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Abstract 

Economic evaluation of transport infrastructure is as important as its technical and structural design: often only initial 
construction costs are calculated to evaluate economic project sustainability. Instead forgetting maintenance costs exposes 
society to unacceptable risks of expensive decisions. Road pavements design and construction solutions affect maintenance 
works during service life, which not only entail economical and financial expenditures but also damage service regularity for 
users. Distress pavement analysis can contribute to find the financially most advantageous solution. This paper shows a 
computer program defined to analyze structural, functional and financial characteristics of concrete pavements. 
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1. Introduction 

Evaluation of road concrete pavement level of service during design life is a very important aspect in the 
project phase: structural and functional performance verification affects pavement management system and its 
social and environmental costs [1] [2]. 

In this study, a design procedure for Joint Plain Concrete Pavement (JPCP) has been developed. This 
procedure involves the use of structural models to calculate pavement response and the implementation of distress 
predictive models. Pavement response, based on critical stresses due to repeated traffic and environmental 
loading, is evaluated by Kenslabs, a finite element software developed in Fortran 77. VBA code, named ESC 
(Economic Sustainability of Concrete pavement), has been implemented as input and output interface with 
Kenslabs: it can generate input data and read output files in order to extrapolate critical stresses in the mesh of the 
slab. 
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Mechanistic and empirical pavement distress models, proposed by AASHTO Guide 2002 and SHRP, are used 
to evaluate pavement condition and define automatically maintenance and repair procedures. The examined 
distresses are: fatigue damage, transverse cracking, joint faulting and International Roughness Index (IRI). 

Three JPCP highways concrete pavements listed in the Italian Pavement Design Catalogue [3] have been 
analyzed by ESC. 

Critical stresses calculated by Kenslabs, structural, material and site-specific environmental data inputs are 
used to evaluate, year by year, pavement condition during service life. Maintenance plan is derived from 
international experience (scheduled and preventive maintenance) and effective condition (corrective 
maintenance). 

Construction costs are calculated considering geometry inputs, while maintenance costs are derived from 
maintenance plan. Given the inflation rate and the discount rate, supposed both constant during pavement service 
life, ESC calculates the Net Present Value (NPV), synthetic evaluation methodology of economic and financial 
charges correlated to verified pavement. 

2. Software design model 

Factors influencing pavement design are: traffic, environmental conditions, subgrade bearing capacity and 
materials characteristics. 

Default Microsoft Excel® worksheets are available to input design data. Construction and maintenance costs 
are derived from project geometrical characteristics, materials, labour, machinery and equipment unit costs. 
Joints, dowel bars and tie bars amount are automatically calculated by ESC. The most important parameter to 
determinate joints is its opening due to temperature change and drying shrinkage; it is expressed by (1) [4]. 

TLCL t   (1) 

where ΔL is the joint opening caused by temperature change and drying shrinkage of concrete; c is an 
adjustment factor due to slab-subbase friction; L is the joint spacing or slab length; αt is the coefficient of thermal 
expansion of concrete; ΔT is the temperature range; ε is the drying shrinkage coefficient of concrete. 

Dowel bars at transverse joint are designed comparing bearing stress between dowel and concrete with 
allowable bearing stress, according to Friberg method [5]. 

Pavement bearing capacity is defined by modulus of reaction: this parameter depends on thickness and type of 
subbase layers (granular and/or cement treated subbase) and on modulus of subgrade reaction. The modulus of 
subbase reaction is automatically provided by ESC code, using Packard charts; maximum permitted modulus of 
reaction value is 130 MPa/m as recommended in the most of literature references [6]. 

Pavement thermal pattern, influenced by air temperature, sun’s radiation, wind speed and thermal properties of 
concrete, is defined by Barber theory [7]; it is expressed by (2). The Barber formula to evaluate thermal gradients 
during the day and the night of all seasons is: 
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where Tpav(z,t) is the temperature of pavement at depth z at hour h in °C; Tag is the average seasonal daily air 
temperature in °C; R is calculated daily solar radiation contribution to air temperature in °C; it is expressed by 
(3): 
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Ag is the excursion daily average air in °C; b is the surface absorptivity to the total solar radiation 
(dimensionless); I is the daily solar radiation in kcal/day; h is expressed by (4): 

75.04332.03.1882.4 vh   (4) 

v is the average wind speed in m/s; h is the heat transfer coefficient in kcal/m2 h °C; F is expressed by (5); H is 
expressed by (6) and C is expressed by (7): 
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where k is thermal conductivity of concrete in kcal/m h °C 

k
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where s is specific heat of concrete in kcal/kg °C and γ is density of concrete in kg/m3. 
Daily thermal gradients derived by (2) has been modified to consider that in the night they are half of those 

ones during the day, as experimentally verified and exposed in literature [8]; [9]; [11]. Fig. 1 shows the thermal 
gradients in one day. User inputs thermal seasonal data, so for each 24 hours of the four season VBA code 
calculate thermal pavement conditions. 

 

Fig. 1. Thermal gradient in concrete slab 

In the computer code, datasheets are provided to input traffic level, establishing average daily heavy vehicles 
per lane at the road opening year, annual rate of traffic growth, pavement life, traffic spectrum and hourly 
distribution per vehicle type. ESC has defined in its datasheet all traffic spectra defined in the Italian Pavement 
Design Catalogue [12], but it allows defining any other traffic spectrum. 
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The combination of frequency between thermal gradients and different load configuration during day and night 
affects the number of repetitions for fatigue calculation in cracking model [10]. 

Materials amounts and characteristics are required as regard to composition of concrete mix (water, cement, 
sand, type of coarse aggregate, chemical admixtures), physical and thermal properties of concrete (density, 
coefficient of absorption of the solar radiation, specific heat, thermal conductivity, Poisson’s ratio, cubic 
characteristic compressive strength of concrete) [13]. Elastic modulus is automatically deducted from 
compressive strength (Rck). 

Fig. 2 shows a finite element mesh of a three-slab model, and the configurations of traffic loads to calculate the 
most critical edge stress [14]. The image represented in Fig. 2 is half the total mesh area due to symmetry. 

 

Fig. 2. Mesh size in JPCP model 

After the input phase, Kenslabs runs and calculates stresses due to thermal and traffic condition on concrete 
slabs. 

All output text files are stored and automatically examined by ESC. The code extrapolates stress in the critical 
node for each file, so it’s possible to evaluate structural and functional level of service of concrete pavement hour 
by hour in the four season and year by year. Distress models used in this analysis are: cracking model by 
AASHTO Guide 2002, joint faulting model by SHRP model (that appear the most severe in literature) and IRI 
model by AASHTO Guide 2002. All indexes are calibrated to 90% of reliability. Fatigue damage is calculate 
year by year with Darter’s and Miner’s laws. 

This analysis allows to define maintenance plan during the overall pavement service life and calculate 
discounted maintenance costs, assuming the inflation rate [15]. Strategies of preventive maintenance schedule 
joint sealing and full depth repair (to restore potholes). Rehabilitation strategies of corrective maintenance 
schedule diamond grinding to correct roughness and full depth repair to restore slabs cracked [16] [17]. 

Each maintenance work cost is discounted back to its present value (PV). Then their sum plus construction 
costs is the Net Present Value of project. 
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3. Case study 

Three exposed aggregate JPCP highways concrete pavements listed in the Italian catalogue of road pavements 
has been verified. For each pavement type, concrete slabs 24 cm, 26 cm and 27 cm thick with double subbase, 
cement-treated layer 15 cm thick and unbonded granular mix layer 15 cm thick were analyzed; subgrade resilient 
modulus is equal to 90 MPa. Compressive Rck is 55 MPa; modulus of rupture (MOR) is calculated with formula 
proposed in software package VENCON2.0; it’s expressed by (8) [18]. 

2.1/805.005.11000/16003.1 ckRhMOR  (8) 

where h is the thickness of the concrete slab in mm. 
The annual increase of concrete strength during service life has been considered. Single concrete slabs were 

540 cm long and 420 cm large. Pavement has 40-years design life. 
All examined pavements are fatigue tested: fatigue damage (FD) is less than 1 at the end of service life, after 

40 years, as can be seen in Table 2. 

Table 1. Fatigue Damage 

Slab thickness (cm) FD (-) 

24 1.77E-01 

26 5.70E-01 

27 2.70E-01 

 
Table 2 shows transverse cracking, joint faulting and IRI thresholds. 

Table 2. Threshold value distresses 

Transverse cracking (%) 10 

Joint faulting (mm) 4 

IRI (m/km) 2.5 

 
The AASHTO Guide 2002 equation has been used to calculate cracking [19]; the SHRP P-020 Faulting model 

for JPCP with dowels has been used to calculate joint faulting [20]; the AASHTO Guide 2002 equation has been 
used to calculate IRI [19]. 

Corrective maintenance results to be necessary at the years shown is Table 3, as it results in Fig. 3, 4 and 5. 

Table 3. Year when threshold limit is achieved 

Slab thickness (cm) 
Year when threshold limit is achieved (year) 

Transverse cracking Joint faulting IRI 

24 13 31 >40 

26 17 33 >40 

27 25 36 >40 
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Fig. 3. Transverse cracking development 

Joint faulting
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Fig. 4. Joint faulting development 
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Fig. 5. IRI development 
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Construction costs are listed in Table 4. 

Table 4 Construction costs (CC) 

Slab thickness (cm) CC (€/m2) 

24 60.2 

26 62.3 

27 63.4 

 
Maintenance strategies defined for these pavements are listed in Table 5. Preventive actions are carried out at 

a set time interval, as suggested in literature, while corrective actions are planned as calculated by ESC. 

Table 5 Preventive (P) and corrective (C) maintenance 

Type of 
maintenance Work Year Quantity 

Slabs thickness (cm) 

24 26 27 

P Joint sealing 10 100% Total joint length X X X 

P Full depth patching 10 2% Total area X X X 

C Full depth patching 13 8% Total area X   

P Joint sealing 15 60% Total joint length X X X 

C Full depth patching 17 8% Total area  X  

P Joint sealing 20 60% Total joint length X X X 

P Full depth patching 20 2% Total area X X X 

C Full depth patching 25 8% Total area   X 

P Joint sealing 25 60% Total joint length X X X 

P Joint sealing 30 60% Total joint length X X X 

P Full depth patching 30 2% Total area X X X 

C Repair faulted joints 31 100% Faulted joints X   

C Repair faulted joints 33 100% Faulted joints  X  

P Joint sealing 35 60% Total joint length X X X 

C Repair faulted joints 36 100% Faulted joints   X 

 
Nominal maintenance costs are calculated knowing type, extension and timetable of work, as expresses by (9). 

x
x iCC )1(0   (9) 

where Cx is the maintenance cost incurred in year x; C0 is the maintenance cost at construction year; i is the 
annual inflation rate equal to 3%, average value of the eighteen last years in Italy [21]; x is the time in the future 
in years. Fig. 7. shows cumulated nominal costs during design life. 
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Fig. 6. Cumulated nominal costs 

Actual maintenance costs are calculated as expressed by (10): 

x
x

xA r
CC

)1(,   (10) 

where CA is the maintenance cost discounted at construction year x; r is the annual discount rate equal to 4% 
(the risk premium for the investment is equal to 1%) [22] and [23]. 

The Present Value of this series of costs is calculated as expressed by (11): 
N

x
xAC CCNPV

1
,   (11) 

where CC is construction cost incurred in year 0 and N is the number of years in the analysis period. 
Table 6 shows the NPV obtained, expressed in terms of euro/m2. 

Table 6 NPV of pavement investment 

Slab thickness (cm) NPV (€/m2) 

24 77.9 

26 80.3 

27 81.2 

 
Results obtained are comparable with values in literature: concrete pavements are more expensive initially, but 

need limited work maintenance, so are economically competitive versus other solutions, as bituminous 
pavements. 

4. Conclusions 

The structural and functional characteristics of concrete pavements have been verified by automatic procedure 
implemented in VBA and using Kenslabs as solver software. The procedure defines pavement management 
system during service life and calculate the Net Present Value (NPV) of project solution. The foregoing 
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discussion has attempted to make available a quick and user-friendly instrument to estimate total costs in 
concrete pavements: the procedure is a forward-looking decision framework that assess life time costs rather than 
only initial construction costs. The new approach should be used to evaluate economic and technical 
sustainability of JPCP and compare results with other types of pavement. 

The current study has practical implications as well. The model is user-friendly and simple and it could be a 
valid tool for designers and decision-makers. The instruments allows to analyze life cycle cost of concrete 
pavements, an economic analysis procedure that compares alternative considering all construction, maintenance 
and rehabilitation costs. 
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