

of DLT 2002, Lecture Notes in Computer Science, vol. 2450, Springer, Berlin, 2003, pp. 78–92.
[3] P. Bonizzoni, C. De Felice, G. Mauri, R. Zizza, Regular languages generated by reflexive finite linear splicing systems, Proceedings of DLT

2003, Lecture Notes in Computer Science, vol. 2710, Springer, Berlin, 2003, pp. 134–145.
[4] P. Bonizzoni, C. De Felice, G. Mauri, R. Zizza, Circular splicing and regularity, Theoret. Inform. Appl. 38 (2004) 189–228.
[5] P. Bonizzoni, C. De Felice, R. Zizza, The structure of reflexive regular splicing languages via Schützenberger constants, Theoret. Comput. Sci.

334 (2005) 71–98.
[6] K. Culik, T. Harju, Splicing semigroups of dominoes and DNA, Discrete Appl. Math. 31 (1991) 261–277.
[7] A. de Luca, A. Restivo, A characterization of strictly locally testable languages and its applications to subsemigroups of a free semigroup,

Inform. and Control 44 (1980) 300–319.
[8] S. Eilenberg, Automata, Languages and Machines, vol. A, Academic Press, New York, 1974.
[9] E. Goode Laun, Constants and Splicing Systems, Ph.D. Thesis, Binghamton University, 1999.

[10] E. Goode, D. Pixton, Recognizing splicing languages: syntactic monoids and simultaneous pumping, 2004, submitted for publications (available
from http://www.math.binghamton.edu/dennis/Papers/index.html).

[11] M.A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
[12] T. Head, Formal Language Theory and DNA: an analysis of the generative capacity of specific recombinant behaviours, Bull. Math. Biol. 49

(1987) 737–759.
[13] T. Head, Splicing languages generated with one sided context, in: Gh. Paun (Ed.), Computing with Bio-molecules. Theory and Experiments,

Springer, Singapore, 1998.
[14] T. Head, Gh. Paun, D. Pixton, Language theory and molecular genetics: generative mechanisms suggested by DNA recombination, in: G.

Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. 2, Springer, Berlin, 1996, pp. 295–360.
[15] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, MA, 2001.
[16] S.M. Kim, Computational modeling for genetic splicing systems, SIAM J. Comput. 26 (1997) 1284–1309.
[17] R. McNaughton, S. Papert, Counter-Free Automata, MIT Press, Cambridge, MA, 1971.
[18] G. Paun, On the splicing operation, Discrete Appl. Math. 70 (1996) 57–79.
[19] G. Paun, G. Rozenberg, A. Salomaa, DNA computing, New Computing Paradigms, Springer, Berlin, 1998.
[20] D. Perrin, Finite automata, in: J. Van Leeuwen (Ed.), Handbook of Theoretical Computer Science, vol. B, Elsevier, Amsterdam, 1990,

pp. 1–57.
[21] J.-E. Pin, Variétés de langages formels, Masson, Paris, 1984 (English translation: Varieties of formal languages, Plenum, New-York, 1986).
[22] D. Pixton, Regularity of splicing languages, Discrete Appl. Math. 69 (1996) 101–124.
[23] M.P. Schützenberger, Sur certaines opérations de fermeture dans les langages rationnels, Sympos. Math. 15 (1975) 245–253.

http://www.math.binghamton.edu/dennis/Papers/index.html

	Linear splicing and syntactic monoid62626262
	Introduction
	Basics
	Words and finite automata
	Syntactic monoid
	Linear splicing

	Outline of the results
	Cycles
	Markers and languages defined by markers
	Main result
	Definition of a splicing system for marker languages
	Generation

	Consistency and syntactic monoid
	Marker and constant languages
	Acknowledgements
	References

