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SUMMARY

The mechanistic target of rapamycin complex 1
(mTORC1) kinase is a sensor of different environ-
mental conditions and regulator of cell growth,
metabolism, and autophagy. mTORC1 is activated
by Rag GTPases, working as RagA:RagB and Rag-
C:RagD heterodimers. Rags control mTORC1 activ-
ity by tethering mTORC1 to the lysosomes where it
is activated by Rheb GTPase. RagA:RagB, active in
its GTP-bound form, is inhibited by GATOR1 com-
plex, a GTPase-activating protein, and GATOR1 is
in turn negatively regulated by GATOR2 complex.
Sestrins are stress-responsive proteins that inhibit
mTORC1 via activation of AMP-activated protein
kinase (AMPK) and tuberous sclerosis complex.
Here we report an AMPK-independent mechanism
of mTORC1 inhibition by Sestrins mediated by their
interaction with GATOR2. As a result of this interac-
tion, the Sestrins suppress mTOR lysosomal locali-
zation in a Rag-dependent manner. This mechanism
is potentially involved in mTORC1 regulation by
amino acids, rotenone, and tunicamycin, connecting
stress response with mTORC1 inhibition.

INTRODUCTION

The evolutionary conserved mechanistic target of rapamycin

(mTOR) protein kinase is a critical regulator of cell growth and

metabolism. It exists as two separate protein complexes called

mTORC1, composed of mTOR, Raptor, GbL/mLST8, PRAS40,

and DEPTOR; and mTORC2, containing mTOR, Rictor, GbL/

mLST8, and mSIN1, which have different substrate specificities

and control distinct but overlapping processes (Laplante and

Sabatini, 2012). mTORC1 stimulates protein and lipid biosyn-

thesis through several well-characterized substrates including

p70S6K, an upstream kinase for ribosomal protein S6, and

4EBP1, an inhibitor of the translational initiation factor eIF-4E

(Dann et al., 2007; Hay and Sonenberg, 2004; Wullschleger

et al., 2006). mTORC1 also activates the major lipogenic

regulator—transcription factor SREBP1(Laplante and Sabatini,

2012). Another critical function of mTORC1 is inhibition of auto-

phagy via direct phosphorylation of ULK1 and ATG13 (Laplante

and Sabatini, 2012). In contrast, mTORC2 regulates glucose

metabolism via direct phosphorylation of AKT, a critical regulator

of glucose transport and glycolysis (Laplante and Sabatini,

2012). mTORC1 activity is regulated by two types of small

GTPases: Rheb and members of the Rag family that form

RagA:RagB and RagC:RagD heterodimers (Bar-Peled and Sa-

batini, 2014). GTP-loaded Rheb binds and activates mTORC1,

and Rheb activity itself is controlled by the tuberous sclerosis

protein complex (TSC), composed of TSC1, TSC2, and

TBC1D7 subunits, which work as a GTPase-activating protein

(GAP) for Rheb (Dibble and Manning, 2013). TSC activity is

suppressed by insulin and growth factors, which stimulate

AKT-dependent phosphorylation of TSC2 and displace the

TSC complex from the lysosomes, the site at which Rheb is

located and functions to activate mTORC1 (Menon et al.,

2014). In contrast, many stress conditions including energy

shortage, reactive oxygen species, or DNA damage inhibit

mTORC1 via phosphorylation of TSC2 by the AMP-activated

kinase (AMPK) (Mihaylova and Shaw, 2011). AMPK is activated

by AMP as well as ADP, which accumulate during energy

shortage, and is inhibited by ATP (Hardie et al., 2012).

Another critical branch of mTORC1 regulation is controlled by

amino acids (AAs) via the RagA:RagB and RagC:RagD hetero-

dimers (Sancak et al., 2008). Whereas RagA:RagB is active in

its GTP-bound form, RagC:RagD needs to be GDP bound. The

RagA:RagB and RagC:RagD complexes tether mTORC1 to the

lysosomes where it is activated by Rheb. RagA:RagB activity

is controlled by the Ragulator complex, which is composed

of MP1, p14, p18, HBXIP, and C7orf59 and functions as a gua-

nine-nucleotide exchange factor (Bar-Peled and Sabatini,

2014). RagC:RagD is controlled by the tumor suppressor follicu-

lin, which functions as a RagC:RagD GAP (Bar-Peled and Saba-

tini, 2014). The Rag heterodimers sense AAs via v-ATPase, a

lysosomal protein that detects AA availability (Bar-Peled and

Sabatini, 2014). Attempts to find GAP for RagA:RagB led to
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identification of the GATOR supercomplex, which is composed

of two complexes: GATOR1 and GATOR2. GATOR1, containing

DEPDC5, Nprl2, and Nprl3, functions as a GAP for RagA:RagB.

GATOR2, composed of Mios, WDR59, WDR24, Seh1L, and

Sec13, is a negative regulator of GATOR1; however, its mecha-

nism of action remains obscure (Bar-Peled et al., 2013).

We have recently identified Sestrins, encoded by the Sesn1,

Sesn2, and Sesn3 genes in mammals and the dSesn gene in

Drosophila, as stress-inducible regulators of AMPK-mTORC1

signaling (Budanov et al., 2010). Expression of the Sestrins is

induced by various stress insults via stress-responsive transcrip-

tion factors such as p53 and FoxO and in turn, the Sestrins con-

trol major cellular processes including cell viability, antioxidant

defense, cell growth, and metabolism (Lee et al., 2012, 2013).

Sestrin induction results in inhibition of mTORC1 activity through

AMPK stimulation (Budanov et al., 2010). Here we describe an

AMPK-independent mechanism of mTORC1 regulation by the

Sestrins, in which the Sestrins inhibit mTORC1 localization to

the lysosomes in a Rag-dependent manner through an interac-

tion with GATOR2.

RESULTS

Sestrins Interact with GATOR2
We have shown that the Sestrins inhibit mTORC1 in human can-

cer cell lines and inDrosophila in an AMPK- and TSC-dependent

manner (Budanov and Karin, 2008; Lee et al., 2010). To further

analyze the AMPK dependence of mTORC1 inhibition by the

Sestrins, we cotransfected immortalized AMPKa�/� mouse em-

bryonic fibroblasts (MEF) with HA-p70S6K- and either Sesn2- or

GFP-expressing constructs. Surprisingly, we observed strong

inhibition of p70S6K phosphorylation upon Sesn2 expression

(Figure 1A), suggesting the operation of an AMPK-independent

mechanism of mTORC1 inhibition by the Sestrins. To better

examine the role of AMPK in immortalized MEF, we cotrans-

fected AMPKa�/� cells with AMPKa1- and HA-p70S6K-

together with either GFP- or Sesn2-expressing constructs and

measured phosphorylation of AMPK and its targets as well as

mTORC1 targets in the presence or absence of Sesn2 by immu-

noblotting. Although we observed that Sesn2 had similar effects

on p70S6K and 4EBP1 phosphorylation in AMPKa�/� and

Figure 1. Sestrins Inhibit mTORC1 in an

AMPK-Independent Manner and Interact

with GATOR2

(A) Immortalized AMPKa�/� MEF cells were co-

transfected with HA-p70S6K together with either

GFP- or Sesn2-expressing constructs. Forty-eight

hours later, cells were lysed, HA-p70S6K was

immunoprecipitated with anti-HA beads, and

phosphorylation and expression of the correspond-

ing proteins were analyzed by immunoblotting.

(B) Sesn2 directly interacts with GATOR2 but

not GATOR1. FLAG-Sesn2 was cotransfected

with HA-tagged GATOR2- or GATOR1-expressing

constructs to HEK293T cells, immunoprecipitated

with anti-FLAG beads, and the proteins were

analyzed by immunoblotting with anti-HA or anti-

FLAG antibodies.

(C) Sesn2 binds GATOR2 in vitro. GATOR2 was

purified from HEK293T cells using anti-FLAG

beads, eluted with FLAG peptide, and incubated

with bacterially purified GST-Sesn2 or control

GST-GFP protein overnight followed by immuno-

blot analysis with HA or GST antibodies.

(D) Sesn1 binds GATOR2. FLAG-Sesn1S-, FLAG-

Sesn1L-, or FLAG-Sesn2- were cotransfected

together with the GATOR2-expressing constructs

and analyzed by immunoblotting as in (B).

(E) Endogenous Sesn2 interacts with the GATOR2

Mios protein in nontransformed MCF10A mam-

mary epithelial cells. Endogenous Sesn2 was

immunoprecipitated with anti-Sesn2 antibodies

(anti-GFP of the same type were used as a control)

and immunoblotted with anti-Mios and anti-Sesn2

antibodies.

(F) Endogenous Sesn2 interacts with Mios in

different human cancer cell lines. Experiment was

performed as in (E).

(G) Different stress conditions can affect Sesn2-

Mios interaction. MCF10A cells were treated with

AA-free medium, doxorubicin, 2DG, and tunica-

mycin and Sesn2-Mios interactions were exam-

ined as in (E).
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AMPKa1-reconstituted cells, it stimulated AMPK, acetyl-CoA

carboxylase (ACC), and ULK1 phosphorylation only in the

AMPKa1-reconstituted cells (Figure S1A), indicating that inhibi-

tion of p70S6K phosphorylation by Sesn2 can be AMPK-inde-

pendent. To study the possible impact of AMPK on mTORC1

inhibition by the Sestrins in another cell line where we previously

observed strong AMPK activation by Sesn2 (Budanov and Karin,

2008), we cotransfected HEK293T cells with HA-p70S6K-

together with either GFP- or Sesn2-expressing constructs and

treated them with AMPK inhibitor compound C or vehicle con-

trol. While p70S6K phosphorylation was strongly inhibited in

control cells, it was partially relieved by compound C indicating

that two parallel mechanisms of mTORC1 inhibition by Sesn2

operate in these cells (Figure S1B). To identify Sestrin-interacting

proteins that could be involved in this process, we performed

tandem affinity purification using human mammary epithelial

MCF10A cells infected with streptavidin-binding peptide-

FLAG-Sesn2 retroviral-expressing construct. Sesn2-containing

protein complexes were purified and analyzed by mass spec-

trometry, which identified GATOR2 proteins Mios, WDR59,

WDR24, Seh1L, and Sec13 as putative Sesn2-interacting part-

ners (data not shown). To test whether the interaction between

Sesn2 and GATOR2 is specific, we cotransfected FLAG-Sesn2

together with HA-tagged Mios-, WDR59-, WDR24-, Seh1L-,

and Sec13-expressing constructs, or in parallel with constructs

expressing HA-tagged GATOR1 proteins: DEPDC5, Nprl2, and

Nprl3. Immunoprecipitation of FLAG-Sesn2 with anti-FLAG

beads followed by immunoblot analysis revealed that all

GATOR2 proteins were coprecipitated with FLAG-Sesn2, but

not GFP or FLAG-GFP (Figures 1B and S1C). However, we

did not observe any interaction between Sesn2 and GATOR1

(Figure 1B). To determine whether Sesn2 can bind GATOR2

in vitro indicating its avidity to this complex, we isolated GATOR2

from HEK293T cells and performed in vitro binding assay with

bacterially purified either GST-Sesn2 or GST-GFP proteins

bound toGST beads. GST-Sesn2, but not control GST-GFP, effi-

ciently bound GATOR2 as demonstrated by immunoblot anal-

ysis of the GST-Sesn2 complexes after incubation with GATOR2

(Figure 1C). We demonstrated earlier that the intact Sesn2 mole-

cule was required for mTORC1 inhibition and deletion mutants

lacking the N-terminal (DN), C-terminal (DC), or middle (DM)

part of the protein lost their inhibitory effect on mTORC1 (Buda-

nov and Karin, 2008). To analyze whether these mutants are able

to interact with GATOR2, we coexpressed Sesn2 deletion mu-

tants with GATOR2 and analyzed the interactions by immuno-

precipitation and immunoblotting. Whereas the intact Sesn2

strongly interacted with GATOR2, the DN- and DC-Sesn2 trun-

cated mutants showed almost no interaction with GATOR2,

although the DM mutant showed some residual activity, indi-

cating that intact C and N termini can be involved in the interac-

tion with GATOR2 (Figure S1D). Other Sestrin family members,

Sesn1 and Sesn3, also negatively regulate mTORC1 activation

and may have identical functions to Sesn2 (Budanov et al.,

2010). Sesn1 is expressed as a short-form Sesn1S (55kDa,

the most similar to Sesn2), and a long-form Sesn1L, with an

extended N terminus. We cotransfected FLAG-tagged Sesn1S-

and Sesn1L- with HA-tagged GATOR2-expressing constructs

into HEK293T cells and incubated the lysates with anti-FLAG

beads. Whereas Sesn1S showed strong interaction, Sesn1L in-

teracted poorly with GATOR2 (Figure 1D). To study whether

endogenous Sesn2 and GATOR2 interact, we conducted immu-

noprecipitation with anti-Sesn2 antibody fromMCF10A cells and

analyzed GATOR2 components by immunoblotting. After trying

different commercially available antibodies, we detected only

Mios in the Sesn2 immunoprecipitates (Figure 1E). To examine

whether Sesn2 can coprecipitate Mios in various cell lines of

different origins, we immunoprecipitated Sesn2 from cells with

intact as well as inactivated p53 or Lkb1 (wild-type [WT] p53:

A549, H460, U2OS; p53-deficient: H1299, HEK293; WT Lkb1:

H1299, HEK293, U2OS; Lkb1-deficient: A549, H460). We found

strong coprecipitation of Sesn2 and Mios in all these cell lines

(Figure 2F) regardless of their relative expression level (Fig-

ure S1E). Presuming that stress factors can affect the interaction

between Sesn2 and Mios, we incubated MCF10A cells with AA-

free medium, DNA-damaging drug doxorubicin, glycolytic inhib-

itor 2-deoxyglucose (2DG), or the endoplasmic reticulum (ER)

stress inducer tunicamycin. We observed that AA starvation

and doxorubicin enhanced the interaction between Sesn2 and

Mios, whereas 2DG and tunicamycin had only marginal effects,

although both 2DG and tunicamycin induced Sesn2 expression

in these cells (Figure 2G).

Sesn2 Does Not Inhibit Complex Formation between
Ectopically Expressed GATOR1 and GATOR2 and Does
Not Interact with Individual GATOR2 Proteins
As previously described, Sesn2 does not directly interact with

GATOR1 (Figure 1B). To study whether Sesn2 can interact with

GATOR1 through GATOR2, we cotransfected FLAG-Sesn2

together with all HA-tagged GATOR-expressing constructs and

immunoprecipitated Sesn2 with anti-FLAG beads followed by

immunoblot analysis. We found that in the presence of GATOR2,

GATOR1 coprecipitated with Sesn2, indicating that the interac-

tions between GATOR1 and GATOR2, and Sesn2 and GATOR2

are not mutually exclusive (Figure 2A). To study whether Sesn2

can affect the interaction between GATOR1 and GATOR2,

which could explain how the Sestrins inhibit mTORC1 activity,

we cotransfected all the GATOR components together with

Sesn2-expressing plasmid. We pulled down GATOR proteins

using anti-FLAG beads that immunoprecipitated FLAG-Nprl2

protein together with all other members of GATOR1 and

GATOR2. Comparison of the amounts of GATOR2 proteins cop-

urified with GATOR1 showed no difference whether Sesn2 was

present or absent from the complex, indicating that direct inhibi-

tion of the GATOR1-GATOR2 interaction might not be the

primary mechanism by which Sestrins modulate GATOR activity

(Figure 2B). To confirm this, we pulled down the GATOR1-

GATOR2 complex with anti-FLAG beads and incubated the

beads overnight with a high excess of bacterially purified GST-

Sesn2 followed by immunoblot analysis of the GATOR proteins.

Again, we did not observe any effect of Sesn2 on the interaction

between GATOR1 and GATOR2 proteins, indicating that Sesn2

does not affect the GATOR1-GATOR2 interactions (Figure 2C).

GATOR interacts with Rag proteins via the GATOR1 subcomplex

(Bar-Peled et al., 2013). To study whether ectopically expressed

Sesn2 can regulate the interaction between Rags and GATOR,

we immunoprecipitated endogenous RagA:RagB proteins with
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Figure 2. Sesn2 Does Not Disrupt GATOR1-GATOR2 Interactions and Does Not Interact with the Separate GATOR2 Components

(A) Sesn2 interacts with GATOR1 in the presence of GATOR2. HEK293T cells were cotransfected with either FLAG-Sesn2- or GFP-expressing constructs with all

HA-tagged GATOR-expressing plasmids. FLAG-Sesn2 was immunoprecipitated with anti-FLAG beads and the proteins within Sesn2 complex and in the cell

lysates were analyzed by immunoblotting with anti-FLAG or anti-HA.

(B) Overexpression of Sesn2 does not affect GATOR1-GATOR2 interactions. All GATOR proteins were ectopically expressed in the presence of either Sesn2 or

GFP, immunoprecipitated via FLAG-Nprl2 with anti-FLAG beads, and analyzed by immunoblotting as in (A).

(C) Sesn2 does not affect interaction between GATOR1 and GATOR2 in vitro. All GATOR proteins were ectopically expressed in HEK293T cells. Im-

munocomplexes containing FLAG-Nprl2 and other HA-tagged GATOR proteins were isolated with anti-FLAG beads, incubated overnight with bacterially purified

GST-Sesn2, and examined by immunoblotting as in (A).

(D) Overexpression of Sesn2 does not have a strong impact on the GATOR-RagA:RagB interactions. HEK293T cells were infected with either Sesn2- or control

GFP-expressing constructs and Rag complexes were immunoprecipitated with anti-RagA or control anti-platelet-derived growth factor receptor beta antibody

and analyzed by immunoblotting with anti-RagA and anti-Mios antibodies.

(legend continued on next page)
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anti-RagA antibody and analyzed the complex with anti-Mios

antibody. We observed that Sesn2 does not significantly affect

Rag-GATOR interactions. Moreover Sesn2 was found in the

complex, suggesting that Sesn2 can directly modulate GATOR

activities toward Rags (Figure 2D).

To determine which GATOR2 proteins directly interact

with Sesn2, we cotransfected FLAG-Sesn2- with individual

HA-tagged GATOR2-expressing constructs and immuno-

precipitated FLAG-Sesn2 with anti-FLAG beads. In parallel, we

cotransfected FLAG-Sesn2- with different combinations of

GATOR2-expressing constructs. As indicated in Figure 2E,

most GATOR2 proteins when transfected individually were

expressed at much lower levels than when they all were

coexpressed. Surprisingly, binding of Sesn2 to any of the individ-

ual GATOR2 component was barely detectable (Figure 2E).

Furthermore, the removal of individual GATOR2 components

other than Mios weakened the GATOR2 association with

Sesn2 (Figure 2E). Elimination of WDR59 had a partial effect on

the interaction between Sesn2 and the other GATOR2 proteins,

and exclusion of either WDR24 or Seh1L almost completely

blocked the assembly of Sesn2-GATOR2 complexes, suggest-

ing that WDR24 and Seh1L could constitute the binding site for

Sesn2 (Figure 2E). Because we found that WDR24 and Seh1L

are required for interaction between Sesn2 and GATOR2, while

WDR59 omission had a partial effect, we analyzedwhich of these

three proteins might be responsible for the interaction with

Sesn2. We cotransfected HEK293T cells with FLAG-Sesn2 and

a combination of two of three constructs coexpressing

WDR24, Seh1L, and WDR59, and immunoprecipitated FLAG-

Sesn2 with anti-FLAG beads. We observed that FLAG-Sesn2

efficiently coprecipitated with the pair of WDR24 and Seh1L,

but not the other protein combinations, indicating that the

WDR24-Seh1L pair provides a binding site for Sesn2 (Figure 2F).

Sesn2 Inhibits mTORC1 in a GATOR-Dependent Manner
As previously reported, GATOR2 activates mTORC1 by inhibit-

ing GATOR1, which is GAP for RagA:RagB (Bar-Peled et al.,

2013). To study whether mTORC1 inhibition by Sesn2 depends

on GATOR1, we cotransfected HEK293T cells with HA-p70S6K

and either control shLuciferase (shLuc) or shDEPDC5 shRNA

constructs together with GFP- or Sesn2-expressing vectors

and monitored mTORC1 activity by p70S6K phosphorylation

(Budanov and Karin, 2008). DEPDC5 silencing strongly compro-

mised the inhibition of p70S6K phosphorylation by Sesn2 (Fig-

ure 3A). To determine whether Sesn2 inhibits phosphorylation

of endogenous p70S6K and 4EBP1 in a GATOR-dependent

manner, we silenced either DEPDC5 or Seh1L in MCF10A cells

and confirmed the downregulation of DEPDC5 or Seh1L expres-

sion by quantitative real-time PCR (Figures 3B and 3C), followed

by infection of the cells with either Sesn2- or GFP-expressing

vectors. DEPDC5 knockdown compromised the suppression

of mTORC1 activity by Sesn2 as indicated by higher levels of

phosphorylation of p70S6K and 4EBP1 in the Sesn2-infected

cells (Figure 3B). Knockdown of Seh1L itself inhibited mTORC1

activity and Sesn2 expression did not have an additional effect

on phosphorylation of p70S6K and 4EBP1 (Figure 3B). Themajor

mTORC1 function is regulation of cell growth, which is also

associated with cell proliferation (Wullschleger et al., 2006). To

study whether Sesn2 regulates cell growth and proliferation

in a GATOR-dependent manner, we measured cell size in

DEPDC5-silenced or control cells infected with either GFP- or

Sesn2-expressing lentiviruses. Whereas we observed inhibition

of cell growth by Sesn2 in control cells, no effect of Sesn2 on

cell size was observed in the DEPDC5-silenced cells (Figure 3D).

Ectopic expression of Sesn2 also increased the number of cells

in G0/G1 phase, indicating an inhibitory effect of Sesn2 on cell

cycle and this effect was lost in the DEPDC5-silenced cells (Fig-

ure 3E). As we described earlier, Sesn2 inhibits p70S6K phos-

phorylation in H1299 cells, and this effect was compromised

when TSC2 and AMPK were silenced (Budanov and Karin,

2008). To compare the inhibitory effect of Sesn2 on mTORC1

in the cells with inhibited AMPK-TSC2 axis and in the cells where

GATOR1 activity is diminished, we ectopically expressed Sesn2

in either DEPDC5- or TSC2-silenced cells. Whereas Sesn2

inhibited p70S6K phosphorylation in control cells, this effect

was reduced in either TSC2- or DEPDC5-silenced cells, indi-

cating that both pathways can contribute to mTORC1 inhibition

by Sesn2 (Figure 3F). Although we observed an activation of

AMPK phosphorylation in response to Sesn2 expression, it

was higher in the DEPDC5-silenced cells, indicating that

DEPDC5 silencing did not compromise AMPK activation by

Sesn2, in accordance with the existence of an AMPK-indepen-

dent mechanism of mTORC1 inhibition by the Sestrins.

Sesn2 Regulates mTORC1 via Rag Proteins and
Participates in AA Signaling
GATOR2 stimulates mTORC1 activity by suppressing the inhibi-

tion of RagA:RagB by GATOR1 (Bar-Peled et al., 2013). Rags

tether mTORC1 to the lysosomes, where mTORC1 can interact

with its activator Rheb. Incubation of cells with AA-free medium

causes redistribution of mTORC1 from the lysosomes to the

cytoplasm (Sancak et al., 2008). To study the impact of Sesn2

on localization of mTORC1 in control, AA-deprived and AA-stim-

ulated conditions, we infected HEK293T cell with either Sesn2-

expressing or control pLU construct and were able to reach

almost 100% of infection (Figure S2A). Ectopic expression of

Sesn2 inhibited the localization of mTORC1 to the lysosomes,

similar to effects of AA starvation (Figures 4A, 4B, and S2B).

AA withdrawal in the presence of Sesn2 expression had no addi-

tive effects on mTORC1 localization, and refeeding with AA

strongly stimulated mTOR redistribution to the lysosomal

compartment in control cells, but not in the cells infected with

(E) Sesn2 interacts with whole GATOR2 but not its separate components. FLAG-Sesn2-expressing construct was cotransfected with different combinations of

the components of GATOR2-expressing constructs (HA-WDR59, HA-WDR24, HA-Mios, HA-Seh1L, and HA-Sec13) into HEK293T cells. FLAG-Sesn2 complexes

were pulled down with anti-FLAG beads and analyzed by immunoblotting as in (A).

(F) Sesn2 interacts with a combination of WDR24 and Seh1L proteins. FLAG-Sesn2-expressing plasmid was cotransfected with different combinations of

WDR24-, Seh1L-, and WDR59-expressing constructs. The FLAG-Sesn2 complexes were immunoprecipitated with anti-FLAG beads and analyzed by immu-

noblotting as in (A).
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Sesn2-expressing construct (Figures 4A, 4B, and S2B). These

findings were supported by analysis of mTORC1 activity using

anti-phospho-S6 antibodies, which showed inhibition of S6

phosphorylation in the Sesn2-expressing cells in normal and

AA-starved conditions (Figure 4C). AA refeeding caused restora-

tion of S6 phosphorylation in control, but not in the Sesn2-ex-

pressing HEK293T and H1299 cells (Figures 4C and S2C), sup-

porting the idea that Sesn2 can interfere with AA-stimulated

mTORC1 activation. Rags play a critical role in mTORC1activa-

tion by AA, causing mTOR redistribution from the cytoplasm to

the lysosomes (Sancak et al., 2008). To determine whether

Rags are important for regulation of mTORC1 by Sesn2, we

cotransfected HEK293T cells with Myc-p70S6K-, and either

Sesn2- or control GFP-expressing constructs in the presence

or absence of constitutively active RagCS75 and/or RagBQ99

(Sancak et al., 2008). Myc-p70S6K was pulled down with anti-

Myc antibodies and analyzed by immunoblotting. Whereas

Sesn2 inhibited p70S6K phosphorylation in control cells, this

Figure 3. Sesn2 Inhibits mTORC1 in a GATOR-Dependent Manner

(A) Suppression of mTORC1 by Sesn2 is compromised in DEPDC5-silenced HEK293T cells. HEK293T cells were cotransfected with HA-p70S6K together with

either shLuc- or shDEPDC5-expressing constructs combined with either Sesn2- or GFP-expressing constructs and HA-p70S6K was immunoprecipitated with

anti-HA beads followed by immunoblot analysis with the indicated antibodies.

(B) Knockdown of DEPDC5 or Seh1L compromises an inhibitory effect of Sesn2 on mTORC1 in MCF10A cells. DEPDC5- or Seh1L-silenced cells were infected

with Sesn2- or GFP-expressing lentiviruses. The protein phosphorylation and expression was detected by immunoblotting.

(C) The inhibition of DEPDC5 or Seh1L in (B) is determined by quantitative real-time PCR.

(D and E) Sesn2 inhibit cell growth (D) and cell cycle (E) in a DEPDC5-dependent manner. Cell size and cell cycle of DEPDC5-silenced or control MCF10A cells

expressing Sesn2 or GFP were determined by flow cytometry.

(F) Comparison of the effects of DEPDC5 and TSC2 silencing on inhibition ofmTORC1 by Sesn2 in H1299 cells. The experimentwas performed as in (B). Results in

(E) and (C) are averages ± SD. **p < 0.01 and ***p < 0.001 by Student’s t test.
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Figure 4. Sesn2 Suppresses mTORC1 Activity via Inhibition of mTOR Lysosomal Localization in a Rag-Dependent Manner

(A) Sesn2 suppresses lysosomal mTOR localization in control and in AA-stimulated cells. HEK293T cells were infected with either Sesn2 or control pLU lentiviral

construct, kept in AA-free medium for 50 min, and restimulated with AA for 10 min followed by immunostaining with anti-mTOR and anti-LAMP2.

(B) Overlapping between LAMP2 and mTOR1 in (A) was determined with ZEN Litr 2012 software.

(C) Sesn2 inhibits mTORC1 activity in control and AA-stimulated cells. HEK293T cells were treated as in (A), lysed, and immunoblotted with phospho-S6, S6, and

Sesn2 antibodies.

(D) Overexpression of constitutively active RagCS75N and/or RagBQ99L proteins compromises the inhibitory effects of Sesn2 on mTORC1. HEK293T cells were

cotransfected with Myc-p70S6K- together with either Sesn2- or GFP-expressing constructs in the presence or absence of constitutively active RagCS75N and/or

RagBQ99L. Myc-p70S6Kwas immunoprecipitated with anti-Myc antibodies and phosphorylation and expression of the corresponding proteins were analyzed by

immunoblotting.

(E) The suppressive effect of Sesn2 on mTORC1 is compromised in the RagA:RagB�/� cells. RagA:RagB�/� cells or WT counterpart were cotransfected with

HA-p70S6K- and either Sesn2- or GFP-expressing constructs, and lysed 48 hr later. HA-p70S6K was immunoprecipitated with anti-HA beads and analyzed by

immunoblotting.

(F) Silencing of Sesn2 enhances restimulation of mTORC1 by AA. Sesn2 or control either DEPDC5 or TSC2 genes were silenced by shRNA lentiviruses, incubated

in AA-free medium for 50 min, and stimulated with AA for 10 min. HA-p70S6K phosphorylation and expression were determined by immunoblotting.
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effect was suppressed in cells expressing RagBQ99 and RagCS75

or RagBQ99 alone (Figure 4D). In a parallel experiment, we

cotransfected HA-p70S6K together with either GFP- or Sesn2-

expressing constructs into RagA:RagB�/� or control RagA:

RagB+/+ cells and analyzed p70S6K phosphorylation by

immunoblotting. Although we observed an inhibition of p70S6K

phosphorylation by Sesn2 in control cells, this effect was

compromised in the RagA:RagB�/� cells (Figure 4E), supporting

the importance of Rag proteins for suppression of mTORC1 by

Sesn2. RagA:RagB is active in its GTP-bound form, and

GATOR1 can regulate RagA:RagB by stimulating its GTPase ac-

tivity (Bar-Peled et al., 2013). To determine whether Sesn2 regu-

lates Rags controlling GDP/GTP loading, we analyzed RagB

charging with guanine nucleotides in the presence or absence

of ectopically expressed Sesn2 in HEK293T cells. Surprisingly,

we did not see any significant difference in GDP/GTP ratio be-

tween control and the Sesn2-expressing cells, indicating that

Sesn2 does not control mTORC1 via the mechanism involved

in GDP/GTP charging of Rags (Figure S2D). To examine the

impact of Sesn2 on AA signaling, we silenced Sesn2 in H1299

cells and compared activation of p70S6K by AA refeeding in

control and Sesn2-silenced cells. We observed that mTORC1

activation by AA was significantly higher in the Sesn2-silenced

cells as compared to control, indicating the important role of

Sesn2 in the AA-regulated mTORC1 signaling (Figure 4F). We

also compared the effects of Sesn2 knockdown with the effects

of knockdowns of the established mTORC1 regulators DEPDC5

and TSC2. Silencing either DEPDC5 or TSC2 enhanced

mTORC1 activation by AA and the effects were similar to the

effects of Sesn2 silencing, demonstrating that Sesn2 can be

involved in the mTORC1 regulation by AA via the mechanisms

mediated by both DEPDC5 and TSC2 (Figure 4F).

Sesn2 Inhibits p70S6K Phosphorylation in Response to
Rotenone and Tunicamycin in an AMPK-Independent
Manner
Sesn2 is induced during energy shortage as well as ER stress

causing mTORC1 inhibition (Bae et al., 2013; Ben-Sahra et al.,

2013). Previously we found that mTORC1 inhibition by Sesn2

depends in part on AMPK activation (Budanov and Karin,

2008). To determine whether inhibition of mitochondrial respira-

tion can inhibit mTORC1 in a Sesn2-dependent manner, we

treated Sesn2-silenced and control H1299 cells with rotenone,

an inhibitor of the mitochondrial electron transport chain com-

plex I. Analysis of p70S6K and S6 phosphorylation showed

that rotenone inhibited mTORC1 activity in a Sesn2-dependent

manner (Figure 5A). Rotenone treatment also enhanced phos-

phorylation of ACC at the AMPK site, but Sesn2-silencing had

little effect on these phosphorylation events (Figure 5A). To vali-

date the role of Sesn2 in mTORC1 regulation by rotenone in an

alternative systemwe treated Sesn2+/+ and Sesn2�/� fibroblasts

with rotenone and found that Sesn2-deficiency strongly compro-

mised mTORC1 inhibition by rotenone as determined by phos-

phorylation of the critical mTORC1 targets p70SK, S6 and

4EBP1, while phosphorylation of AMPK and its target Raptor

were not affected by Sesn2-deficiency (Figure 5B). To study

the impact of the downstream Sesn2 targets DEPDC5 and

TSC on the regulation of mTORC1 by rotenone we treated

DEPDC5- or TSC2- silenced cells with rotenone and observed

that inhibition of p70S6K and S6 phosphorylation were DEPDC5-

and TSC2-dependent (Figure 5C). We also studied the effects of

ER stress on mTORC1 activity by treating Sesn2-silenced or

control cells with tunicamycin.We observed that while tunicamy-

cin decreased mTORC1 activity in a Sesn2-dependent manner,

it had no effect on AMPK or ACC phosphorylation (Figure 5D).

DISCUSSION

Previous studies have demonstrated that the Sestrins inhibit

mTORC1 activity through activation of AMPK and TSC (Budanov

et al., 2010). However, when studying the AMPK-dependence of

mTORC1 inhibition by Sesn2, we observed strong inhibition of

p70S6K phosphorylation even in AMPK null cells or in the cells

where AMPK activity was suppressed by a specific inhibitor

compound C (Figures 1A, S1A, and S1B). To understand this

phenomenon, we searched for new Sestrin-interacting proteins

and found that Sesn2 interacts with the GATOR2, composed

of Mios, WDR24, WDR59, Seh1L, and Sec13. The function of

GATOR2 is unknown, although it was demonstrated that

GATOR2 suppresses inhibition of mTORC1 through GATOR1

within the GATOR supercomplex (Bar-Peled et al., 2013).

GATOR1 may function as a RagA:RagB GAP, and RagA:RagB

is critical for regulation of TORC1 by GATOR (Bar-Peled et al.,

2013). RagA:RagB regulates mTORC1 activity controlling its

localization to the lysosomes by placing it in proximity to the

major mTORC1 activator Rheb (Sancak et al., 2008). The mech-

anisms of the regulation of the Rag heterodimers themselves

are not well known. Although it was previously reported that

RagA:RagB activity is regulated via control of its GTPase activity

(Sancak et al., 2008), it was later demonstrated that RagA:RagB

GTP loading is not changed by AA withdrawal, although lyso-

somal mTORC1 localization was still suppressed via the Rag-

dependent mechanism (Oshiro et al., 2014). Interestingly, the

vast majority of the RagA:RagB protein was detected in the cyto-

plasm, and only a small portion of it was associated with the

lysosomes (Oshiro et al., 2014). Although GATOR1 works as

a GAP for RagA:RagB, it is also not clear whether this is the

sole mechanism of the RagA:RagB regulation by GATOR, how

GATOR2 controls GATOR1, and what are the upstream mecha-

nisms of GATOR regulation.

In the present work, we examined the role of GATOR and Rags

in the regulation of mTORC1 by the Sestrins and found that

Sesn2 inhibits mTORC1 in a GATOR- and a Rag-dependent

manner under normal cell culture conditions or upon AA refeed-

ing. Although a potential mechanism of regulation of GATOR

by Sesn2 might involve dissociation of GATOR2:GATOR1 com-

plexes, leading to GATOR1 activation and RagA:RagB inhibition,

we did not see any inhibitory effect of Sesn2 on the GATOR1:

GATOR2 interaction. Thus we conclude that the Sestrins affect

the activity of entire GATOR and suppress the inhibitory effects

of GATOR2 on GATOR1 within GATOR, compromising a stimu-

latory effect of RagA:RagB on mTORC1. Due to lack of informa-

tion about the stoichiometry of the proteins in the complex, the

structure, and the function of the complex, at this point we

cannot speculate on the precise mechanism through which the

Sesn2 modulates GATOR activity. Notably, GATOR2 proteins
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containWD40 domains involved in multiple protein-protein inter-

actions (Xu and Min, 2011). The potential structure of the SEAC,

the analog of GATOR complex in yeast, was reported recently

where it was described that yeast WDR24 and Seh1L ortho-

logs—Sea2 and Seh1—interact with each other on the tip of

the SEAC complex, forming a cleft (Algret et al., 2014). Interest-

ingly, we demonstrated that Sesn2 interacts with GATOR2 via

WDR24 and Seh1L, which together form a binding site for

Sesn2. Sesn2, being located mostly in the cytoplasm (Budanov

et al., 2004) (Figure S2A), could act by holding the GATOR-Rag

complex in the cytoplasm and suppressing redistribution of

Rags to the lysosomal compartment where it can be activated

by Ragulator and in turn activate mTORC1. In support of this

theory, we did not see any colocalization of Sesn2 with the

lysosomes (Figure S2A), indicating that Sesn2 plays a major

role in mTORC1 regulation beyond the lysosomal compartment.

Although it was demonstrated that one of the major functions of

GATOR is to regulate RagA:RagB GTPse activity, we did not

observe any effect of Sesn2 on GDP/GTP loading, demon-

strating that Sesn2 control GATOR and Rags not via regulation

of GATOR1 GAP function, but through other alternative mecha-

nisms, such as retention of GATOR-Rag complexes in the cyto-

plasm preventing their activation.

We addressed the relative impact of the AMPK-TSC and

GATOR-Rag axes in the regulation of mTORC1. According to

our previous data, inhibitory effect of Sesn2 on mTORC1 was

compromised but not completely suppressed in the TSC2-

silenced cells (Budanov and Karin, 2008). The same partial effect

was observed in the GATOR1-silenced cells (Figures 3A, 3B, and

3F). Thus, both pathways can contribute to reach maximum inhi-

bition of mTORC1 or, under some conditions, one branch might

be predominant over the other. For example, we have shown that

Figure 5. Rotenone and Tunicamycin Regulate mTORC1 via Sesn2 Activation

(A–C) Rotenone inhibits mTORC1 in a Sesn2-, DEPDC5-, and TSC2-dependent and an AMPK-independent manner. (A) Sesn2-silenced or control H1299

cells were treated with rotenone for 10 hr and phosphorylation and expression of the indicated proteins were determined by immunoblotting. (B) Sesn2+/+ and

Sesn2�/� immortalized MEFs were treated with rotenone and analyzed by immunoblotting as in (A). (C) Rotenone regulates mTORC1 in a DEPDC5- and TSC2-

dependent manner. DEPDC5- or TSC2-silenced or control cells were treated with rotenone and analyzed as in (A).

(D) Tunicamycin suppresses mTORC1 in a Sesn2-dependent manner. Sesn2-silenced or control H1299 cells were treated with tunicamycin for 10 hr and

phosphorylation and expression of the corresponding proteins were determined by immunoblotting.

(E) A scheme indicating regulation of mTORC1 by Sestrins via a Rag-dependent mechanism. Sesn2 interacts with GATOR2 inhibiting its activity, leading to

activation of GATOR1 within the GATOR supercomplex and inhibition of Rag-dependent recruitment of mTORC1 to the lysosomal membrane.
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rotenone inhibited mTORC1 in a Sesn2-dependent manner,

although Sesn2 was not required for the AMPK activation under

these conditions (Figures 5A and 5B). Thus, rotenone can poten-

tially suppress mTORC1 via the Sesn2-GATOR-Rag-dependent

mechanism and we observed that silencing either DEPDC5 or

TSC2 had a noticeable effect on mTORC1 inhibition by rotenone

(Figure 5C). Alternatively, ER stress-induced mTORC1 inhibition

operates via an AMPK-independent but a Sesn2-dependent

mechanism (Figure 5D). Thus, we conclude that in response to

some stress insults, Sesn2 inhibits mTORC1 via an AMPK-inde-

pendent mechanism potentially operating via the GATOR-Rag

axis. Interestingly, both the AMPK-TSC2- and the Rag-depen-

dent pathways contribute tomTORC1 suppression under energy

deficiency. For example, while in the early studies the major

mechanism of the mTORC1 inhibition by glucose starvation

and metformin was assigned solely to the AMPK-TSC2 regula-

tion (Gwinn et al., 2008; Inoki et al., 2003), later it was revised

and shown that both conditions suppress mTORC1 via the

Rag-dependent mechanism (Efeyan et al., 2013; Kalender

et al., 2010).

In conclusion, we demonstrate a route for inhibition of

mTORC1 by the Sestrins through the regulation of GATOR and

Rags (Figure 5E). Although the physiological function of GATOR

is unknown, it was shown that GATOR1 works as a tumor sup-

pressor and its components are mutated in several human can-

cers (Bar-Peled et al., 2013). Sesn1 and Sesn2 are targets of the

major tumor suppressor p53, mutated in more than 50% of hu-

man cancers (Budanov, 2011; Budanov et al., 2002; Levine,

1997). Moreover, we have shown that Sesn2 deficiency facili-

tates MEF transformation and accelerates growth of lung tumor

xenografts (Budanov and Karin, 2008; Sablina et al., 2005). Thus,

the Sestrins might play an important role in the tumor suppres-

sive network linking stress to mTORC1 activity in physiological

as well as pathophysiological conditions.

While our paper was under review, two other groups reported

the regulation of mTORC1 by Sestrins via the Rag-dependent

mechanism (Chantranupong et al., 2014; Peng et al., 2014).

EXPERIMENTAL PROCEDURES

Cell Culture, Transfection, Infection, and Treatment

Immortalized AMPKa�/� (a gift from Dr. B. Violett), RagA:RagB�/� (Kim et al.,

2014),Sesn2�/� andWTMEF (Budanov andKarin, 2008), H1299, U2OS, A549,

H460, and HEK293T cells were cultured in high-glucose Dulbecco’s modified

Eagle’s medium containing 10% fetal bovine serum and penicillin/strepto-

mycin. MCF10A cells were cultured in Dulbecco’s modified Eagle’s medium/

F12 medium supplemented with 5% serum, 10 mg/ml insulin, 20 ng/ml

epidermal growth factor, 100 ng/ml cholera toxin, and 0.5 mg/ml hydrocorti-

sone. All transfections were performed with Lipofectamine and Plus reagents

(Life Technologies) and infections with lentiviral vectors were performed as

described previously (Budanov and Karin, 2008). The treatments with 2DG,

doxorubicin, tunicamycin, and rotenone were performed for 10 hr, and with

AA-free medium for 50 min.

Cell Lysis, Immunoprecipitation, and Immunoblot Analyses

For immunoblot analysis, cells were lysed in RIPA-SDS buffer, and for immu-

noprecipitation, cells were lysed in 0.3% NP40 or 0.3%CHAPS buffer as

described previously (Budanov and Karin, 2008). The lysates were incubated

with the mix of indicated antibodies and protein A:G-Sepharose beads for

4 hr (or alternatively with anti-FLAG or anti-HA beads). After centrifugation,

the beads were washed four times with the lysis buffer. The proteins were

resolved by SDS-PAGE, transferred onto polyvinylidene fluoride membranes,

and probed with the relevant antibodies. The antibodies used for the experi-

ments were anti-FLAG from Sigma-Aldirch, anti-Sesn2 from Proteintech and

Santa Cruz, anti-GFP, anti-GAPDH and anti-Actin from Santa Cruz, anti-

LAMP2 from Abcam, anti-RagB from Novus Biological, and all others from

Cell Signaling.

Constructs

HA-Tagged GATOR-expressing plasmids, FLAG-Nprl2, HA-GST-RagBQ99L

and HA-GST-RagCS75N, and Myc-p70S6K were from Addgene; HA-p70S6K,

pLU, pLU-FLAG-Sesn2, pLU-FLAG-Sesn1S, pLU-FLAG-Sesn1L, pLU-

FLAG-Sesn2-DN, FLAG-Sesn1-DC and FLAG-Sesn1-DM, pLU-GFP, and

pLSLPw-shTSC2 were described in (Budanov and Karin, 2008) and

shDEPDC5 was described previously (Bar-Peled et al., 2013). The sequence

for shSesn2 is 50-GAAGACCCTACTTTCGGAT-30 and for Seh1L is 50-GAATC

TATGAGGCACCAGATG-30. GST-Sesn2 and GST-GFP were obtained by

inserting Sesn2 or GFP open reading frames into pGEX-2T plasmid.

Protein Purification from Bacteria

BL21 cells were transfected with GST-Sesn2 plasmid and bacterial culture

was grown at 37�C until an optical density of 0.4, induced with isopropyl-

beta-D-thiogalactopyranoside (1 mM), and incubated 4 hr at 27�C under

extensive shaking. The bacteria were collected by centrifugation and lysed

in the NETN buffer (20mMTris [pH = 8], 100mMNaCl, 1mMEDTA, 5mMphe-

nylmethanesulfonylfluoride, protease/phosphatase inhibitors, 0.5% NP40).

GST-Sesn2 was incubated with glutathione sepharose 4B (GE Healthcare)

for 4 hr, eluted with 20 mM reduced glutathione, and dialyzed against PBS.

Immunocytochemistry

Cells were plated on coverslips, washed, and fixed with 4% paraformalde-

hyde. Cells were permeabilized with 0.3% Triton X-100 and incubated with pri-

mary antibodies overnight. After three washes with PBS, cells were incubated

with Alexa Fluor-conjugated secondary antibodies (Invitrogen) and analyzed

on a Zeiss LSM700 confocal microscope.

Cell Size and Cell-Cycle Examination

Cell size and cell cycle were determined by flow cytometry as described pre-

viously (Budanov and Karin, 2008).

Statistical Analysis

Statistical analysis was performed with GraphPad Prism 5.0 (GraphPad Soft-

ware) with Student’s t test and one-way ANOVA. Statistical significance was

defined as p < 0.05. Results are presented as mean ± SD.
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