Note

An extremal problem on potentially $K_{r,s}$-graphic sequences

Jian-Hua Yina,b, Jiong-Sheng Lia,*

aDepartment of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China

bDepartment of Mathematics, Quanzhou Teachers College, Quanzhou, Fujian 362000, People’s Republic of China

Received 21 March 2001; received in revised form 13 June 2002; accepted 29 July 2002

Abstract

We consider a variation of a classical Turán-type extremal problem (F. Chung, R. Graham, Erdős on Graphs: His Legacy of Unsolved Problems, AK Peters Ltd., Wellesley, 1998, Chapter 3) as follows: Determine the smallest even integer $\sigma(K_{r,s},n)$ such that every n-term graphic sequence $\pi=(d_1,d_2,\ldots,d_n)$ with term sum $\sigma(\pi)=d_1+d_2+\cdots+d_n \geq \sigma(K_{r,s},n)$ is potentially $K_{r,s}$-graphic, where $K_{r,s}$ is a $r \times s$ complete bipartite graph, i.e., π has a realization G containing $K_{r,s}$ as its subgraph. In this paper, we first give sufficient conditions for a graphic sequence being potentially $K_{r,s}$-graphic, and then we determine $\sigma(K_{r,s},n)$ for $r=3,4$.

© 2002 Elsevier Science B.V. All rights reserved.

MSC: 05C35

Keywords: Graph; Degree sequence; Potentially $K_{r,s}$-graphic sequence

1. Introduction

The set of all sequences $\pi=(d_1,d_2,\ldots,d_n)$ of nonnegative integers with $d_i \leq n-1$ for each i is denoted by NS_n. A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of some simple graph G on n vertices, and such graph G is called a realization of π. The set of all graphic n-term sequences in nonincreasing order is denoted by G_n. For a given graph H, a sequence $\pi \in G_n$ is said to be forcibly (resp. potentially) H-graphic if each realization of π contains H as its subgraph (resp. there exists a realization of π containing H as its subgraph).

* Supported by the National Natural Science Foundation of China (Grant No. 19971086).
* Corresponding author.

E-mail address: lijs@ustc.edu.cn (J.-S. Li).

0012-365X/03/$-see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0012-365X(02)00765-3
It is well known [1] that one of classical extremal problems in extremal graph theory is to determine the smallest integer \(t(H,n) \) such that every graph \(G \) on \(n \) vertices with edge number \(e(G) \geq t(H,n) \) contains \(H \) as its subgraph. The number \(t(H,n) \) is called the Turán number of \(H \). The classical Turán theorem [1] determined the Turán number \(t(K_r,n) \) for \(K_r \), a complete graph on \(r \) vertices. About the Turán number \(t(K_{2r},n) \), Kővári et al. [11] and Erdős and Rényi [6], gave the general upper and lower bounds, respectively, as follows: \(c_1 n^{2-(2/r)} \leq t(K_{2r},n) \leq c_2 n^{2-(1/r)} \). In [2, Chapter 3], a conjecture has been made that \(t(K_{2r},n) \geq cn^{2-(1/r)} \) for \(r \geq 4 \). Erdős et al. [7] proved \(t(K_{2r},n) \sim \frac{1}{2} n^{3/2} \). Recently, Füredi [8] proved \(t(K_{3,3},n) \sim \frac{1}{2} n^{5/3} \). Nothing new is known about \(t(K_{4,4},n) \). But Erdős [3] has asked if the ratio \(t(K_{4,4},n)/t(K_{3,3},n) \) tends to infinity or not.

In terms of graphic sequences, the number \(2t(K_r,n) \) is the smallest even integer such that each graphic \(n \)-term sequence \(\pi \) with \(\sigma(\pi) \geq 2t(K_r,n) \) is forcibly \(K_r \)-graphic. Erdős et al. [5] considered a variation of Turán theorem as follows: determine the smallest even integer \(\sigma(K_r,n) \) such that every positive graphic \(n \)-term sequence \(\pi = (d_1, \ldots, d_n) \) with term sum \(\sigma(\pi) = d_1 + \cdots + d_n \geq \sigma(K_r,n) \) is potentially \(K_r \)-graphic. They conjectured that \(\sigma(K_r,n) = (r-2)(2n-r+1) + 2 \) for enough large \(n \) and proved that the conjecture holds for \(r = 3 \) and \(n \geq 6 \). Recently, Li and Song [13] and Gould et al. [9] proved that the conjecture holds for \(r = 4 \) and \(n \geq 8 \) independently. Li and Song [12] and Li et al. [14] also proved that the conjecture is positive for \(r = 5 \) and \(n \geq 10 \) and for \(r \geq 6 \) and \(n \geq (r-1)^2 + 3 \). The problem about determining \(\sigma(K_{k+1},n) \) is completely solved.

A similar problem is to determine the smallest even integer \(\sigma(K_r,s,n) \) such that each graphic \(n \)-term sequence \(\pi \) with \(\sigma(\pi) \geq \sigma(K_r,s,n) \) is potentially \(K_{r,s} \)-graphic. Gould et al. [9] determined the number \(\sigma(K_{2,2},n) \). In this paper, we first give certain sufficient conditions for a graphic sequence being potentially \(K_{r,s} \)-graphic. And then we use these sufficient conditions to determine \(\sigma(K_{r,r},n) \) for \(r = 3, 4 \).

2. On the potentially \(K_{r,r} \)-graphic sequences

In this section, we first give sufficient conditions for a graphic sequence being potentially \(K_{r,s} \)-graphic. We need some notations and known results.

Let \(\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{r+s}, d_{r+s+1}, \ldots, d_n) \in NS_n \). If \(\pi \) has a realization \(H \) with vertex set \(\{v_1, v_2, \ldots, v_n\} \), such that \(d_i \) is the degree of \(v_i \) in \(H \), and \(H \) contains \(K_{r,s} \) as its subgraph, where \(X = \{v_1, \ldots, v_r\} \), \(Y = \{u_{r+1}, \ldots, u_{r+s}\} \subseteq \{v_{r+1}, \ldots, v_n\} \) is the bipartite partition of the vertex set of \(K_{r,s} \), then \(\pi \) is called potentially \(B_{r,s} \)-graphic. Furthermore, if \(\{u_{r+1}, \ldots, u_{r+s}\} = \{v_{r+1}, \ldots, v_{r+s}\} \), then \(\pi \) is said to be potentially \(A_{r,s} \)-graphic.

Theorem 2.1 (Erdős and Gallai [4]). Let \(\pi = (d_1, d_2, \ldots, d_n) \in NS_n \) be a nonincreasing sequence and with even \(\sigma(\pi) \). Then \(\pi \in G_n \) if and only if for any \(t \), \(1 \leq t \leq n - 1 \),

\[
\sum_{i=1}^{t} d_i \leq t(t-1) + \sum_{j=t+1}^{n} \min\{t, d_j\}.
\]
For a nonincreasing sequence \(\pi = (d_1, d_2, \ldots, d_n) \in NS_n \), let

\[
\pi'' = \begin{cases}
(d_1 - 1, \ldots, d_{k-1} - 1, d_{k+1} - 1, \ldots, d_{d_k} - 1, d_{d_k+2}, \ldots, d_n) & \text{if } d_k \geq k, \\
(d_1 - 1, \ldots, d_{d_k} - 1, d_{d_k+1}, \ldots, d_{d_k-1}, d_{d_k+1}, \ldots, d_n) & \text{if } d_k < k.
\end{cases}
\]

Denote \(\pi' = (d'_1, d'_2, \ldots, d'_{n-1}) \), where \(d'_1 \geq d'_2 \geq \cdots \geq d'_{n-1} \) is the rearrangement of the \((n-1)\) terms in \(\pi'' \). Then \(\pi' \) is called the residual sequence obtained by laying off \(d_k \) from \(\pi \).

Theorem 2.2 (Kleitman and Wang [10]). Let \(\pi \in NS_n \) be a nonincreasing sequence. Then \(\pi \in G_n \) if and only if \(\pi' \in G_{n-1} \).

Proposition 2.3. Let \(\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{r+s}, d_{r+s+1}, \ldots, d_n) \in NS_n \), where \(n - 1 \geq d_1 \geq \cdots \geq d_r \geq s \), \(n - 1 \geq d_{r+1} \geq \cdots \geq d_{r+s} \geq r \) and \(n - 1 \geq d_{r+s+1} \geq \cdots \geq d_n \geq r \). Denote

\[
\pi'_1 = \begin{cases}
(d_2 - 1, \ldots, d_r - 1, d_{r+1}, \ldots, d_{d_1}, \ldots, d_n) & \text{if } d_1 \leq n - r, \\
d_2 - 1, \ldots, d_{d_1-r+n-1} - 1, \\
d_{d_1+r-n+2}, \ldots, d_r, d_{r+1} - 1, \ldots, d_n - 1) & \text{if } d_1 > n - r
\end{cases}
\]

and \(\pi''_1 = (d^{(1)}_2, \ldots, d^{(1)}_r, d^{(1)}_{r+1}, \ldots, d^{(1)}_r, d^{(1)}_{r+s}, d^{(1)}_{r+s+1}, \ldots, d^{(1)}_n) \), where \(d^{(1)}_2 \geq \cdots \geq d^{(1)}_r \) is the rearrangement of the first \(r - 1 \) terms in \(\pi'_1 \), \(d^{(1)}_{r+1} = d_{r+1} - 1, \ldots, d^{(1)}_{r+s} = d_{r+s} - 1 \), and \(d^{(1)}_{r+s+1} \geq \cdots \geq d^{(1)}_n \) is the rearrangement of the final \(n - r - s \) terms in \(\pi'_1 \). If \(\pi''_1 \) has a realization \(H \) with vertex set \(\{v_2, \ldots, v_n\} \) such that \(d^{(1)}_i \) is the degree of \(v_i \) in \(H \) and \(H \) contains \(K_{r-1,s} \) as its subgraph, where \(X = \{v_2, \ldots, v_r\}, Y = \{v_{r+1}, \ldots, v_{r+s}\} \) is the bipartite partition of the vertex set of \(K_{r-1,s} \), then \(\pi \) is potentially \(Ar_{s,r} \)-graphic.

Proof. It follows from the definition of \(\pi''_1 \) that the Proposition holds. \(\square \)

For the sequence \(\pi''_1 \), if \(d^{(1)}_2 \geq \cdots \geq d^{(1)}_r \geq s \), we can define similarly the sequence \(\pi''_2 \) as follows: Define

\[
\pi'_2 = \begin{cases}
(d^{(1)}_3, \ldots, d^{(1)}_r, d^{(1)}_{r+1} - 1, \ldots, d^{(1)}_{d^{(1)}_r} - 1, d^{(1)}_{r+d^{(1)}_r}, \ldots, d^{(1)}_n) & \text{if } d^{(1)}_2 \leq n - r, \\
(d^{(1)}_3 - 1, \ldots, d^{(1)}_{d^{(1)}_r-r+n-2} - 1, \\
(d^{(1)}_{d^{(1)}_r} - 1, \ldots, d^{(1)}_{d^{(1)}_r-r+n-2}) & \text{if } d^{(1)}_2 > n - r
\end{cases}
\]

and \(\pi''_2 = (d^{(2)}_3, \ldots, d^{(2)}_r, d^{(2)}_{r+1}, \ldots, d^{(2)}_{r+s}, d^{(2)}_{r+s+1}, \ldots, d^{(2)}_n) \), where \(d^{(2)}_3 \geq \cdots \geq d^{(2)}_r \) is the rearrangement of the first \(r - 2 \) terms in \(\pi'_2 \), \(d^{(2)}_{r+1} = d^{(1)}_{r+1} - 1, \ldots, d^{(2)}_{r+s} = d^{(1)}_{r+s} - 1 \), and \(d^{(2)}_{r+s+1} \geq \cdots \geq d^{(2)}_n \) is the rearrangement of the final \(n - r - s \) terms in \(\pi'_2 \). For any \(3 \leq k \leq r \), if \(d^{(k-1)}_k \geq \cdots \geq d^{(k-1)}_r \geq s \), the definitions of \(\pi'_k \) and \(\pi''_k \) are similar.
Proposition 2.4. Let \(\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{r+s}, d_{r+s+1}, \ldots, d_n) \in NS_n \) be a sequence in Proposition 2.3, and \(\pi'' \) can be defined as above. If \(\pi'' \) is graphic, then \(\pi \) is potentially \(A_{r,s} \)-graphic.

Proof. The result follows from the definition of \(\pi'' \). \(\square \)

Lemma 2.5. Let \(\pi = (d_1, \ldots, d_n) \in NS_n \), \(m = \max \{d_1, \ldots, d_n\} \), and \(\sigma(\pi) \) be even. Denote \(\tilde{\pi} = (\tilde{d}_1, \ldots, \tilde{d}_n) \), where \(m = \tilde{d}_1 \geq \cdots \geq \tilde{d}_n \) is the rearrangement of \(d_1, \ldots, d_n \). If there exists an integer \(n_1 \leq n \) such that \(\tilde{d}_{n_1} \geq h+1 \) and \(n_1 \geq \frac{1}{h}(\frac{(m+h+1)^2}{4}) \), then \(\pi \in G_n \).

Proof. It is enough to prove that \(\tilde{\pi} \in G_n \). Since \(m \geq \frac{1}{h}(\frac{(m+h+1)^2}{4}) \geq \frac{(m+h+1)}{h} = m + \frac{1}{h} \), we have \(n_1 \geq m + 1 \). By Theorem 2.1, we only need to verify that (1) holds for \(\tilde{\pi} \). If \(1 \leq i \leq h \), then \(\sum_{i=1}^{n_1} \tilde{d}_i \leq \sum_{i=1}^{n} d_i \leq m(t(n_1-1)) = mt(n_1-1) = (t-1) + (n_1-t) = t(n_1-t) + \sum_{i=t+1}^{n_1} \min\{\tilde{d}_i, t\} \). Assume \(h < t \leq m \). If \(\sum_{i=1}^{n_1} \tilde{d}_i > t(n_1-t) + \sum_{i=t+1}^{n_1} \min\{\tilde{d}_i, t\} \), then \(tm > t(n_1-t) + h(n_1-t) \), i.e., \(tm > t(n_1-t) + h(n_1-t) \). Hence \(n_1 < \frac{1}{h}(\frac{(m+h+1)^2}{4}) \geq \frac{1}{h}(\frac{(m+h+1)^2}{4}) \), which is impossible. So, (1) holds for \(h < t \leq m \). Moreover, (1) holds clearly for \(m < t < n_1 - 1 \). Thus (1) holds for \(\tilde{\pi} \). \(\square \)

The sequences \(\tilde{\pi} = (\tilde{d}_1, \ldots, \tilde{d}_n) \) is called the rearrangement sequence of \(\pi \).

Lemma 2.6. If \(\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{r+s}, \ldots, d_n) \) is potentially \(B_{r,s} \)-graphic, then \(\pi \) is potentially \(A_{r,s} \)-graphic.

Proof. Since \(\pi \) is potentially \(B_{r,s} \)-graphic, we can choose a realization \(H \) with vertex set \(\{v_1, v_2, \ldots, v_n\} \) such that the following conditions are satisfied: (i) \(d_i \) is the degree of \(v_i \) in \(H \) for each \(i \), (ii) \(H \) contains \(K_{r,s} \) as its subgraph, where \(X = \{v_1, \ldots, v_r\} \), \(Y = \{u_{r+1}, \ldots, u_{r+s}\} \subseteq \{v_{r+1}, \ldots, v_n\} \) is the bipartite partition of the vertex set of \(K_{r,s} \), (iii) \(|Z \cap Y| \) is maximum, where \(Z = \{v_{r+1}, \ldots, v_{r+s}\} \). Clearly, if \(|Z \cap Y| = s \), i.e., \(Z = Y \), then \(\pi \) is potentially \(A_{r,s} \)-graphic. If \(|Z \cap Y| < s \), then \(Y - Z \) and \(Z - Y \) are nonempty. Hence there exist \(v \in Z - Y \) and \(u \in Y - Z \) such that \(d(v) \geq d(u) \). By the choice of \(H \) and \(Y \), we have \(X \notin N(v) \), where \(N(v) \) is the set of neighbors of \(v \) in \(H \). Now assume that \(X \cap N(v) = \{v_1, \ldots, v_t\} \), where \(0 \leq t \leq r - 1 \). Since \(d(v) \geq d(u) \), \(|N(v) - (X \cup \{u\})| \geq |N(u) - (X \cup \{v\})| + r - t \). Hence, there exist \(w_1, \ldots, w_r \in N(v) - (X \cup \{u\}) \) such that \(w_i \notin E(H) \) for \(i = 1, \ldots, r - t \). Then \(H' = H - \{v_i : i = t + 1, \ldots, r\} + \{w_i : i = 1, \ldots, r - t\} - \{w_i : i = 1, \ldots, r - t\} + \{v_i : i = t + 1, \ldots, r\} \) realizes \(\pi \), and contains \(K_{r,s} \) as its subgraph, where \(X, Y - \{u\} + \{v\} \) is the bipartite partition of the vertex set of \(K_{r,s} \). Clearly \(|(Y - u + v) \cap Z| > |Z \cap Y| \), contradicts the choice of \(H \) and \(Y \). Thus, \(\pi \) is potentially \(A_{r,s} \)-graphic. \(\square \)

Lemma 2.7. Let \(\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{r+s}, \ldots, d_n) \in G_n \), where \(n \geq r + s + 1 \) and \(d_n \geq r \), and let \(\pi'' = (d'_1, d'_2, \ldots, d'_{n-1}) \) be the residual sequence obtained by laying off \(d_n \) from \(\pi \). Then \(\pi \) is potentially \(B_{r,s} \)-graphic if \(\pi'' \) is potentially \(B_{r,s} \)-graphic.
Proof. If there exists \(t \) such that \(r \leq t \leq d_n \) and \(d_i > d_{i+1} \), then \(d'_i = d_i - 1, \ldots, d'_j = d_j - 1 \). Since \(\pi' \) is potentially \(B_{r,s} \)-graphic, \(\pi \) is potentially \(B_{r,s} \)-graphic too. Hence, we assume that \(d_1 \geq \cdots \geq d_r > d_{r+1} = \cdots = d_{d_r} = \cdots = d_{d_{r+k-1}} \geq \cdots \geq d_{d_r+1} \), where \(0 \leq \ell \leq r - 1 \) and \(h \geq 1 \). If \(h \geq r - \ell \), then \(\pi' \) satisfies \(d'_i = d_i - 1, \ldots, d'_j = d_j - 1, d'_{r+1} = d_{r+1}, \ldots, d'_{r+\ell} = d_{r+\ell} \). Since \(\pi' \) is potentially \(B_{r,s} \)-graphic, there exists a realization \(H \) with vertex set \(\{v'_1, v'_2, \ldots, v'_{d_n - 1}\} \) such that \(d'_i \) is the degree of \(v'_i \) in \(H \) and \(H \) contains \(K_{r,s} \) as its subgraph, where \(\{v'_1, \ldots, v'_{d_n - 1}\}, \{u_{r+1}, \ldots, u_{r+s}\} \subseteq \{v'_{d_n - 1}, \ldots, v'_{d_n - \ell - 1}\} \) is the bipartite partition of the vertex set of \(K_{r,s} \). Hence, \(\pi \) has a realization \(G \) with vertex set \(\{v_1, v_2, \ldots, v_{d_n}\} \) containing \(K_{r,s} \) as its subgraph such that \(d_i \) is the degree of \(v_i \) in \(G \) and \(\{v_1, \ldots, v_r, v_{d_r+1}, \ldots, v_{d_n+\ell - r}\} \) is one part of the bipartite partition of the vertex set of \(K_{r,s} \). Since \(d'_{r+1} = \cdots = d'_{d_r} = d_{r+1} = \cdots = d_{d_{r+k-1}} \), \(\pi \) is still nonincreasing after interchanging \(d_{r+i} \) with \(d_{d_r+i} \) for \(i = 1, \ldots, r - \ell \). Thus, \(\pi \) is potentially \(B_{r,s} \)-graphic.

Lemma 2.8. Let \(r, s \geq 2 \), and \(\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{r+s}, \ldots, d_n) \in G_n \), where \(n - r - 1 \geq d_1 \geq \cdots \geq d_{r-1} \geq d_r = d_{r+1} = \cdots = d_{d_r} = d_{r+1} = \cdots = d_{d_r + 1} \geq d_{d_r + 2} \geq \cdots \geq d_n \geq r \geq 1 \) and \(d_{r+s} = r + s - 1 \). Then \(\pi \) is potentially \(A_{r,s} \)-graphic.

Proof. By Proposition 2.4, we only need to prove that the type 1 criteria sequences \(\pi'' \) is graphic. It is easy to see from the definition of \(\pi'' \) that \(\sigma(\pi'') \) is even, \(d^{(r)}_{r+i} = \cdots = d^{(r)}_{r+i} = s - 1 \) and \(s \leq d^{(r)}_{r+i} \leq r + s - 1 \). Denote \(t_i = \max \{t \in \{1, \ldots, n\} : d_{r+i} \geq r + s - 1 - i\} \) for \(0 \leq i \leq r \).

First, we prove the claim: For \(1 \leq k \leq r \), if \(d^{(k)}_{r+i} = r + s - i - 1 \) \((0 \leq i \leq k - 1)\), then \(d^{(k)}_{r+i} = r + s - i - 1 \) \((0 \leq i \leq k - 1)\). Use induction on \(k \). If \(k = 1 \), then by \(d_1 \geq \cdots \geq d_r = d_{r+1} = \cdots = d_{d_r} = d_{r+1} = \cdots = d_{d_r + 1} \), we have \(d^{(1)}_{r+i} = r + s - 1 - i \) for \(1 \leq i \leq r \). Now assume the claim holds for \(k - 1 \). We will prove it holds for \(k \). Since \(d^{(k-1)}_{r+i} = r + s - i - 1 \) \((0 \leq i \leq k - 1)\), we have \(d^{(k-1)}_{r+i} = r + s - i - 1 \) \((0 \leq i \leq k - 1)\). Then by the induction hypothesis, \(d^{(k)}_{r+i} = r + s - i - 1 \) \((0 \leq i \leq k - 1)\). Hence \(d^{(k)}_{r+i} = r + s - i - 1 \) \((0 \leq i \leq k - 1)\). Thus, the claim holds for \(k \).

Now suppose that \(d^{(r)}_{r+i} = r + s - i - 1 \) \((0 \leq i \leq r - 1)\). Denote \(k_0 = \lceil \frac{r + s - 1}{r} \rceil \). If \(d_{r+i+k_0} \leq r + s - i - 3 \) \((0 \leq i \leq r - 1)\), then by \(d_{r+i+k_0} = d_{r+i+k_0} = \cdots = d_{r+i+k_0} = d_{r+i+k_0} = \cdots = d_{r+i+k_0} \), we have \(s + k_0 + 1 \geq d_{i} \geq d_{i-3} \). Moreover, for \(t \geq k_0 + 1 \), \(r + s - i - 3 \geq d_{r+i+k_0} = d^{(1)}_{r+i+k_0} = d^{(2)}_{r+i+k_0} = \cdots = d^{(r)}_{r+i+k_0} \), \((r + s - 1 - (r + s - i - 2)) \geq i \geq 0 \) contradicts. Hence \(d_{r+i+k_0} = \cdots = d_{r+i+k_0} > r + s - i - 2 \). Then \(t_{i+1} \geq k_0 + 1 \). By the claim of \(d^{(r)}_{r+i+k_0} = r + s - i - 2 \) \((0 \leq i \leq r - 1)\).

If \(r = 2 \), then \(\pi'' \) satisfies \(d^{(2)}_0 = \cdots = d^{(2)}_{s+1} = s - 1 \) and \(s \leq d^{(2)}_{s+1} = s + 1 \). Assume \(d^{(2)}_{s+1} = s + 1 \). Then \(i = 0, x_0 = 0 \geq 3 \) and \(d^{(2)}_{s+3} \geq s \). If \(s = 2 \), then it is easy to verify
that π''_2 is graphic. If $s \geq 3$, then the rearrangement sequence $\pi''_3 = (d_{2}^{(2)}, \ldots, d_{n}^{(2)})$ of π''_3 satisfies $d_{2}^{(2)} = s + 1, d_{2+s+1}^{(2)} \geq s - 1$ and $s + 3 \geq \frac{1}{4}((s+3-1+1)^2 - 1)$. By Lemma 2.5, π''_3 is graphic. Now assume $d_{2+s}^{(2)} = s$. Then $i = 1, x_0 + 1 \geq 2$ and $d_{2+s+i}^{(2)} \geq s - 1$. Clearly, π''_3 satisfies $d_{3}^{(2)} = s, d_{2+s+i}^{(2)} \geq s - 1$ and $s + 2 \geq \frac{(s+2-1+1)^2}{4(s-1)}$. By Lemma 2.5, π''_3 is also graphic. If $r = 3$, then by using the similar way, we can prove that π''_3 is graphic. Now assume $r \geq 4$. If $i = r - 1$ or $i = r - 2$, similar to above discussion, π''_r is graphic. If $0 \leq i \leq r - 3$, then $r + s - 1 - i = d_{r+i}^{(r)} \geq \cdots \geq d_{r+s+i}^{(r)} \geq r + s - i \geq 2 \geq s$ and $x_0 \geq \frac{(r-1)^2}{r+1}$. If $s \leq r - 2$, then $(i + 1)[\frac{(r+s-1-i+r+s-2-i)^2}{4(r+s-2-i)} - 1] \leq (r + s - i)(i + 1) \leq (r - 2)(r + 1) \leq r(r - 1)$, i.e., $x_0 + 1 \leq \frac{(r-1)^2}{r+1} \leq \frac{(r+s-1-i+r+s-2-i)^2}{4(r+s-2-i)}$. By Lemma 2.5, π''_r is graphic. If $s \geq r - 1$, then $(i + 1)[\frac{(r+s-1-i+r+s-2-i)^2}{4(r+s-2-i)} - 1] = \frac{(r+s)^2}{4(r-1)} + (i+1)(r-i-1) \leq \frac{(r+2)^2}{2(r-2)} + \frac{r^2}{4} \leq r(r-1)$, i.e., $\frac{(r-1)^2}{r+1} + s \leq \frac{(r+s-1-i+r+s-2-i)^2}{4(r+s-2-i)}$. By Lemma 2.5, π''_r is also graphic. □

The following Theorems are our main results in this section.

Theorem 2.9. Let $\pi = (d_1, \ldots, d_r, d_{r+1}, \ldots, d_{r+s}, \ldots, d_n) \in G_n$, where $d_{r+s} \geq r + s - 1$ and $d_n \geq r$. Then π is potentially $B_{r,s}$-graphic.

Proof. Use induction on $r + s$. If $r = 1$ (resp. $s = 1$), then $d_1 \geq s$ (resp. $d_{r+1} \geq r$). Since the sequence π' obtained by laying off d_1 (resp. d_{r+1}) from π is graphic, π is potentially $B_{1,s}$-graphic (resp. $B_{r,1}$-graphic). Now assume the theorem holds for $r + s - 1$ and $r + s \geq 2$. We will prove by using induction on n the theorem holds for $r + s$. If $n = r + s$, then $\pi = ((r + s - 1) + s)$, where $(r + s - 1)$ means that π has exactly $r + s$ terms from $r + s - 1$. Clearly, π is potentially $B_{r,s}$-graphic. Suppose that the theorem holds for $n - 1 \geq r + s$, and $\pi = (d_1, \ldots, d_n) \in G_n$, where $d_{r+s} \geq r + s - 1$ and $d_n \geq r$. If $d_{r+s} \geq r + s$, then the sequence π' obtained by laying off d_{r+s} from π satisfies $d_{r+s} \geq r + s - 1$ and $d_{n-r+s} \geq r$. By the induction hypothesis and Lemma 2.7, π' and π''_r both are potentially $B_{r,s}$-graphic. If $d_{r+s} = r + s - 1$ and $d_n \geq r + s$, then the sequence π' obtained by laying off d_{r+s} from π satisfies $d_{r+s} = r + s - 1$ and $d_n \geq r + s - 2$ and $d_{r+s-1} \geq r$. By the induction hypothesis, π' is potentially $B_{r,s-1}$-graphic, hence π is potentially $B_{r,s}$-graphic.

Now assume that $d_1 = \cdots = d_{r+s} = r + s - 1$. If $d_1 \geq n - r$, or there exists $t \in \{r+s, \ldots, r+d_1\}$ such that $d_t > d_{t+1}$, then π''_3 satisfies $n - 2 \geq d_{d_1}^{(1)} \geq \cdots \geq d_{d_1}^{(1)} \geq d_{d_1}^{(1)} = \cdots = d_{d_1}^{(1)} = d_{r+s-1}^{(1)} \geq d_{r+s-2}^{(1)} \geq \cdots \geq d_{n}^{(1)} \geq r - 1$, where $d_{d_1}^{(1)} = r + s - 2$. It is easy to verify by Theorem 2.1 that $\pi''_3 \in G_{n-1}$. Hence by the induction hypothesis and Lemma 2.6, π''_3 is potentially $A_{r-1,s}$-graphic. Thus, π is potentially $A_{r,s}$-graphic.

Finally, we further assume that $n - r - 1 \geq d_1 \geq \cdots \geq d_r = d_{r+1} = \cdots = d_{r+s} = r + s - 1$. By Lemma 2.8, π is potentially $A_{r,s}$-graphic. □

The proofs of the following Theorems 2.10 and 2.11 involve applying Theorems 2.9, 2.1 and induction on $r + s$, and verifying π'' being graphic, the details are technical and lengthy, and are omitted here.
Theorem 2.10. Let $\pi=(d_1, \ldots, d_r, d_{r+1}, \ldots, d_n) \in G_n$, where $d_r \geq r + s - 1$, $d_{r+s} \leq r + s - 2$ and $d_n \geq r$. If $n \geq (r+2)(s-1)$, then π is potentially $B_{r,s}$-graphic.

Theorem 2.11. Let $s \geq r \geq 3$, $n \geq (r+s)^2/4 + (r+s)/2$, and $\pi=(d_1, \ldots, d_r, d_{r+1}, \ldots, d_r+\cdots+d_n) \in G_n$, where $d_r \leq r+s-2$ and $d_n \geq r$. If there exists $t \in \{1,2,\ldots,\left\lceil r/2 \right\rceil - 1\}$ such that $d_{r+t} \geq r+s-1-t$ and $d_{r+t} \geq r+t$, then π is potentially $K_{r,s}$-graphic.

3. The numbers $\sigma(K_{r,r}, n)$ for $r=3,4$

Lemma 3.1. Let $\pi=((n-1)^{-1}, (2r-2)^{2}, d_{r+1}, \ldots, d_n) \in G_n$, where $n \geq 2r$, $d_n \geq r$. Denote $\pi^*=(d_{r+2}, \ldots, d_n)=(d_{r+2} - r - 1, d_{r+3} - r - 1, \ldots, d_{r+t} - r - 1, d_{r+t+1} - r + 1, \ldots, d_n - r + 1)$. If π^* is graphic, then π is potentially $K_{r,r}$-graphic.

Proof. Suppose that H is a realization of π^* with vertex set $V(H) = \{v_{r+2}, v_{r+3}, \ldots, v_{r+t}\}$, where the degree of v_{r+i} is d_{r+i}^*. Adding vertices $v_1, v_2, \ldots, v_{r+1}$ to H in the following way: for any $i=1,2,\ldots,r-1$, join v_i to v_j, $j=i+1,\ldots,n$, and for $i=r, r+1$, join v_i to v_j, $j=r+2,\ldots,2r$. We obtain a realization G of π. Clearly, the subgraph of G induced by $\{v_1, v_2, \ldots, v_{2r}\}$ contains a $r \times r$ bipartite complete graph $K_{r,r}$. □

The sequence π^* is called the type 2 criteria sequence of π.

Theorem 3.2. Let $n \geq 6$. Then $\sigma(K_{3,3}, n) \geq \begin{cases} 5n - 3 & \text{if } n \text{ is odd,} \\ 5n - 4 & \text{if } n \text{ is even.} \end{cases}$

Proof. If n is odd, then $\pi=(((n-1)^2, 4^3, 3^{n-5})$ is clearly graphic and is not potentially $K_{3,3}$-graphic. Thus $\sigma(K_{3,3}, n) \geq \sigma(\pi) + 2 = 5n - 3$.

If n is even, then $\pi=(((n-1)^2, 4^3, 3^{n-6}, 2^1)$ is also graphic, but not potentially $K_{3,3}$-graphic. Thus $\sigma(K_{3,3}, n) \geq \sigma(\pi) + 2 = 5n - 4$. □

Lemma 3.3. Let $n \geq 10$ and $\pi=(d_1, d_2, \ldots, d_n) \in G_n$, where $d_3 \geq 5$ and $d_n \geq 3$. Then π is potentially $K_{3,3}$-graphic.

Proof. The lemma follows from Theorems 2.10 and 2.11. □

Lemma 3.4. Let $n \geq 9$ and $\pi=(d_1, d_2, \ldots, d_n) \in G_n$. If $d_3=4$, $d_n \geq 3$ and $\sigma(\pi) \geq 5n - 4$, then π is potentially $K_{3,3}$-graphic.

Proof. It is easy to see that $\pi=(d_1, d_2, 4^4, d_7, \ldots, d_n)$. If $d_1=d_2=n-1$, then the type 2 criteria sequence π^* of π is $(0^2, d_3 - 2, \ldots, d_n - 2)$, where $2 \geq d_7 \geq 3 \geq \cdots \geq d_n - 2 \geq 1$. In addition, $\sigma(\pi^*)$ is even. So π^* is graphic. By Lemma 3.1, π is potentially $K_{3,3}$-graphic. If $d_2 \geq n-2$, then $d_1=4$. Since $d_1 + d_2 \geq 5n - 4 - 4(n-2) = n+4$, the type 1 criteria sequence π^*_1 of π satisfies $d_3^1 = d_3, d_4^1 = d_4, \ldots, d_5^1 = d_5, d_6^1 = d_6, l=d_7^1 = \cdots = d_n^1 = l-1$, where $2 \leq l \leq 3$. Moreover, $\sigma(\pi^*_1)$ is even. Hence π^*_1 is graphic. Thus by Proposition 2.4, π is potentially $K_{3,3}$-graphic. □
Theorem 3.5. \(\sigma(K_{3,3}, 6) = 26, \ \sigma(K_{3,3}, 7) = 34, \ \sigma(K_{3,3}, 8) = 40, \ \sigma(K_{3,3}, 9) = 44 \) and \(\sigma(K_{3,3}, 10) = 48. \)

Proof. By Theorem 3.2, \(\sigma(K_{3,3}, 6) \geq 26. \) Clearly, the sequences \(\pi_1 = (6^2, 4^5), \ \pi_2 = (7^2, 4^6), \ \pi_3 = (8^3, 4^5, 2^1) \) and \(\pi_4 = (9^2, 4^6, 2^3) \) are graphic, but not potentially \(K_{3,3} \)-graphic. Thus \(\sigma(K_{3,3}, 7) \geq \sigma(\pi_1) + 2 = 34, \ \sigma(K_{3,3}, 8) \geq \sigma(\pi_2) + 2 = 40, \ \sigma(K_{3,3}, 9) \geq \sigma(\pi_3) + 2 = 44 \) and \(\sigma(K_{3,3}, 10) \geq \sigma(\pi_4) + 2 = 48. \)

Suppose that \(\pi = (d_1, d_2, \ldots, d_n) \) is graphic and \(\sigma(\pi) \geq 26. \) If \(G \) realizes \(\pi, \) then \(13 \leq e(G) \leq 15. \) Hence \(G \) is obtained from \(K_6 \) by deleting at most two edges. Clearly, \(G \) contains \(K_{3,3}. \) Hence \(\sigma(K_{3,3}, 6) \leq 26. \) Similarly, we can prove that \(\sigma(K_{3,3}, 7) \leq 34, \ \sigma(K_{3,3}, 8) \leq 40, \ \sigma(K_{3,3}, 9) \leq 44 \) and \(\sigma(K_{3,3}, 10) \leq 48. \) The proof is completed. \(\Box \)

Theorem 3.6. If \(n \geq 11, \) then \(\sigma(K_{3,3}, n) = \begin{cases} 5n - 3 & \text{if } n \text{ is odd}, \\ 5n - 4 & \text{if } n \text{ is even}. \end{cases} \)

Proof. By Theorem 3.2, it is enough to prove that, if \(n \geq 11, \) and a graphic sequence \(\pi = (d_1, d_2, \ldots, d_n) \) satisfies

\[
\sigma(\pi) \geq \begin{cases} 5n - 3 & \text{if } n = 2m + 1, \\ 5n - 4 & \text{if } n = 2m + 2, \end{cases}
\]

then \(\pi \) is potentially \(K_{3,3} \)-graphic. Apply induction on \(m \geq 5. \) Assume that \(m = 5 \) and \(n = 2m + 1 = 11, \) then \(\pi = (d_1, d_2, \ldots, d_{11}) \) satisfies \(\sigma(\pi) \geq 5 \times 11 - 3 = 52. \) If \(d_{11} \leq 2, \) then the sequence \(\pi' \) of \(\pi \) obtained by laying off \(d_{11} \) from \(\pi \) satisfies \(\sigma(\pi') = \sigma(\pi) - 2d_{11} \geq 52 - 4 = 48. \) Since \(\sigma(K_{3,3}, 10) = 48, \) \(\pi' \) and \(\pi \) both are potentially \(K_{3,3} \)-graphic. So we can assume that \(d_{11} \geq 3. \) Then by Lemmas 3.3 and 3.4, \(\pi \) is potentially \(K_{3,3} \)-graphic. Now assume that \(m = 5 \) and \(n = 2m + 2 = 12. \) Similarly, we can prove that \(\pi \) is also potentially \(K_{3,3} \)-graphic. Thus the claim holds for \(m = 5. \) Now assume that the claim holds for \(m - 1 \geq 5. \) We will prove that the claim holds for \(m. \) Assume that \(n = 2m + 1 \) and \(\sigma(\pi) \geq 5n - 3. \) If \(d_n \leq 3, \) then for the sequence \(\pi' \) obtained by laying off \(d_n \) from \(\pi, \) we have \(\sigma(\pi') \geq \sigma(\pi) - 2d_n \geq 5n - 3 - 6 = 5(n - 1) - 4, \) where \(n - 1 = 2(m - 1) + 2. \) By the induction hypothesis, \(\pi' \) and \(\pi \) are potentially \(K_{3,3} \)-graphic. If \(d_n \geq 4, \) then by Lemmas 3.3 and 3.4, \(\pi \) is potentially \(K_{3,3} \)-graphic. Now assume that \(n = 2m + 2 \) and \(\sigma(\pi) \geq 5n - 4. \) Similarly, we can prove that \(\pi \) is also potentially \(K_{3,3} \)-graphic. This shows that the claim holds for \(m \geq 5. \) \(\Box \)

Theorem 3.7. Let \(n \geq 8. \) Then \(\sigma(K_{4,4}, n) \geq 8n - 16. \)

Proof. It is easy to verify that \(\pi = ((n - 1)^3, 6^1, 5^{n-5}, 4^1) \) is graphic, but not potentially \(K_{4,4} \)-graphic. Thus \(\sigma(K_{4,4}, n) \geq \sigma(\pi) + 2 = 8n - 16. \) \(\Box \)

Lemma 3.8. Let \(n \geq 8 \) and \(\pi = (d_1, d_2, \ldots, d_n) \in G_n, \) where \(d_4 \geq 7 \) and \(d_n \geq 5. \) Then \(\pi \) is potentially \(K_{4,4} \)-graphic.

Proof. If \(d_1 = d_2 = d_3 = n - 1, \) clearly \(\pi \) is potentially \(K_{4,4} \)-graphic. So we may assume that \(d_3 \leq n - 2. \) Use induction on \(n. \) If \(n = 8, \) then \(d_1 = d_2 = d_3 = d_4 = 7. \) Obviously, \(\pi \) is
potentially $K_{4,4}$-graphic. Now suppose that the lemma holds for $n-1 (n \geq 9)$, and that $\pi = (d_1, \ldots, d_n)$ is graphic, where $d_4 \geq 7$ and $d_n \geq 5$.

If $d_4 \geq 8$ and $d_5 \geq 6$, then the sequence π' obtained by laying off d_4 from π satisfies $d'_4 \geq 7$ and $d'_n \geq 5$. By the induction hypothesis, π' and π are potentially $K_{4,4}$-graphic.

If $d_4 \geq 8$ and $d_5 = \cdots = d_n = 5$, then the type 1 criteria sequence π''_1 of π satisfies $d''_5 = \cdots = d''_8 = 1$ and $l = d''_9 \geq \cdots \geq d''_n \geq l-1$, where $1 \leq l \leq 5$. If $1 \leq l \leq 2$, clearly π''_1 is graphic. If $3 \leq l \leq 5$, then the rearrangement sequence $\pi''_1^{\overline{l}}$ of π''_1 satisfies $d''_5^{\overline{l}} = l$ and $d''_n^{\overline{l}} = 1$.

It is easy to see that, if $l = 5$, then $n - 4 \geq 20 \geq (5 + 1 + 1)^2/4$; if $l = 4$, then $n - 4 \geq 9 \geq (4 + 1 + 1)^2/4$; if $l = 3$, then $n - 4 \geq 7 \geq (3 + 1 + 1)^2/4$.

By Lemma 2.5, π''_4 is also graphic. Thus π is potentially $K_{4,4}$-graphic. Now suppose $d_4 = 7$. If $d_5 = 7$, then π''_4 satisfies $d''_5 = \cdots = d''_8 = 3$ and $l = d''_9 \geq \cdots \geq d''_n \geq l-2$, where $3 \leq l \leq 7$.

If $3 \leq l \leq 4$, obviously π''_4 is graphic. If $5 \leq l \leq 7$, then $\pi''_4^{\overline{l}}$ satisfies $d''_5^{\overline{l}} = l$ and $d''_n^{\overline{l}} = 3$. If $l = 7$, then $n - 4 \geq 16 \geq (7 + 3 + 1)^2/4 \times 3$. If $l = 6$, then $n - 4 \geq 10 \geq (6 + 3 + 1)^2/4 \times 3$. If $l = 5$, then $n - 4 \geq 7 \geq (5 + 3 + 1)^2/4 \times 3$. By Lemma 2.5, $\pi''_4^{\overline{l}}$ is graphic. Hence π is potentially $K_{4,4}$-graphic. Similarly, we can prove that π is potentially $K_{4,4}$-graphic if $5 \leq d_9 \leq 6$. □

Lemma 3.9. Let $n \geq 8$, $\pi = (d_1, \ldots, d_n) \in G_n$, where $d_4 = 6$, $d_n \geq 5$ and $\sigma(\pi) \geq 8n - 16$. If $\pi \neq (9^3, 6^2, 5^3)$ and $(8^3, 6^2, 5^4)$, then π is potentially $K_{4,4}$-graphic.

Proof. It is easy to determine by $\sigma(\pi) \geq 8n - 16$ that $\pi = (d_1, d_2, d_3, 6^2, d_6, \ldots, d_n)$. If $n = 8$, then $\pi = (7^3, 6^4, 5^1; 7^3, 6^2, 5^3; 6^6; 7^1, 6^6, 5^1; 7^2, 6^4, 5^2)$ or $(7^2, 6^3)$. Since the type 1 criteria sequences of $(6^6; 7^1, 6^6, 5^1; 7^2, 6^4, 5^2)$ are graphic sequences $(2^4), (2^4), (2^2, 1^2)$ and (2^4), respectively, and the type 2 criteria sequences of $\pi = (7^3, 6^4, 5^1)$ and $(7^3, 6^2, 5^3)$ are graphic sequences $(1^2, 0^1, 2^2)$ or $(1^3, 3^1, 2^1)$. Hence by Proposition 2.4 and Lemma 3.1, π is potentially $K_{4,4}$-graphic. Now assume $n \geq 9$. Consider the following cases:

Case 1: $d_1 = d_2 = d_3 = n - 1$. If $n \geq 11$, then the type 2 criteria sequence π^* satisfies $1 \geq d_6 - 5 \geq d_7 - 5 \geq d_8 - 5 \geq 0$ and $d_9 = \cdots = d_n = 3 = 2$ if $d_9 = 5$, or $d_6 - 5 = d_7 - 5 = d_8 - 5 = 1$ and $3 \geq d_3 - 3 \geq \cdots \geq d_n = 3 \geq 2$ if $d_9 = 6$. By $\sigma(\pi^*)$ is even, π^* is graphic.

If $n = 10$, then $\pi = (9^3, 6^4, 5^1)$ or $(9^3, 6^6, 5^1)$, and the type 2 criteria sequence of π is graphic sequence $(1^2, 0^1, 2^2)$ or $(1^3, 3^1, 2^1)$. Hence by Proposition 2.4, π is potentially $K_{4,4}$-graphic. Clearly the type 2 criteria sequences of π is also graphic sequences $(1^2, 0^1, 2^1)$ or $(1^3, 3^1)$.

Case 2: $d_1 \leq n - 2$. Since $d_1 + d_2 + d_3 + 6 \geq 8n - 16 - 6(n - 4) = 2n + 8$, i.e., $d_1 + d_2 + d_3 + 6 \geq 2n - 8 = (n - 8) + 8$, the type 1 criteria sequence π''_4 of π satisfies $d''_5 = \cdots = d''_8 = 2$ and $4 \geq d''_9 \geq \cdots \geq d''_n \geq 3$ when $d_9 = 6$, or $2 \geq d''_9 \geq \cdots \geq d''_n \geq 1$ and $3 \geq d''_9 \geq \cdots \geq d''_n \geq 2$ when $d_9 = 5$. It is easy to follow from $\sigma(\pi''_4)$ being even that π''_4 is graphic. Hence by Proposition 2.4, π is potentially $K_{4,4}$-graphic. □

Theorem 3.10. $\sigma(K_{4,4}, 8) = 50$, $\sigma(K_{4,4}, 9) = 58$, $\sigma(K_{4,4}, 10) = 66$, and $\sigma(K_{4,4}, n) = 8n - 16$ for $n \geq 11$.

Proof. Firstly, it is easy to verify that the sequences $\pi=(7^3, 6^4, 3^1)$, $\pi=(8^3, 6^4, 4^2)$ and $\pi=(9^3, 6^2, 5^3)$ are graphic, but not potentially $K_{4,4}$-graphic. Hence, $\sigma(K_{4,4}, 8) \geq 50$, $\sigma(K_{4,4}, 9) \geq 58$ and $\sigma(K_{4,4}, 10) \geq 66$.

Next, assume that $\pi=(d_1, \ldots, d_n)$ is graphic, $\sigma(\pi) \geq 50$ and G realizes π. Then $25 \leq e(G) \leq 28$. Hence G is obtained by deleting at most three edges from K_8. Clearly G contains $K_{4,4}$ as its subgraph. Hence $\sigma(K_{4,4}, 8) \leq 50$. Similarly, we can prove that $\sigma(K_{4,4}, 9) \leq 58$ and $\sigma(K_{4,4}, 10) \leq 66$.

If $n \geq 11$, then by Theorem 3.7, $\sigma(K_{4,4}, n) \geq 8n-16$. Now assume that $\pi=(d_1, \ldots, d_n)$ is graphic and $\sigma(\pi) \geq 8n-16$. We use induction on $n \geq 11$ to prove that (\ast): π is potentially $K_{4,4}$-graphic. When $n=11$, $\sigma(\pi) \geq 72$. If $d_{11} \geq 5$, then by Lemmas 3.8 and 3.9, π is potentially $K_{4,4}$-graphic. If $d_{11} \leq 3$, or $d_{11}=4$ and $\sigma(\pi) \geq 74$, then the sequence π' obtained by laying off d_{11} from π satisfies $\sigma(\pi')=\sigma(\pi)-2d_{11} \geq 66=\sigma(K_{4,4}, 10)$. Hence, π' and π are potentially $K_{4,4}$-graphic. Now suppose $d_{11}=4$ and $\sigma(\pi)=72$. Since π is graphic, by Theorem 2.1, we have $d_7 \geq 5$. If $d_{10} \geq 5$, then the sequence π' obtained by laying off d_{11} from π satisfies $\sigma(\pi') \geq 64$. If $\pi' \neq (9^3, 6^2, 5^3)$, then by Lemmas 3.8 and 3.9, π' and π are potentially $K_{4,4}$-graphic. If $\pi'=(9^3, 6^2, 5^3)$, then $\pi=(10^3, 7^3, 6^2, 5^3)$ or $(10^3, 6^5, 4^4)$. If $\pi=(10^3, 7^3, 6^2, 5^3)$, clearly π is potentially $K_{4,4}$-graphic because $d_1=d_2=d_3=10$ and $d_4=7$. If $\pi=(10^3, 6^5, 4^4)$, then the type 2 criteria sequence of π is graphic sequence $(2^2, 1^2, 0^2)$. By Lemma 3.1, π is also potentially $K_{4,4}$-graphic. Thus we may further assume that $d_{10}=4$. By a similar way, we can prove that π is also potentially $K_{4,4}$-graphic.

Now suppose that (\ast) holds for $n-1 \geq 11$. We will prove that (\ast) holds for n. If $d_n \geq 5$, then by Lemmas 3.8 and 3.9, π is potentially $K_{4,4}$-graphic. If $d_n \leq 4$, then the sequence π' obtained by laying off d_n from π satisfies $\sigma(\pi') \geq \sigma(\pi)-8 \geq 8(n-1)-16$. By the induction hypothesis, π' and π both are potentially $K_{4,4}$-graphic. \[\square\]

Acknowledgements

The authors are grateful to the referee for his valuable comments and suggestions which yield the revised version of our article.

References

Combinatorics, Graph Theory, and Algorithms, Vol. 1, New Issues Press, Kalamazoo, Michigan, 1999,
pp. 387–400.
[10] D.J. Kleitman, D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and
factors, Discrete Math. 6 (1973) 79–88.
[12] Jiong-Sheng Li, Zi-Xia Song, The smallest degree sum that yields potentially P_k-graphic sequences,
[13] Jiong-Sheng Li, Zi-Xia Song, An extremal problem on the potentially P_k-graphic sequence, Discrete
[15] Jiong-Sheng Li, Jian-Hua Yin, The threshold for the Erdős, Jacobson and Lehel conjecture being true,
submitted for publication.