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Abstract

Continuing our previous work [Z.H. Guo, J.J. Sanz-Cillero, H.Q. Zheng, JHEP 0706 (2007) 030], large-NC techniques and partial wave
dispersion relations are used to discuss ππ scattering amplitudes. We get a set of predictions for O(p6) low-energy chiral perturbation theory
couplings. They are provided in terms of the masses and decay widths of scalar and vector mesons.
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1. Introduction

Chiral perturbation theory (χPT) is a powerful tool in the
study of low energy hadron physics. An important issue in
χPT is the determination of the values of low energy constants
(LECs), which are crucial to make predictions. In addition to
an exhaustive phenomenological discussions about the LECs,
Refs. [2] and [3] provided a deeper theoretical understanding.
In these papers, the authors constructed a phenomenological
Lagrangian including the heavy resonances, which were then
integrated out to predict the LECs at tree level in terms of the
resonance couplings.

In a previous paper [1], we obtained a generalization of the
KSRF relation [4], a new relation between resonance cou-
plings and a prediction for the chiral constants L2 and L3 [5]:

144πf 2Γ̄V

M̄3
V

+ 32πf 2Γ̄S

M̄3
S

= 1,
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9Γ̄V

M̄5
V

[αV + 6] + 2Γ̄S

3M̄5
S

[αS + 6] = 0,

L2 = 12πf 4 Γ̄V

M̄5
V

,

(1)L3 = 4πf 4
(

2Γ̄S

3M̄5
S

− 9Γ̄V

M̄5
V

)
,

where Γ̄R and M̄R stand, respectively, for the value of the R

resonance width and mass in the chiral limit. The parameter αR

is given by their O(m2
π ) correction in the ratio ΓR

M3
R

= Γ̄R

M̄3
R

[1 +
αR

m2
π

M̄2
R

+O(m4
π )].

No particular realization of the resonance Lagrangian was
considered in Ref. [1]. While in the Lagrangian approach one
has to pay attention to different realizations of the vector
fields [3], all our analyses only rely on general properties like
crossing symmetry and analyticity. Chiral symmetry was incor-
porated by matching chiral perturbation theory (χPT) at low
energies [6–8]. In Ref. [1], we found that the minimal reso-
nance chiral theory Lagrangian [2] was unable to fulfill the
high-energy constraints for the partial wave ππ -scattering am-
plitudes once the matching was taken up to order p4. Another
interesting finding is that in large NC limit the [1,1] Padé ap-
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proximation in SU(3) χPT for ππ scatterings means to neglect
the left-hand cuts contribution completely [9], but the under-
standing to the latter is very important to accept the σ meson
even in the non-linear realization of chiral symmetry [10]. How-
ever, in Ref. [1] the ππ scattering was only matched up to
O(p4). This Letter is devoted to extending the discussion up
to O(p6).

2. Dispersive analysis

The ππ scattering amplitude T (s, t, u) admits a decomposi-
tion into partial waves of definite angular momentum J [11],

(2)T (s, t, u) =
∑
J

32π(2J + 1)PJ (cos θ)TJ (s),

where every TJ (s) accepts a once-subtracted dispersion relation
of the form,

TJ (s) − TJ (0)

(3)= s

π

0∫
−∞

ds′ ImTJ (s′)
s′(s′ − s)

+ s

π

∞∫

4m2
π

ds′ ImTJ (s′)
s′(s′ − s)

.

In general, we will work with amplitudes and partial-waves
with definite isospin, T (s, t, u)I and T I

J (s), respectively. We
however quite often in the following omit the indices I, J for
simplicity when no confusion is caused.

At large-NC , the resonances become narrow-width states,
allowing the recovering of the right-hand cut contribution in
Eq. (3). In the previous paper [1], we have demonstrated that
the PKU parametrization of S matrix [12] will give the same
results in large NC limit as Eq. (3). The s-channel exchange of
a resonance R with proper quantum numbers IJ provides for
s > 0 the absorptive contribution,

(4)ImT
I,R
J (s) = π

MRΓR

ρR

δ
(
s − M2

R

)
,

where ρR =
√

M2
R−4m2

π

M2
R

and the subscript R denote the different

resonances.
Crossing symmetry relates the right to the left-hand cut

through the expression [11],

ImL T I
J (s) = 1 + (−1)I+J

s − 4m2
π

∑
J ′

∑
I ′

(2J ′ + 1)Cst
II ′

×
4m2

π−s∫

4m2
π

dt PJ

(
1 + 2t

s − 4m2
π

)

(5)× PJ ′
(

1 + 2s

t − 4m2
π

)
ImR T I ′

J ′ (t),

with Pn(x) the Legendre polynomials. The crossing matrix is
also given by [11]

(6)C
(st)

II ′ =
⎛
⎝

1/3 1 5/3

1/3 1/2 −5/6

⎞
⎠ .
1/3 −1/2 1/6
Hence, the imaginary part of T I
J (s) for s < 0 produced by the

crossed-channel resonance (R) exchange is given by

ImT
I,L
J (s)

= θ
(−s − M2

R + 4m2
π

) × 1 + (−1)I+J

s − 4m2
π

(2J ′ + 1)Cst
II ′

(7)

× PJ

(
1 + 2M2

R

s − 4m2
π

)
PJ ′

(
1 + 2s

M2
R − 4m2

π

)
πMRΓR

ρR

.

Putting the different imaginary parts together, it is then pos-
sible to calculate the right- and left-hand cut integrals:

(8)T sR(s) = s

π

∞∫

4m2
π

ds′ ImT R(s′)
s′(s′ − s)

,

(9)T tR(s) = s

π

0∫
−∞

ds′ ImT R(s′)
s′(s′ − s)

,

where these expressions only depend on the mass and width
of the resonances. The precise results for T sR and t tR , with
R = S,V , are given in Ref. [1].

We consider now the low energy limit where the ππ scatter-
ing is described by χPT which determines the left-hand side of
Eq. (3). For convenience, the dispersion relation is rewritten in
the way,

(10)T χPT(s) − T χPT(0) = T tR(s) + T sR(s),

where the l.h.s. only contains χPT couplings and the r.h.s. only
contains resonances parameters. Comparing the different terms
of the chiral expansion on both sides, one gets the low-energy
constants (LECs) in terms of parameters of resonances and
some other useful relations.

The ππ scattering amplitude is determined by the function
A(s, t, u),

A
[
πa(p1) + πb(p2) → πc(p3) + πd(p4)

]
= δabδcdA(s, t, u) + δacδbdA(t, u, s)

(11)+ δadδbcA(u, t, s),

which is given up to O(p4) in Refs. [7,13], and up to O(p6) in
Refs. [14,15]. Since we are interested in the mπ dependence of
the amplitude, we express the amplitude explicitly in terms of
LECs, momenta and masses:

A(s, t, u)

= s − m2
π

f 2
+ 16m4

π

f 4

(
L2 + L3 + L8 − 1

2
L5

)

− 16m2
πs

f 4
(L2 + L3) + 2s2

f 4
(2L3 + 3L2) + 2(t − u)2

f 4
L2

×16m6
π

f 6

(−8L2
5 + 32L8L5 − 32L2

8

) + m6
π

f 6
(r1 + 2rf )
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+ m4
πs

f 6
(r2 − 2rf ) + m2

π s2

f 6
r3

(12)+ m2
π (t − u)2

f 6
r4 + s3

f 6
r5 + s(t − u)2

f 6
r6,

with s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2 = 4m2

π −
s − t , and where we have used the chiral expansion of the pion
decay constant fπ up to O(p6) [14,16]:

fπ = f

[
1 + 4L5m

2
π

f 2
+ (

32L2
5 − 64L8L5 + rf

)m4
π

f 4

(13)+O
(
m6

π

)]
.

In both expressions, only the leading terms in the 1/NC expan-
sion are kept. Following the notation in the former work [1],
the large-NC O(p4) SU(2) LECs have been expressed in terms
of SU(3) constants [8,17]: l1 = 4L1 + 2L3, l2 = 4L2, l3 =
−8L4 − 4L5 + 18L6 + 8L8, l4 = 8L4 + 4L5, together with the
large-NC relations L1 = L2/2, L4 = L6 = 0.

The isospin amplitudes are given by the combinations

T (s, t, u)I=0 = 3A(s, t, u) + A(t, s, u) + A(u, s, t),

T (s, t, u)I=1 = A(t, s, u) − A(u, s, t),

(14)T (s, t, u)I=2 = A(t, s, u) + A(u, s, t).

Finally, in order to get amplitudes with definite angular momen-
tum, one performs the partial wave projection,

(15)

T (s)IJ = 1

32π

1

s − 4m2
π

0∫

4m2
π−s

PJ

(
1 + 2t

s − 4m2
π

)
T (s, t, u)I dt.

This yields the χPT results for different partial-wave ampli-
tudes up to O(p6):

1. IJ = 00 channel

l.h.s. = s

16πf 2
− 10L2 + 5L3

3πf 4
m2

πs

− −3r2 + 8r3 + 32r4 + 36r5 + 4r6 + 6rf

48πf 6
m4

π s

+ 25L2 + 11L3

24πf 4
s2 + 11r3 + 17r4 + 18r5 + 10r6

96πf 6
m2

πs2

(16)+ 15r5 − 5r6

192πf 6
s3,

2. IJ = 11 channel

l.h.s. = s

96πf 2
+ L3

6πf 4
m2

π s

+ 5r2 + 40r3 − 80r4 + 216r5 − 24r6 − 10rf

480πf 6
m4

πs

+ −L3

24πf 4
s2 − 5r3 − 15r4 + 54r5 + 14r6

480πf 6
m2

π s2

(17)+ 3r5 + 3r6

320πf 6
s3,
3. IJ = 20 channel

l.h.s. = − s

32πf 2
− 8L2 + L3

6πf 4
m2

πs

− 3r2 + 16r3 + 40r4 + 72r5 + 56r6 − 6rf

96πf 6
m4

π s

+ 5L2 + L3

12πf 4
s2 + r3 + 7r4 + 9r5 + 17r6

48πf 6
m2

π s2

(18)− 3r5 + 11r6

192πf 6
s3,

where l.h.s. means the left-hand side of Eq. (10).

For the r.h.s. of Eq. (10), a similar chiral expansion is per-
formed up to O(p6):

1. IJ = 00 channel

T sR = ΓS

M3
S

s + 2ΓS

M5
S

m2
πs + 6ΓS

M7
S

m4
πs + ΓS

M5
S

s2

(19)+ 2ΓS

M7
S

m2
πs2 + ΓS

M7
S

s3 +O
(
p8),

T tR = −ΓS

3M3
S

s − 22ΓS

9M5
S

m2
πs − 122ΓS

9M7
S

m4
πs + 9ΓV

M3
V

s

+ 74ΓV

M5
V

m2
π s + 446ΓV

M7
V

m4
πs + 2ΓS

9M5
S

s2 + 22ΓS

9M7
S

m2
πs2

− ΓS

6M7
S

s3 − 4ΓV

M5
V

s2 − 46ΓV

M7
V

m2
π s2

(20)+ 5ΓV

2M7
V

s3 +O
(
p8),

2. IJ = 11 channel

T sR = ΓV

M3
V

s + 2ΓV

M5
V

m2
πs + 6ΓV

M7
V

m4
πs + ΓV

M5
V

s2

(21)+ 2ΓV

M7
V

m2
πs2 + ΓV

M7
V

s3 +O
(
p8),

T tR = ΓS

9M3
S

s + 10ΓS

9M5
S

m2
πs + 326ΓS

45M7
S

m4
πs + ΓV

2M3
V

s

+ ΓV

M5
V

m2
πs − 37ΓV

5M7
V

m4
π s − ΓS

9M5
S

s2 − 64ΓS

45M7
S

m2
πs2

+ ΓS

10M7
S

s3 + ΓV

2M5
V

s2 + 38ΓV

5M7
V

m2
πs2

(22)− 11ΓV

20M7
V

s3 +O
(
p8),

3. IJ = 20 channel

(23)T sR = 0,

T tR = − ΓS

3M3
S

s − 22ΓS

9M5
S

m2
πs − 122ΓS

9M7
S

m4
π s − 9ΓV

2M3
V

s

− 37ΓV

M5
V

m2
π s − 223ΓV

M7
V

m4
πs + 2ΓS

9M5
S

s2 + 22ΓS

9M7
S

m2
πs2
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− ΓS

6M7
S

s3 + 2ΓV

M5
V

s2 + 23ΓV

M7
V

m2
πs2

(24)− 5ΓV

4M7
V

s3 +O
(
p8),

where only the lightest multiplet of vector and scalar resonances
is taken into account, respectively denoted by the subscripts V

and S.

The masses MR and decay widths ΓR in Eqs. (19)–(24) de-
note the physical ones at large-NC . They carry an implicit m2

π

dependence that we parameterize in the form

(25)
ΓR

M5
R

= Γ̄R

M̄5
R

[
1 + βR

m2
π

M̄2
R

+O
(
m4

π

)]
,

(26)
ΓR

M3
R

= Γ̄R

M̄3
R

[
1 + αR

m2
π

M̄2
R

+ γR

m4
π

M̄4
R

+O
(
m6

π

)]
,

where M̄R and Γ̄R are the chiral limit of MR and ΓR , respec-
tively. Notice that Γ̄R and M̄R were denoted as M

(0)
R and Γ

(0)
R

in Ref. [1].
After expanding the resonance contributions on the r.h.s. of

Eq. (10) in powers of s and m2
π , it is possible to perform a

matching with χPT. Ref. [1] was devoted to the analysis of
the constraints derived from χPT at O(p2) and O(p4). The
present work studies the relations that stem from the matching
at O(p6)

1. IJ = 00 channel

3r2 − 8r3 − 32r4 − 36r5 − 4r6 − 6rf

48πf 6

= Γ̄S

M̄7
S

(
−68

9
− 4βS

9
+ 2γS

3

)

(27)+ Γ̄V

M̄7
V

(446 + 74βV + 9γV ),

11r3 + 17r4 + 18r5 + 10r6

96πf 6

(28)= Γ̄S

M̄7
S

(
40

9
+ 11βS

9

)
+ Γ̄V

M̄7
V

(−46 − 4βV ),

(29)
15r5 − 5r6

192πf 6
= 5Γ̄S

6M̄7
S

+ 5Γ̄V

2M̄7
V

.

2. IJ = 11 channel

5r2 + 40r3 − 80r4 + 216r5 − 24r6 − 10rf

480πf 6

= Γ̄S

M̄7
S

(
326

45
+ 10βS

9
+ γS

9

)

(30)+ Γ̄V

M̄7
V

(
−7

5
+ 3βV + 3γV

2

)
,

−5r3 + 15r4 − 54r5 − 14r6

480πf 6

(31)= Γ̄S

M̄7

(
−βS

9
− 64

45

)
+ Γ̄V

M̄7

(
48

5
+ 3βV

2

)
,

S V
(32)
3r5 + 3r6

320πf 6
= Γ̄S

10M7
S

+ 9Γ̄V

20M̄7
V

.

3. IJ = 20 channel

−3r2 − 16r3 − 40r4 − 72r5 − 56r6 + 6rf

96πf 2

= − Γ̄S

M̄7
S

(
122

9
+ 22βS

9
+ γS

3

)

(33)− Γ̄V

M̄7
V

(
223 + 37βV + 9γV

2

)
,

r3 + 8r4 + 9r5 + 17r6

96πf 6

(34)= Γ̄S

M̄7
S

(
22

9
+ 2βS

9

)
+ Γ̄V

M̄7
V

(23 + 2βV ),

(35)
−3r5 − 11r6

192πf 6
= − Γ̄S

6M̄7
S

− 5Γ̄V

4M̄7
V

.

Eqs. (27), (30) and (33) refer to the matching of the terms
O(m4

πs). Eqs. (28), (31) and (34) correspond to the O(m2
π s2)

terms. Eqs. (27), (30) and (33) provide the matching at O(s3).
It is remarkable that the system of nine equations for six un-

knowns (ri , with i = f,2, . . . ,6) is actually compatible. The
O(s3) relations determine r5 and r6. After that, it is then pos-
sible to extract r3 and r4 from the O(m2

π s2) equations. Finally,
using these values, one can extract the combination r2 − 2rf
from the O(m4

π s) constraints. The LECs always appear in this
particular combination, avoiding an independent determination
of r2 and rf . This yields the predictions:

r2 − 2rf = 64πf 6Γ̄S

M̄7
S

(
1 + βS

3
+ γS

6

)

(36)+ πf 6Γ̄V

M̄7
V

(7584 + 1248βV + 144γV ),

(37)r3 = 64πf 6Γ̄S

3M̄7
S

(
1 + βS

2

)
− 768πf 6Γ̄V

M̄7
V

(
1 + 3βV

32

)
,

(38)r4 = 192πf 6Γ̄V

M̄7
V

(
1 + βV

8

)
,

(39)r5 = 32πf 6Γ̄S

3M̄7
S

+ 36πf 6Γ̄V

M̄7
V

,

(40)r6 = 12πf 6Γ̄V

M̄7
V

.

3. An example of O(p6) coupling determination

The authors of Ref. [14] provide an estimate of the O(p6)

LECs ri in terms of resonances couplings, where they consider
a phenomenological Lagrangian including one multiplet of vec-
tor and scalar resonances. The vector interaction is given by

(41)LV = −i
gV

2
√

2

〈
V̂μν

[
uμ,uν

]〉 + fχ

〈
V̂μ

[
uμ,χ−

]〉
,
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and for the scalar,

(42)LS = cd

〈
Suμuμ

〉 + cm〈Sχ+〉 + c̃dS1
〈
uμuμ

〉 + c̃mS1〈χ+〉,
where 〈· · ·〉 is short for trace in flavour space and the tensors
uμ,χ± introduce the chiral Goldstones. For further details on
the notations, see Ref. [14] and references therein. At large-
NC , the SU(3) singlet and octet states become degenerate and
one has c̃d = cd/

√
3, c̃m = cm/

√
3,MS1 = MS [2]. Using this

Lagrangian, the authors computed the contributions to the ππ

scattering from resonance exchanges and provided a set of val-
ues for the LECs ri [14].

As an example of our method, we will rederive their result.
In order to do that, in a first step, we will neglect the wave-
function renormalizations ZR and Zπ , and only the resonance
exchange contribution will be considered, as it was done in
Ref. [14]. At large-NC , the meson wave functions get renor-
malized if there are tree-level tadpole diagrams that connect the
scalar meson field to the vacuum [18,19]. After recovering the
results in Ref. [14], we will compute the LECs including also
the effect of Zπ and ZR and their impact on the numerical esti-
mates will be analyzed.

We need first to calculate the R → ππ decay widths corre-
sponding to this Lagrangian. Ignoring the wave-function renor-
malizations, one gets

(43)ΓV = g2
V M5

V ρ3
V

48πf 4

[
1 + 4

√
2fχ

gV

m2
π

M2
V

]2

,

(44)ΓS = 3c2
dM3

SρS

16πf 4

[
1 + 2(cm − cd)

cd

m2
π

M2
S

]2

,

where the subscript S denote the SU(2) singlet σ =
√

2
3S0 −√

1
3S8 ∼ 1√

2
(ūu + d̄d). The large-NC resonances masses are

mπ -independent within this model, i.e., MR = M̄R .
With the above expressions of ΓV and ΓS , we can get the

parameters αR , βR and γR defined in Eqs. (25) and (26)

(45)αV = βV = 8
√

2fχ

gV

− 6,

(46)γV = 32f 2
χ

g2
V

− 48
√

2fχ

gV

+ 6,

(47)αS = βS = 4cm

cd

− 6,

(48)γS = 10 − 16cm

cd

+ 4c2
m

c2
d

.

Using Eqs. (36)–(40), one gets the predictions on O(p6)

LECs in terms of the resonance large-NC parameters gV , fχ ,
cd and cm:

(49)r2 − 2rf = 20aV + 16bV + 3cV + 8f 2(cm − cd)2

M4
S

,

(50)r3 = −7aV − 3bV + 8f 2cd(cm − cd)

M4
S

,

(51)r4 = aV + bV ,
(52)r5 = 3

4
aV + 2f 2c2

d

M4
S

,

(53)r6 = 1

4
aV ,

with aV ≡ g2
V f 2/M2

V , bV ≡ 4
√

2fχgV f 2/M2
V , cV ≡

32f 2
χ f 2/M2

V . If one neglects the wave-function renormaliza-
tion and the tadpole effects then the pion decay constant is given
by fπ = f and therefore rf = 0. Taking this into account, we
get a set of predictions for LECs r2, . . . , r5, in complete agree-
ment with the results in Ref. [14].

However, all the former results ignored the effects of the
scalar tadpole [18,19]. The term cm〈Sχ+〉 connects the scalar
field to the vacuum, inducing a pion wave-function renormal-
ization and a more complicate relation between mπ and the
quark mass [18]. Thus, one has the large-NC relations,

(54)Zπ = 1 − 8cdcm

f 2

m2
π

M2
S

+ 64cdc3
m

f 4

m4
π

M4
S

+O
(
m6

π

)
,

(55)2B0m̂ = m2
π + 8cm(cd − cm)

f 2

m4
π

M2
S

+O
(
m6

π

)
,

with m̂ the u and d quark masses in the isospin limit. The ex-
pressions for ri provided in Ref. [14] did not take this effect into
account. Our results in Eqs. (36)–(40) are fully general and al-
low a simple implementation of this correction. Thus, one gets
the corrected widths,

(56)ΓV = g2
V M5

V ρ3
V

48πf 4
π

[
1 + 4

√
2fχ

gV

2B0m̂

M2
V

]2

,

(57)ΓS = 3c2
dM3

SρS

16πf 4
π

[
1 − 2m2

π

M2
S

+ 2cm

cd

2B0m̂

M2
S

]2

,

with fπ = f Z
− 1

2
π [18]. The resonance masses remain mπ inde-

pendent. From this, one is able to recover the real parameters
that provide the LECs:

(58)αV = βV = 8
√

2fχ

gV

− 6 − 16cdcmM2
V

f 2M2
S

,

γV = 32f 2
χ

g2
V

− 48
√

2fχ

gV

[
1 + 4cm(cd + cm)M2

V

3f 2M2
S

]

(59)+ 6

[
1 + 16cdcmM2

V

f 2M2
S

+ 32c2
mcd(cd + 2cm)M4

V

3f 4M4
S

]
,

(60)αS = βS = 4cm

cd

− 6 − 16cdcm

f 2
,

γS = 10

[
1 + 48cdcm

5f 2
+ 32c2

dc2
m

5f 4

]

− 16cm

cd

[
1 + 2cdcm

f 2
− 8c2

dc2
m

f 4

]

(61)+ 4c2
m

c2
d

[
1 − 8cdcm

f 2

]
.

Substituting these values in Eqs. (36)–(40), one recovers the
proper values for (r2 − 2rf ), r3, . . . , r6. Notice that now the



Z.H. Guo et al. / Physics Letters B 661 (2008) 342–347 347
original parameters in Eq. (45)–(48) has gained extra terms
proportional to cm due to the scalar tadpole originated by the
operators cm〈Sχ+〉. However, r5 and r6 remain unchanged and
only the couplings rf , r2, r3, r4 gets modified.

In order to get the value of rf (allowing the separate extrac-
tion of r2), we need the value of the O(p4) LECs [2]

(62)L5 = cdcm

M2
S

, L8 = c2
m

2M2
S

.

The wave-function renormalization in Eq. (54) provides the
value of fπ in the resonance theory under consideration. Com-
paring this to the fπ expression in χPT from Eq. (13) and using
the values of L5 and L8 from Eq. (62), one can extract the cor-
responding O(p6) LEC in terms of the resonance couplings:

(63)rf = −8c2
dc2

m

M4
S

.

We proceed now to a numerical comparison of our new cal-
culation and the original results in Ref. [14], where one had

r2 = 1.3 × 10−4, r3 = −1.7 × 10−4,

(64)r4 = −1.0 × 10−4.

This can be compared to our determinations

r2 = 18 × 10−4, r3 = 0.9 × 10−4,

(65)r4 = −1.9 × 10−4,

where we took the same inputs used in Ref. [14] to extract the
values of the LECs in Eq. (64), f = 93.2 MeV, gV = 0.09,
fχ = −0.03, MV = Mρ = 770 MeV, cd = 32 MeV, cm =
42 MeV, MS = 983 MeV. The kaon and eta contributions [14]
have also been added in Eq. (65) in order to compare with
Eq. (64). The impact of this modifications on the whole am-
plitude is not large since it is an O(p6) effect.

Observing the scattering-lengths derived from Ref. [14], we
get slight shifts on the values:

δa0
0 = 0.004, δb0

0 = 0.004,

10 · δa2
0 = −0.003, 10 · δb2

0 = −0.017,

(66)10 · δa1
1 = 0.001, 10 · δb1

1 = −0.003,

given in mπ units for the mass-dimension quantities. Although
there are large variations in the O(p6) LECs (especially r2), we
verified that the effect on the global uncertainties in the current
scattering-length determinations [20] is negligible. Neverthe-
less, the lack of control on the rk avoids any improvement of
the errors in an analysis based on Ref. [14] beyond these val-
ues even if the accuracy in the remaining inputs is considerably
increased.

This exercise shows that the extraction of the these couplings
requires of a very subtle analysis and a closer examination of
the resonance Lagrangian. The Lagrangian in Eqs. (41) and (42)
provides only a rough approximation and there can be more
resonance contributions to the O(p6) LECs beside the scalar
tadpole [21]. These variations due to unheeded contributions
just point out the level of theoretical uncertainty that comes into
play from our ignorance of the resonance Lagrangian.

We presented in this note a new method to calculate χPT
low-energy constants in terms of resonance parameters in a
model independent way, without relying on any particular form
of the resonance Lagrangian. This technique provides a con-
venient procedure of implementing the high and low-energy
constraints and can be useful for future studies.
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