
ARTICLE IN PRESS 

JID: YCVIU [m5G; May 25, 2016;19:47 ] 

Computer Vision and Image Understanding 0 0 0 (2016) 1–18 

Contents lists available at ScienceDirect 

Computer Vision and Image Understanding 

journal homepage: www.elsevier.com/locate/cviu 

Automatic large-scale three dimensional modeling using cooperative 

multiple robots 

Ryo Kurazume 

a , ∗, Souichiro Oshima 

a , Shingo Nagakura 

a , Yongjin Jeong 

a , Yumi Iwashita 

b 

a Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 8190395, Japan 
b Jet Propulsion Laboratory, M/S 198-235 4800, Oak Grove Drive Pasadena, 91109 CA, USA 

a r t i c l e i n f o 

Article history: 

Received 28 October 2015 

Revised 11 May 2016 

Accepted 16 May 2016 

Available online xxx 

Keywords: 

Laser measurement 

Multiple robots 

3D modeling 

Automatic sensing planning 

a b s t r a c t 

3D modeling of real objects by a 3D laser scanner has become popular in many applications, such as 

reverse engineering of petrochemical plants, civil engineering and construction, and digital preservation 

of cultural properties. Despite the development of lightweight and high-speed laser scanners, the com- 

plicated measurement procedure and long measurement time are still heavy burdens for widespread use 

of laser scanning. To solve these problems, a robotic 3D scanning system using multiple robots has been 

proposed. This system, named CPS-SLAM, consists of a parent robot with a 3D laser scanner and child 

robots with target markers. A large-scale 3D model is acquired by an on-board 3D laser scanner on the 

parent robot from several positions determined precisely by a localization technique, named the Coop- 

erative Positioning System (CPS), that uses multiple robots. Therefore, this system can build a 3D model 

without complicated post-processing procedures such as ICP. In addition, this system is an open-loop 

SLAM system and a very precise 3D model can be obtained without closed loops. This paper proposes an 

automatic planning technique for a laser measurement by using CPS-SLAM. Planning a proper scanning 

strategy depending on a target structure makes it possible to perform laser scanning efficiently and accu- 

rately even for a large-scale and complex environment. The proposed technique plans an efficient scan- 

ning strategy automatically by taking account of several criteria, such as visibility between robots, error 

accumulation, and efficient traveling. We conducted computer simulations and outdoor experiments to 

verify the performance of the proposed technique. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

Due to the development of low-cost laser measurement systems

uch as FARO Focus 3D, Leica Scanstation, and TOPCON GLS-1500,

aser measurement has become popular in recent years in many

pplications such as reverse engineering of petrochemical plants,

ivil engineering and construction, or digital preservation of cul-

ural properties. 

For acquiring a whole 3D model of a large-scale architec-

ure, multiple laser scans have to be performed repeatedly around

he target architecture. Then the obtained partial range data are

ligned precisely by predefined markers or data points themselves

y Iterative Closest Point (ICP) or Normal Distribution Transform

NDT) algorithms. Despite the development of lightweight and
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igh-speed laser scanners, the complicated measurement proce-

ure, long measurement time, and post-processing procedure are

till heavy burdens for the widespread use of laser scanning. 

To solve these problems, a robotic 3D scanning system, named

PS-SLAM (cooperative positioning system - simultaneous local-

zation and mapping), has been proposed for scanning a large-

cale architecture ( Kurazume et al., 2009 ). This system consists

f a parent robot and child robots. The parent robot is equipped

ith a 3D laser measurement device such as a total station, and

he child robots are equipped with target markers. For localizing

he parent robot, the child robots keep a stand-still state and act

s landmarks. Next, the parent robot stops and acts as a land-

ark for localizing the child robots. By using the laser measure-

ent device and the target markers, the robot positions are deter-

ined with high accuracy of land surveying. Since the parent and

hild robots move in coordination to localize each other, we call

his system the cooperative positioning system (CPS) ( Kurazume

t al., 1994 ). Moreover, laser scanning is performed repeatedly by

he laser scanner mounted on the parent robot at a number of
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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locations whose positions are determined precisely by CPS. The

obtained range data are aligned by using the position information

directly without applying ICP or NDT algorithms. We performed

a number of measurement experiments at the Dazaifu Tenmangu

shrine in Japan and tunnel shape measurements at construction

sites ( Kurazume et al., 2009; Tobata et al., 2012 ). 

In conventional 3D laser scanning, the Next Best View (NBV)

problem, which plans the best scanning positions to capture a

whole 3D model efficiently, is quite important to reduce the mea-

surement time and scanning cost. However, in actual use, the scan-

ning strategy is often determined by the operator’s experience and

intuition. Although the NBV problem is quite important even in

the CPS-SLAM system, the scan planning is also usually determined

manually. Therefore, efficiency and optimality have not been con-

sidered qualitatively and explicitly, and thus, in some cases, the

measurement time tends to become longer since some regions are

overlapped unexpectedly or unnecessary movements are planned. 

This paper proposes a solution of the NBV problem for the

laser measurement system by using multiple robots ( Oshima et al.,

2015 ). We consider the visibility between robots, the suppression

of error accumulation, and efficient robot movements in order to

develop an automatic planning technique of a large-scale architec-

ture for CPS-SLAM. Furthermore, we verify the performance of the

proposed automatic planning method through a number of com-

puter simulations in various environments, and indoor and outdoor

experiments using two types of machine models, CPS-VII and CPS-

III. 

2. Related work 

The optimum design of the positions of sensors, which are uti-

lized, for example, in security camera systems, has been studied

for many years in the fields of computational geometry and com-

puter vision ( Mavrinac and Chen, 2013; Newman and Jain, 1995;

Tarabanis et al., 1995 ). See Robin and Lacroix (2016) for a detailed

survey. 

In general, this problem can be categorized into two categories:

the geometry of an environment and/or a target object is known,

or the geometry is not known. In the case that geometrical in-

formation is available, the problem of optimum sensor positions,

which minimizes blind regions in a surveillance area or efficient

appearance inspection planning, have been considered. Especially,

an optimum layout problem of sensors (observers) in an indoor en-

vironment is called an “art gallery problem” and has been studied

in the field of computer science ( Aggarwal, 1984; O’Rourke, 1987 ).

Stamos and Allen (1998) proposed an interactive layout planning

system to reduce blind regions. Topcuoglu et al. (2011) showed a

technique for a wide topological map that realizes an optimum

sensor layout and the confidentiality of sensors at the same time.

Chen and Li (2004) and Scott et al. (2001) proposed some opti-

mum observation planning techniques of an object with a known

shape. They achieved high efficiency and high accuracy by using a

3D range sensor. Prieto et al. (1999) discussed optimum inspection

planning for an object by using CAD data and a range sensor with

high accuracy. 

For a cooperative surveillance using multiple robots have also

been discussed so far. Nilsson et al. (2008) proposed a polynomial

time algorithm for camera positioning problem for surveillance

using UGVs (Unmanned Ground Vehicle) equipped with cameras.

They solved two kinds of tasks, the first is how to create a line-

of-sight perimeter around a given set of buildings and the second

is how to achieve good stationary coverage of a give set of walls.

Geng et al. (2013) proposed the surveillance planning approach for

a group of UAVs (Unmanned Aerial Vehicle) consisting of two stage

approach is proposed. In the first stage, vantage set, which is a set

of camera locations for complete visibility coverage of the target
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
rea, is generated. In the second stage, the vantage set are divided

or each UAV and flying paths for continuous surveillance are gen-

rated. In both stages, the Genetic Algorithm is applied to search

or an optimal solution. Tokekar and Isler (2014) formulated dis-

ussed �-guarding problem, which is the extension of the con-

entional art gallery problem to take into account self-occlusion

aused by a person or an object in an environment. To guaran-

ee to be seen from at least one guard in spite of self-occlusion,

hey presented an approximation algorithm which uses at most 12

imes the optimal number of guards. 

On the other hand, for an object with unknown geometri-

al information, observation planning techniques for shape mea-

urement ( Chen and Li, 2005; Li and Liu, 2005; Marchand

nd Chaumette, 1997; Papadopoulos-Orfanos and Schmitt, 1997;

ha et al., 1997 ) and active recognition systems utilizing sen-

or motions ( Aloimonos, 2013; Bajcsy, 1988 ) have been proposed.

kamoto et al. (1998) proposed a fundamental scheme for the NBV

roblem. Their scheme uses a stochastic observation model and

robabilistic sensor fusion technique to determine a proper obser-

ation location. As another solution of the NBV problem, Li and Liu

2005) utilized information entropy to describe the uncertainty of

n observation model and selected the optimum location at which

he acquired information is expected to be maximized. 

Active SLAM (or SPLAM, Simultaneous Planning Localization

nd Mapping) ( Carlone et al., 2010; Leung et al., 2006; Sim, 2005;

tachniss et al., 2004 ) is a technique to actively control a robot to

xplore unknown area effectively and completely while minimiz-

ng the pose uncertainty in SLAM framework. Accuracy and cover-

ge of the map are considered as a map uncertainty. To reduce the

ose uncertainty, active loop closing is achieved according to the

ncertainty of pose estimation. Sim (2005) proposed a technique

sing Voronoi graph and dummy landmarks in unexplored area to

nsure the coverage of the environment. Pose uncertainty is de-

cribed by EKF for bearings-only SLAM. Leung et al. (2006) pro-

osed an efficient algorithm to reduce both uncertainties of the

ap and the pose efficiently using Model Predictive Control (MPC)

ith attractors. MPC and attractors control the robot behavior con-

idering the local and global constraints, respectively. Carlone et al.

2010) discussed to minimize both uncertainties in a framework

f Rao-Blackwellized Particle filter. Appropriate robot behavior is

daptively selected by evaluating the posterior approximation us-

ng Kullback–Leibler divergence. Carrillo et al. (2015) investigated

ow the uncertainty is increased according to some criteria in the

xploration phase. In many techniques in Active SLAM including

bove, greedy technique (optimize only with respect to the next

ime step) is adopted. Therefore, global optimization is hard to be

chieved. Atanasov et al. (2015) proposed a non-greedy multi-robot

ctive SLAM which guarantees the performance using a square-root

nformation filter. 

On the other hand, some techniques assume that accurate robot

osition can be obtained, and find the optimum strategy to ex-

lore unknown area effectively. One of the traditional techniques is

he frontier-based approach ( Konolige et al., 2006; Stachniss et al.,

004; Yamauchi, 1997 ). In this technique, the boundaries between

nown and unknown areas, which is called frontier, are selected as

otential target positions for exploration. 

Although the technique proposed in this paper belongs to the

rontier-based approach under the condition of unknown geomet-

ical information, we consider both the exploration and the pose

ncertainties. Since CPS-SLAM utilizes the CPS for the localization

f multiple robots, as described below, the accuracy of the pose

stimation is considerably much improved compared with laser-

ased or odometry-based approaches. However, to ensure the pre-

iseness of the pose estimation, we have to consider some strong

estrictions, such as the robots must have lines of sight to each

ther while exploring. Therefore, we introduce a Visibility graph to
e dimensional modeling using cooperative multiple robots, Com- 
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Fig. 1. Cooperative positioning system, CPS. 
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 frontier-based approach to satisfy both of Active SLAM and keep-

ng visibility. Consequently, the proposed approach is quite differ-

nt from the above mentioned conventional problems, in which

he view position can be chosen freely. 

As mentioned in Section 1 , we proposed the fundamental idea

f the corporative positioning technique using multiple robots in

urazume et al. (1994) . Although this is the key technique in

he present paper, we did not mention about the 3D scanning in

urazume et al. (1994) . In Kurazume et al. (2009) , Tobata et al.

2012) , and Jeong et al. (2012) , we proposed the 3D scanning sys-

em based on the proposed cooperative positioning system, which

an be summarized as follows: 

• In Kurazume et al. (2009) and Tobata et al. (2012) , CPS-V and

indoor/outdoor experiments were presented. The accuracy was

0.24 % of the distance traveled, which means the error is 0.22

m after the robot moved 93.9 m in an indoor environment

Kurazume et al. (2009) . On the other hand, in a large-scale out-

door environment, the accuracy was 0.091 % of the distance

traveled, which means the error is 0.494 m after the robot

moved 543.4 m Tobata et al. (2012) . 
• In Jeong et al. (2012) , CPS-V and CPS-VI were presented for a

tunnel shape measurement system. The accuracy was 0.037 %

of the distance traveled, which means the error is 0.0296 m

after the robot moved 80.0 m. 

However, in all these systems, the scanning strategies were

lanned by human operators, and thus an optimum solution for

fficient scanning procedure was not considered. 

In Oshima et al. (2015) , we proposed an automatic planning

echnique for CPS-VII which is also presented in the present pa-

er. However, following points are newly discussed in the present

aper. 

• In Oshima et al. (2015) we discussed about the planning tech-

nique for CPS-VII which has two child robots. On the other
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
hand, the planning technique for CPS-VIII is also discussed in

the present paper. We rearranged the whole procedures again

and explained them for CPS-VII and CPS-VIII separately and

clearly. The difference of CPS-VII and CPS-VIII are as follows:

(1) two wheeled child robots are used for CPS-VII and four or

more wheeled robots and quadcopters are used for CPS-VIII,

and (2) the sensors are replaced from a total station and the

SICK 2D laser scanner to the FARO 3D laser scanner. Owing to

these changes, the accuracy is drastically improved. As shown

in Section 5.5 , the accuracy for CPS-VIII is 0.0085 % of the dis-

tance traveled, which means the error is 0.0231 m after the

robot moved 270.1 m. In addition, some of the child robots can

move with the parent robot at the same time owing to the re-

dundancy. This makes the total measurement time of CPS-VIII

much shorter than CPS-VII. 
• To improve the reliability of the discussion, new simulations

and experiments were conducted such as the comparison with

manual operation ( Fig. 26 ), the comparison for three types of

environments in Fig. 13 by simulations ( Fig. 6 ), and new out-

door experiments ( Fig. 23 ). 

. Laser measurement system using multiple robots for a 

arge-scale architecture, CPS-SLAM 

This paper proposes an observation planning technique for the

aser measurement system, CPS-SLAM using multiple robots ( Jeong

t al., 2012; Kurazume et al., 2009; Oshima et al., 2015; Tobata

t al., 2012 ). In this system, the positions of parent and child robots

re determined by CPS. Fig. 1 shows the fundamental strategy of

PS, which consists of a parent robot 0 equipped with a laser mea-

urement device (e.g., total station) and two child robots 1 and 2. 

First, the parent robot 0 is stopped at a known position. Then,

he following procedure is repeated. 

(1) Move child robots 1 and 2 and stop them. 
e dimensional modeling using cooperative multiple robots, Com- 
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Fig. 2. CPS-SLAM machine model, CPS-VII. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Total station and corner cube. 

Fig. 4. 3D model of a large building. 
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(2) Measure the distance and the azimuth and elevation angles

from the parent robot 0 to child robot 1 by the laser mea-

surement device and calculate the position of child robot 1. 

(3) Determine the position of child robot 2 in the same manner.

(4) Move the parent robot while child robots 1 and 2 are

stopped. 

(5) Measure the distance and direction to the child robots and

determine the position of the parent robot 0. 

In CPS-SLAM, the parent robot is equipped with a laser scanner

in addition to the laser measurement device, and scans the target

object from multiple locations that are localized precisely by CPS.

The obtained partial range data are transformed to the world co-

ordinate frame by using the position information and aligned pre-

cisely with simple algebra. No post-processing procedures such as

ICP or NDT are required to obtain a large-scale model. 

Obviously, it is possible to use the geometrical information with

the above technique. We have already evaluated the accuracy in

case that we combined the proposed CPS technique (target-based)

and ICP (point cloud-based) in Tobata et al. (2012) and verified that

the accuracy was improved if the accuracy of CPS is low. However,

in general, as adopted by typical land-surveying procedures, the

target-based approach is more accurate and reliable than the point

cloud-based approach if the enough number of stationary targets

are utilized since the ambiguity of the point distribution can be

avoided explicitly. 

In the proposed CPS-SLAM, the error is accumulated as the

robot travels. To suppress the error accumulation, we need some

fixed targets (child robots) which can be observed before and after

the movements and solve a loop-closure problem. It is also possi-

ble to combine the point cloud-based technique to correct an ac-

cumulated error. However, we think that the error accumulation

of the proposed technique is much smaller than the conventional

SLAM approaches without loop-closure as shown by the following

experiments. 

We have been developing several CPS machine models. Some of

them are introduced in the following sections. 

3.1. The seventh CPS-SLAM system (CPS-VII) 

Fig. 2 shows the seventh CPS-SLAM machine model (CPS-VII)

consisting of a parent robot and two child robots. The parent robot

is equipped with a total station (TOPCON, GPT-9005A) and a laser

scanner (SICK, LMS 511), and the child robots are equipped with

omni-directional corner cubes. Fig. 3 shows the total station and

the omni-directional corner cube. The total station searches and

finds the omni-directional corner cube automatically, and mea-

sures the distance and azimuth and elevation angles to it very pre-

cisely. We repeated measurement experiments in outdoor and in-
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
oor environments and confirmed that the accuracy of the CPS-VII

s 0.034 % (3D error is 116 mm after the parent robot moved 343

) to 0.054 % (3D error is 98 mm for 181 m) of the total travel

istance of the parent robot ( Jeong et al., 2012 ). Fig. 4 shows an

xample of the obtained 3D model of a large-scale building. 

Positioning and scanning strategies are shown in Fig. 5 . The po-

itioning and scanning are sequentially performed by a total sta-

ion and a laser scanner, respectively, on the parent robot. 

.2. The eighth CPS-SLAM system (CPS-VIII) 

We are developing the new CPS-SLAM system named CPS-VIII

hown in Fig. 6 . This system consists of a parent robot equipped

ith a laser scanner (Focus 3D, FARO) and several child robots,

ncluding wheeled robots and quadcopters. The child robots hold

ightweight white balls as markers instead of corner cubes. 

Positioning and scanning strategies are shown in Fig. 7 . In con-

rast to CPS-VII, positioning and scanning are simultaneously per-

ormed by a laser scanner mounted on the parent robot. In Fig. 6 ,

 total of five child robots are shown. In this paper, we discuss the

PS-VIII system with four child robots for simplicity. 

. Automatic planning technique 

To realize automatic scan planning, we have to consider several

onditions, such as efficiency of the laser measurement, reliability

o obtain solutions in any situation, suppression of error accumu-

ation and travel distance, and collision avoidance between robots

nd environment. 

In the proposed technique, we assume that several scans have

een performed and a set of partial data of the environment have

een obtained. The problem is how we choose the NBV in this sit-

ation. The strategy of the proposed technique is as follows: First,

e extract several candidate locations at which most of the new

eometric data will be acquired, and then choose the best location

mong them considering the distance and error accumulation to

each each location. 
e dimensional modeling using cooperative multiple robots, Com- 
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Fig. 5. Positioning and scanning strategies for CPS-VII: positioning and scanning are performed by a total station and a laser scanner, respectively. 

Fig. 6. The 8th CPS machine model, CPS-VIII. 
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The visibility condition between parent and child robots must

e satisfied in CPS-SLAM since the robots must be able to ob-

erve each other for the localization. However, this condition

s quite hard to satisfy in some cases, especially in a complex

nvironment. 

Therefore, in the case that the visibility condition cannot be sat-

sfied, the proposed technique adopts subgoal retrieval by using

he Visibility Graph ( de Berg et al., 1997 ), in which new subgoal

ositions are sequentially retrieved from the final goal position to-

ard the start position by dividing the total trajectory into several

hort paths. The overview of the proposed technique is shown in

ig. 8 . 

In the following sections, we introduce the details of the pro-

osed technique separately, as follows. 

1. Automatic planning of the target position for the parent robot 

2. Automatic planning of the target positions for the child robots 

Note that we consider the planning problem in 2D space. To do

o, the obtained 3D geometrical data are first transformed to a 2D

rid map. 
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
.1. Automatic planning of target positions for the parent robot 

When we design the measurement locations for the parent

obot in partially measured environments, we adopted the frontier-

ased approach ( Yamauchi, 1997 ). In this technique, the following

onditions should be considered. 

1. The new scanning position should be close to the border ar-

eas between known regions that have already been measured

by the laser scanner and unknown regions that have not been

measured. 

2. The new scanning position should be placed far enough from

walls or pillars to avoid collision. 

3. The new scanning position should be close to the current posi-

tion. 

4. The newly scanned region should be as large as possible. 

However, if the environment is large and all the border areas

re considered to be candidates, the planning cost will become

uite large. Therefore, we adopt the two-step strategy described

n the following section. Briefly speaking, we first extract several

andidate positions. Then, the optimum position that satisfies the

onditions mentioned above is selected. 
e dimensional modeling using cooperative multiple robots, Com- 
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Fig. 7. Positioning and scanning strategies for CPS-VIII: positioning and scanning are performed by a laser scanner simultaneously. 

Fig. 8. Flowchart of the automatic planning algorithm. 
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Fig. 9. Left: problem definition. White and gray regions are free and occupied spaces. Right: white region is a measured free space. Detected walls and boundaries between 

the measured and unknown regions are shown in solid and dotted red lines. Colored lines show the potential field. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 10. Determined candidate positions for the parent robot by K-means clustering. 
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.1.1. Initial selection of candidate positions 

To extract several candidate positions in the border areas, the

-means clustering technique is applied. Figs. 9 and 10 show the

roblem setting and the extraction procedure, respectively. The de-

ailed procedure is as follows: 

(1) Find border lines between known (measured) and unknown

(not measured) regions. 

(2) Scatter candidate points uniformly in the border area where

the distance to the border line is less than a threshold value.

(3) Apply clustering to the candidate points in Step 2. 

(4) Select the centroids of each cluster as candidates of the tar-

get points of the parent robot. 

Note that the number of clusters is determined adaptively ac-

ording to the size of the border area. In addition, other sub-

ampling techniques such as MAT (medial axis transform) or dis-

rete sampling can be applied. 

.1.2. Determination of target position from candidate positions 

Next, we determine the final target position from the candidate

arget positions based on the conditions listed in Section 4.1 . To

hoose an optimum target position that satisfies all the conditions

entioned above, the following value is evaluated for each candi-

ate target point. 

 = R · (P −1 + αL −1 + β · S) (1)

here G is the evaluated value of each candidate target point, R

s a constant value of 0 (unknown or inaccessible) or 1 (known
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
nd accessible) that shows the grid condition of the candidate tar-

et point, P is the potential value (inverse of distance from the

losest obstacle), L is the travel distance from the current par-

nt position, S is the size of an expected newly scanned area

n unknown regions where no geometrical information has been

btained so far, and α and β are weights of terms. To cal-

ulate S , we assume that no objects other than the ones that

ave been measured until now exist in the environment. Then

e count the number of grids that can be seen from the can-

idate target position directly without being blocked by obsta-

les and that are located within the maximum range of the laser

canner, except for the areas scanned previously. We choose the

osition with the maximum evaluation value among the candi-

ate target positions as the final target position of the parent

obot. 

.2. Automatic planning of target positions for the child robots 

The target positions of the child robots have to be seen from

oth the final target position and the initial position of the parent

obot, since positioning with CPS is impossible if obstacles exist

etween the parent and the child robots and the robots do not

ave lines of sight to each other. In this paper, we call a region

rom where both the initial and target parent positions are visible

s the “AND region” ( Fig. 11 ). 

The candidate target positions of the child robots are deter-

ined in this AND region according to the following conditions. 
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Fig. 11. AND region and candidate positions for child robots. 
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(1) The candidate position must be located in the AND region

and reached from the current child position. 

(2) The candidate position must be distant from obstacles. 

(3) The distance from the parent robot is less than a threshold. 

(4) The relative angle between two child robots from the parent

robot is close to 90 degrees. 

Here, (3) is established due to the performance of the laser

measurement device and (4) is set based on the fact that error ac-

cumulation in CPS is most suppressed if the relative angles of the

child robots are close to 90 degrees ( Kurazume and Hirose, 1998 ). 

As mentioned in Section 3 , CPS-VII and CPS-VIII take different

strategies. Thus, we explain the procedures for CPS-VII and CPS-VIII

separately in the following sections. 

4.2.1. CPS-VII 

To select the candidate positions of the child robots that satisfy

the conditions mentioned above, the following value is calculated

at every grid in the AND regions to find the optimum positions of

two child robots with the maximum values at the same time. 

G c = P −1 + αc · min (| θ − θt | −1 , δθ ) + βc · min (| D − D t | −1 , δD ) (2)

where G c is the evaluated value of each candidate target point,

P is the potential value (inverse of distance from the closest ob-

stacle), θ is the relative angle between the two child robots, D is

the distance from the target position of the parent robot, θ t ( = 90

degrees), D t , δθ , and δD are constant values, and αc and βc are

weights of terms. If the current position of the child robot is lo-

cated in the AND region, we do not determine the next position

and keep the child robot at the current position. 

4.2.2. CPS-VIII 

Since two child robots out of four robots keep stationary for

the next localization in Fig. 7 (a), we first choose these two child

robots (called here as l and m ) that satisfy the conditions men-

tioned above. To do so, the following value G c 1 is calculated for

each child robot in the AND regions and two child robots that have

small values are selected as stationary robots. 

G c1 = P −1 + αc · min (| θ − θt | −1 , δθ ) + βc · min (| D − D t | −1 , δD ) 

(3)
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
After choosing two stationary robots, the target positions of the

ther two robots are determined to satisfy the following condi-

ions. 

(1) The candidate position must be located in the observable re-

gion of the laser scanner on the parent robot and reached

from the current child position. 

(2) The candidate position must be distant from an obstacle. 

(3) The candidate positions should be scattered as much as pos-

sible, since the next moving direction of the parent robot

is unknown and thus the child robots should be distributed

equally to be prepared for any moving directions at the next

iteration. 

To choose the target position that satisfies these conditions, the

ollowing value G c 2 is calculated in the observable area of the par-

nt robot, and the position that maximizes the value G c 2 is se-

ected. 

 c2 = P −1 + γc · (D l + D m 

+ D c ) 
−1 (4)

here D l and D m 

are the distances from the target position of the

hild robot to the child robots ( l and m ) that remain stopped, D c is

he distance from the target position to the other child robot that

oves at the same time, and γ c is a weight term. 

.3. Subgoal retrieval using visibility graph 

In some cases in the procedure for determining the target po-

ition of the child robot mentioned above, proper candidate posi-

ions that satisfy the visibility condition cannot be obtained. For

xample, if the target position of the parent robot is very far from

he current position of the child robot and the child robot must

ass though several corners to reach there, the AND region, in

hich both the current and target positions of the parent robot

an be seen directly, does not exist. In these cases, we adopt sub-

oal retrieval using the Visibility Graph, ( de Berg et al., 1997 ). In

ubgoal retrieval, new subgoal positions of the parent robot are se-

uentially retrieved from the final goal position to the start posi-

ion by dividing the total trajectory into several short paths. 

The Visibility Graph is a graph representation of all the acces-

ible paths connecting the vertices of the obstacles in the environ-

ent. Fig. 12 shows an example of a Visibility Graph. By applying
e dimensional modeling using cooperative multiple robots, Com- 
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Fig. 12. Example of a visibility graph. The red line is the shortest path connecting 

the start and end positions. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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raph search algorithms, the shortest trajectory between the cur-

ent and the target positions can be obtained. In this graph rep-

esentation, each line connecting the vertices indicates that both

ertices can be seen from each other. Therefore, if all the robots

ravel along such lines, the robots have lines of sight of each other

nd thus the CPS procedure is executable. Due to this fact, we can

efinitely obtain trajectories to move from the current parent po-

ition to the target parent position by using CPS. 

The detailed procedure for subgoal retrieval using the Visibility

raph is shown as follows: 

(1) Confirm whether the AND region exists between the current

and target positions of the parent robot. 

(2) If no AND region exists, create the Visibility Graph and find

the shortest trajectory. 

(3) Retrieve one subgoal for the parent robot along the short-

est trajectory from the target position in the Visibility Graph.

The subgoals are corner points on the shortest path, which

are shown by dots in Fig. 12 . 

(4) Calculate the AND region between the current robot position

and the subgoal. 

(5) If the AND region exists, find the target positions of the child

robot by using Eqs. (2) or (3) . 
Fig. 13. Examples of the environm

Please cite this article as: R. Kurazume et al., Automatic large-scale thre
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(6) If the AND region does not exist, retrieve a new subgoal

along the shortest trajectory that is one step closer to the

current parent robot position. 

(7) Repeat Steps 4–6 until the AND region exists. 

(8) Set the subgoal as the current parent position and repeat

Steps 4–7 until the parent robot reaches the target position. 

.4. Safe robot movement along Voronoi edge 

As mentioned above, the robots can move from the initial po-

ition to the final target position along the edges connecting the

ubgoals in the Visibility Graph. However, since the subgoals are

et on the vertexes of obstacles, the obtained trajectories pass

lose to the obstacles. To obtain safer trajectories, we calculate the

oronoi diagram ( Aurenhammer, 1991 ) and set the Voronoi edges

s actual trajectories. The robots move first to the nearest posi-

ion on the Voronoi edges from the initial position, move along

he Voronoi edges, and leave from the Voronoi edges to the final

arget position. 

. Computer simulations and experiments 

.1. Computer simulations 

We next evaluate the performance of the proposed technique

y computer simulations for the CPS-VII system. In this simulation,

e prepare several 2D grid maps with 80 0 × 60 0 grids (Maps A, B,

nd C) or 1116 × 856 grids (Map D) as unknown environments, as

hown in Fig. 13 , and start scans from several initial positions se-

ected randomly. The grid size is 0.1 m × 0.1 m for each map. We

et the maximum range of the omni-directional laser scanner on

he parent robot to 20 m. Note that, although the structure of the

nvironment is designed before starting the simulation, the robots

o not have any knowledge about the environment at the begin-

ing, and the measurement strategy is planned based on the map,

hich is gradually expanded as the scans are repeated. Examples

f the planned trajectories of three robots for Map A are shown in

ig. 14 . 
ents (Maps A, B, C, and D). 

e dimensional modeling using cooperative multiple robots, Com- 
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Fig. 14. Planned trajectories of parent and child robots for Map A. 

Fig. 15. Measured map and trajectories of parent robot in the case that the target position maximizing the newly scanned area is selected ( α = 0 ) for Map C. 

 

 

 

 

 

robot as small as possible ( β = 0 ). 
5.1.1. Planning of target positions for the parent robot 

We verified the performance of the planning technique for the

target positions of the parent robot proposed in Section 4.1 by

changing parameters α and β in Eq. (1) . We adopted the follow-

ing two simulation conditions. 
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
(a) Select the paths that make the expected newly scanned ar-

eas S in unknown regions as large as possible ( α = 0 ). 

(b) Select the paths that make the travel distance L of the parent
e dimensional modeling using cooperative multiple robots, Com- 
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Fig. 16. Subgoals in the case of α = 0 (10th, 12th, 16th, and 18th measurements). 
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As examples, we show the measured maps of Map C acquired

equentially for cases (a) and (b) in Figs. 15 and 17 , respectively.

ig. 16 illustrates the subgoal retrieval for case (a) in Fig. 15 . In

hese examples, the initial position of the parent robot is indicated

y the star in Fig. 13 . 

From Fig. 17 , we can see that the target positions close to the

revious positions are selected and the subgoal retrieval is not per-

ormed in this condition ( β = 0 ), since the selected target positions

re all visible from the previous positions. However, the newly

canned areas at each scanning are small and thus the number of

cans becomes large. In this simulation, we need to scan 23 times
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
o obtain a whole map. On the other hand, if we choose the par-

nt target positions that maximize the expected newly scanned ar-

as S in unknown regions ( α = 0 ), the subgoal retrievals are per-

ormed at the 10th, 12th, 16th, and 18th measurements, as shown

n Fig. 16 , since the distance to the target position is not considered

nd invisible target positions tend to be selected. Meanwhile, the

umber of required scannings to obtain the map of whole regions

ecomes small and planning is terminated at the 18th scanning.

e also can see that the trajectories of the parent robot for each

ovement are longer in the case of α = 0 in Fig. 15 than in the

ase of β = 0 in Fig. 17 . 
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Fig. 17. Measured map and trajectories of parent robot in the case that the closest target position is selected ( β = 0 ) for Map C. 
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Moreover, Fig. 18 shows the total travel distance (the horizon-

tal axis includes subgoal retrievals) and the area coverage rate (the

horizontal axis does not include subgoal retrievals) for cases (a)

(newly scanned areas S in unknown regions are large, α = 0 ) and

(b) (distance of movement of the parent robot is small, β = 0 ). The

average of the five trials of manual planning by a human operator

is also plotted. From these figures, we can see that, in case (b),

although the total travel distance becomes short, the number of

measurements becomes large and the increasing area coverage rate

(gradient of Fig. 18 (b)) is 5.46 [%/measurement]. On the other hand,
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
n case (a), although the total travel distance becomes long, the

umber of measurements becomes small and the increasing area

overage rate is 6.14 [%/measurement]. In the case of manual op-

ration, both the total travel distance and the number of measure-

ents become large, and the increasing area coverage rate is 5.02

%/measurement] for an average of five trials. Furthermore, the in-

reasing area coverage rates per travel distance are 0.232 %/m for

ase (a), 0.430 %/m for (b), and 0.331 %/m for the manual opera-

ion. Therefore, the efficiency of the measurement of case (b) could

e improved by 30.2 % by our proposed technique in comparison
e dimensional modeling using cooperative multiple robots, Com- 

/j.cviu.2016.05.008 

http://dx.doi.org/10.1016/j.cviu.2016.05.008


R. Kurazume et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–18 13 

ARTICLE IN PRESS 

JID: YCVIU [m5G; May 25, 2016;19:47 ] 

Fig. 18. Comparison of travel distance and measured area of the parent robot. 

Fig. 19. Comparison of positioning errors. 

Fig. 20. Comparison of the area coverage rate and total travel distance of the parent robot for Map C. 
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ith the manual operation. In addition, the number of measure-

ents when the area coverage rate exceeds 98 % is 16 for case (a),

8 for case (b), and 19.6 for the manual operation. Case (b) de-

reases the number of measurements by 18.4 % by our proposed

echnique in comparison with the manual operation. 

The parameters α and β are very environment dependent. Since

t is not possible to estimate the optimum parameters beforehand,

n-line adaptation is required. One simple approach to adapt them

o the environment on-line is that the behavior of the robots is

hanged according to the distribution of the frontiers (border ar-

as). For example, if there are many frontiers around the current

obot position, the robot should concentrate to investigate these

reas by decreasing β , and vice versa. 

.1.2. Planning of target positions for the child robots 

To evaluate the performance of the planning technique, which

uppressed the error accumulation of the child robots as proposed

n Section 4.2 , we carried out computer simulations by changing
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
he parameters αc and βc in Eq. (2) and compared the accumu-

ated errors. The simulation conditions to be compared are as fol-

ows: 

(a) Select child robot positions randomly. 

(b) Set αc � βc . 

(c) Set αc � βc . 

(d) Set αc � βc . 

Condition (a) determines the positions of the child robots ran-

omly without Eq. (2) so that the positioning is valid for CPS. Con-

ition (c) determines the positions so that the relative angle be-

ween the child robots becomes as close to 90 degrees as possi-

le, and condition (d) determines the positions so that the relative

istance between the parent and child robots becomes D t (= 3 m ) .

he accumulated error is calculated theoretically by the fundamen-

al equation of error propagation in Kurazume and Hirose (1998) .

n the simulation we adopted α = 0 . 01 and β = 0 . 001 so that the
e dimensional modeling using cooperative multiple robots, Com- 
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Fig. 21. Comparison of the area coverage rate and total travel distance of the parent robot for Map D. 

Fig. 22. Photo of outdoor environment and CPS-VII. 

Fig. 23. Trajectories of parent and child robots. 

Fig. 24. 3D models obtained by CPS-VII. 
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Fig. 25. 3D models and trajectories of parent and child robots. 

Fig. 26. Examples of trajectories planned by automatic and manual methods. 

Fig. 27. CPS-VIII and 3D model of buildings. 

Table 1 

Comparison of positioning error variances for Maps A, B, and C after the parent 

robot moves nine times [mm 

2 ]. 

(a) Random (b) Angle & distance (c) Angle (d) Distance 

Map A 500 .0 112 .3 94 .0 159 .3 

Map B 46 .5 43 .6 43 .7 165 .2 

Map C 254 .2 45 .3 47 .2 145 .8 
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xpected measurement areas become large when the parent robot

osition is planned by Eq. (1) . 

An example of the accumulated error for each condition for

ap A is shown in Fig. 19 . It is clearly seen that the errors are

ccumulated greatly in conditions (a) and (d), which did not con-

ider the relative angles between child robots. On the other hand,

onditions (b) and (c) can suppress error accumulation by selecting

he positions where the relative angle becomes 90 degrees. Table 1
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
hows the error variance of the ninth movement after the parent

obot starts to move from the star in Fig. 13 . From this table, we

an conclude the following. 

1. Conditions (b) and (c), which considered the relative angles be-

tween child robots, tend to suppress error accumulation in all

maps. 

2. Condition (d), which considered the relative distance between

parent and child robots only, shows large error accumulation in

all maps. 

3. Random selection of the child robot position induces a large

variation of error accumulation and the accuracy tends to be

unstable. 

.2. Comparison of CPS-VII and CPS-VIII 

Finally, we compared the measurement efficiencies of CPS-

II and CPS- VIII. In the simulation, we set α = 0 . 01 , β = 0 . 001 ,
e dimensional modeling using cooperative multiple robots, Com- 
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Fig. 28. Route planned by the proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Specification of GPT-9005A (TOPCON). 

Range 1 .3–30 0 0 m 

Angular resolution 0 .5 ′ ′ /1 ′ ′ 
Accuracy (distance) ±2 mm + 2 ppm × Distance 

Accuracy (angle) 1 ′ ′ 

Table 3 

Specification of LMS-511 (SICK). 

Range 0 .7–80 m 

Angular resolution 0 .25 °
Accuracy (distance) ± 25 mm– ± 35 mm 
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αc = 100 , and βc = 1 . Fig. 20 shows the comparison of the area

coverage rate and the total travel distance of the parent robot for

the CPS-VII and CPS-VIII systems. 

As shown in Fig. 20 , little difference is seen in the area cover-

age rates between these systems. However, the total travel distance

of CPS-VIII is smaller than that of CPS-VII due to the long range of

the laser scanner. In addition, since the range sensing and posi-

tioning are performed simultaneously for CPS-VIII, the range sens-

ing and movement occur at the same frequency. Thus, the number

of movements of CPS-VIII becomes smaller than that of CPS-VII for

the same number of measurements. 

Fig. 21 shows the results for Map D. We can see that the in-

creasing rate of the area coverage rate against the number of mea-

surements for CPS-VIII is almost the same as that for CPS-VII. How-

ever, if we focus on the total travel distance, CPS-VIII finishes the

measurement with shorter travel distance than does CPS-VII. This

is because the range of the measurement for CPS-VIII is longer than

that for CPS-VII, and CPS-VIII can scan a wider area from distant

positions. The increasing rates of the area coverage rates against

the travel distance of 1 m, that is, the efficiency of the movement,

is 0.159 %/m for CPS-VII and 0.344 %/m for CPS-VIII. Additionally,

the number of movements when the area coverage rate becomes

larger than 90 % is 15 for CPS-VII and 8 for CPS-VIII. Therefore, we

can conclude that CPS-VIII is more efficient than CPS-VII. 

5.3. Outdoor experiment in a real environment by CPS-VII 

We conducted an actual experiment in an outdoor environment

by using the CPS-VII system consisting of a parent robot and two
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
hild robots, as shown in Fig. 2 . The parent robot is equipped with

 total station (TOPCON, GPT-9005A, Table 2 ), auto-leveling sys-

em (Risumu, AS-21), 1-axis laser scanner (SICK, LMS-511, Table 3 ),

-axis rotation table (Chuo-Seiki, ARS-136-HP), and 2-axis incli-

ometer (Applied Geomechanics Inc., MD-900-TS). Fig. 22 shows

he measured environment and CPS-VII during the experiments. 

Fig. 23 shows the planned trajectories of the parent and child

obots for two different areas. The arrows and the numbers in

hese figures indicate the moving direction and the number of

ovement of the parent robot, respectively. In Fig. 23 (a), the par-

nt robot started the measurements from the initial position (bot-

om), moved along a narrow road, turned right, and entered into

n open area. The child robots changed their positions at fourth

nd ninth movements of the parent robot. On the other hand, in
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Fig. 29. Comparison with photos and 3D models captured from points B, C, D, and E in Fig. 28 . 
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3  
ig. 23 (b), the parent robot repeated the measurements at the up-

er and the lower areas while moving along a center road. The

ubgoal retrieval was performed at seventh movement in this case.

he child robot 1 moved at second, third, and seventh movements

f the parent robot, and the child robot 2 moved at second, fourth,

ixth, and seventh movement of the parent robot. Finally, the 3D

odel can be obtained automatically as shown in Fig. 24 . 

In addition, the 3D model obtained after the robots moved

round the building is shown in Fig. 25 (a) and (b), and the planned

rajectories for all the robots are illustrated in Fig. 25 (c). The parent

nd child robots started to move from the initial position (top-left

osition in Fig. 25 (c)) and their trajectories were planned automat-

cally, as shown by the dotted lines. In this experiment, the parent

obot scanned 26 times around the building and obtained 9.85 mil-

ion points. 

.4. Comparison with manual planning method 

We compared the scanning efficiency between the proposed

utomatic planning method and the manual planning method

hrough the measurements of a large hall shown in Fig. 26 (a) and

b). The 3D model measured by the proposed automatic method

s shown in Fig. 26 (c) and trajectories for the proposed method

nd the manual method are shown in Fig. 26 (d) and (e), respec-

ively. The number of measurements is 13 for the proposed method

hereas it is 16 for the manual method. By the automatic plan-
Please cite this article as: R. Kurazume et al., Automatic large-scale thre

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
ing, two corridors (indicated by circles) were not measured suffi-

iently, since the system judged these corridors are too narrow for

he robots to pass through, and the robot did not scan from posi-

ions in these areas as No.14 and 16 in Fig. 26 (e) planned by the

anual method. From these trajectories, we can say that the pro-

osed automatic planning method performed the measurements

ore uniformly than the manual planning method. 

.5. Outdoor experiment in a real environment by CPS-VIII 

We applied the proposed automatic planning algorithm to CPS-

III, consisting of the parent robot and four quadcopters, and

canned a large building. CPS-VIII during measurements and the

btained 3D model are shown in Fig. 27 . We can see that a quite

recise 3D model is obtained. The robots moved the trajectories

etermined by the proposed algorithm, as shown in Fig. 28 . While

he robots moved around the building, the parent robot scanned

4 times. The total travel distance of the parent robot was 270.1

. 

In addition, we evaluated the accuracy of the positioning and

he 3D model by comparing the positions of six corners of the 3D

odel. The positions are the circles shown in Fig. 28 at the 1st and

4th scannings. The average error of these six corners is 23.1 mm,

hich is 0.0085 % of the total travel distance (270.1 m). This result

hows clearly that the proposed CPS-SLAM performs quite accurate

D modeling as compared to conventional SLAM systems. One of
e dimensional modeling using cooperative multiple robots, Com- 
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the reasons why the accuracy is improved as compared with CPS-

II is that the total station and the laser scanner in CPS-VII are

integrated and replaced by a single laser scanner, and thus no cal-

ibration error exists between the sensors in CPS-VIII. Fig. 29 shows

the 3D model with some photos taken from the same positions. 

Note that we can apply ICP to the measured point data, as we

did in Kurazume et al. (2009) . However, we think that absolute ac-

curacy cannot be guaranteed for aligned data because each data

value is aligned so that the total relative error is minimized. In the

worst case, the obtained 3D model differs from the real shape if

the point correspondences are not determined appropriately. On

the other hand, the proposed measurement system can guaran-

tee the accuracy level in terms of absolute accuracy, and thus it

is quite useful for real applications, such as field robot navigation

or 3D shape measurements in construction sites. 

6. Conclusions 

This paper proposes an automatic planning technique for ef-

ficient laser measurement for the CPS-SLAM system, which real-

izes accurate 3D modeling by using multiple robots and a laser

scanner. By planning a proper scanning strategy that satisfies sev-

eral conditions to validate the CPS motion, efficient and accurate

laser scanning can be performed even in a large-scale environment.

The proposed technique plans a reliable scanning trajectory by us-

ing subgoal retrieval and a Visibility Graph, and the minimization

of error accumulation is also realized by considering the relative

robot positions. This technique is based on the frontier-based ap-

proach ( Yamauchi, 1997 ) and the robot moves to and scans from

the frontiers if the frontiers exist in the obtained map and these

areas are reachable. Therefore, the robots will cover a whole ac-

cessible area assuming perfect sensors and perfect motor control

( Yamauchi, 1997 ). The validity of the proposed technique is veri-

fied through computer simulations and actual experiments in an

outdoor environment by two types of CPS-SLAM systems. Although

this paper dealt with planning in 2D space, the proposed algorithm

can be applied to planning in 3D space by considering mutual vis-

ibilities and newly scanned areas in 3D. 
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