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SUMMARY

The gene encoding the Krebs cycle enzyme fumarate
hydratase (FH) ismutated in hereditary leiomyomato-
sis and renal cell cancer (HLRCC). Loss of FH activity
causes accumulation of intracellular fumarate, which
can directly modify cysteine residues to form 2-suc-
cinocysteine through succination. We undertook a
proteomic-based screen in cells and renal cysts
from Fh1 (murine FH)-deficient mice and identified
94 protein succination targets. Notably, we identified
the succination of three cysteine residues in mito-
chondrial Aconitase2 (ACO2) crucial for iron-sulfur
cluster binding. We show that fumarate exerts
a dose-dependent inhibition of ACO2 activity, which
correlates with increased succination as determined
by mass spectrometry, possibly by interfering
with iron chelation. Importantly, we show that aconi-
tase activity is impaired in FH-deficient cells. Our
data provide evidence that succination, resulting
from FH deficiency, targets and potentially alters
the function of multiple proteins and may con-
tribute to the dysregulated metabolism observed in
HLRCC.
INTRODUCTION

Altered metabolism is a key feature and hallmark of cancer cells

(Hanahan and Weinberg, 2011). How this arises, and what steps

link it to oncogenesis, still eludes us. One possible answer

lies with ‘‘oncometabolites,’’ described as metabolites whose

abnormal accumulation causes both metabolic and nonmeta-
bolic (such as epigenetic) dysregulation and potential transfor-

mation to malignancy (Thompson, 2009). Fumarate hydratase

(FH) has been identified as a tumor suppressor because germline

loss-of-function mutations are associated with the development

of hereditary leiomyomatosis and renal cell cancer (HLRCC)

(Tomlinson et al., 2002). FH has roles in both the mitochondria

and cytosol, catalyzing the hydration of fumarate to malate. In

mitochondria, FH is a key component of the Krebs cycle, essen-

tial for cellular energy production and macromolecular biosyn-

thesis, whereas in the cytoplasm, FH metabolizes fumarate

generated from arginine synthesis and the purine nucleotide

cycle (Salway, 1999; Shambaugh, 1977). Loss of FH activity

results in accumulation of fumarate in cells. Elevated fumarate

has been implicated in the development of FH-associated

tumors through a number of pathways, e.g., by competitive inhi-

bition of 2-oxoglutarate (2OG)-dependent oxygenases, including

the hypoxia-inducible factor (HIF) hydroxylases, leading to stabi-

lization of HIF and activation of oncogenic HIF-dependent path-

ways (O’Flaherty et al., 2010). However, there is increasing

evidence that multiple independent pathways may have roles

in FH-associated oncogenesis as a consequence of fumarate

acting as an oncometabolite (Yang et al., 2012). In addition to

being an allosteric inhibitor of the 2OG-dependent oxygenases

similar to other oncometabolites, fumarate acts as an endoge-

nous electrophile. It reacts spontaneously by a Michael addition

reaction with free sulfhydryl groups to generate a thioether

linkage with cysteine residues in proteins. This results in forma-

tion of S-(2-succino) cysteine (2SC), a process termed succina-

tion (Alderson et al., 2006). This mechanism is distinct from

succinylation of cysteine in which a thioester would be formed

(Zhang et al., 2011). Furthermore, 2SC immunohistochemistry

is sufficiently sensitive and specific for use as a clinical bio-

marker of HLRCC (Bardella et al., 2011).

Significantly, succination of Kelch-like ECH-associated pro-

tein 1 (KEAP1) in FH-deficient cells leads to abrogation of its
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interaction with the transcription factor Nuclear factor erythroid

2-related factor 2 (NRF2) and activation of the potentially onco-

genic NRF2-mediated antioxidant defense pathway (Adam

et al., 2011; Ooi et al., 2011). Furthermore, NRF2 activation has

been shown recently to modulate cell metabolism possibly aug-

menting the cellular stress response (Mitsuishi et al., 2012).

Elucidation of the functional consequences of KEAP1 succina-

tion prompted us to search for other 2SC targets that may

contribute to the pathogenesis of FH-associated disease.

Hence, we conducted a proteomic screen for 2SC in an Fh1-

deficient (knockout [KO]) mouse embryonic fibroblast (MEF)

cell line (O’Flaherty et al., 2010) and in murine kidney tissue

and fluid where Fh1 has been deleted from the kidney tubules

(Pollard et al., 2007). We identified 94 succinated proteins,

including some that are succinated on functional cysteine resi-

dues. In particular, we investigated the succination of three key

cysteines in the Krebs cycle enzyme, mitochondrial aconitate

hydratase (Aconitase2, ACO2). We show here that fumarate-

mediated succination of ACO2 impairs its enzymatic activity in

a dose-dependent manner and that Fh1KO cells exhibit reduced

aconitase activity. Our findings further highlight succination as

a significant event that could target multiple cellular pathways

in FH-associated pathogenesis.

RESULTS

Identification of 2SC Protein Targets
Previously using Fh1 MEFs, we confirmed by immunoblotting

that accumulated intracellular fumarate results in high levels of

2SC in Fh1KO, but not Fh1 wild-type (WT), MEFs (Bardella

et al., 2011). To detect potential 2SC targets at low abundance,

we performed mitochondrial and nuclear fractionations of

Fh1KO MEFs (Figure S1A). To identify 2SC targets from biolog-

ical tissue, we used cystic kidneys and aspirated kidney fluid

from a 30-week-old Fh1KO mouse where Fh1 is conditionally

deleted in the renal tubular epithelium causing the development

of hyperplastic cysts (Pollard et al., 2007). Protein extracts from

mitochondrial, nuclear, and cytosolic fractions of Fh1KO MEFs

and Fh1KO kidneys were separated by SDS-PAGE analyses

and subjected to in-gel trypsin digestion and liquid chromatog-

raphy tandem mass spectrometry (LC-MS/MS) analyses as

described before (Adam et al., 2011). Combined proteomic anal-

yses identified 4,095 proteins and 306,558 target peptide spec-

trum matches (PSMs) from Fh1KO MEFs (false discovery rate

[FDR] 2.32%) and 3,569 proteins/226,606 PSMs from Fh1KO

kidney tissue and fluid (FDR 1.96%). The MS/MS spectrum for

each succination site was verified, and a total of 110 nonredun-

dant 2SC sites were identified in 94 distinct proteins (Table 1).

2SC targets identified thus comprise proteins from diverse

cellular pathways; but significantly, approximately 50% are

metabolic processes (Figure S1B). Notably, ACO2, mitochon-

drial NFU1 iron-sulfur cluster scaffold homolog, Protein DJ-1,

Peroxiredoxin-1, and Peroxiredoxin-3 are succinated on

cysteine residues involved in their function (Andres-Mateos

et al., 2007; Mirel et al., 1998; Tong et al., 2003; Yang et al.,

2002). Also, the succination of glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) at C149 was confirmed as reported

previously by Blatnik et al. (2008a, 2008b).
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Endogenous ACO2 Is Succinated at Three Critical
Cysteines in Fh1KO MEFs
To investigate the functional consequences of succination, we

focused on ACO2 because of its role in the Krebs cycle, where

it catalyzes the stereospecific isomerization of citrate to isoci-

trate via cis-aconitate. In particular, it is amitochondrial oxidative

stress sensor and requires an active [Fe4S4]
2+ cluster, bound

directly by three conserved cysteine residues, for catalysis

(Lloyd et al., 1999). LC-MS/MS analyses of the tryptic peptide

379VGLIGS(2SC)TNSSYEDMGR395 derived from endogenous

ACO2 in Fh1KO MEFs assigned succination to C385 unambigu-

ously (Figure 1A). The tryptic peptide spanning C448 and C451

was detected as a mixture of two isomers (438DLGGIVLANA

(PEC)GP(2SC)IGQWDR457 and 438DLGGIVLANA(2SC)GP(PEC)

IGQWDR457) that are succinated at C451 and C448 (Figure 1B),

respectively. Due to their identical mass and composition, the

two succinated species could not be separated by LC-MS/MS,

but measurement of resulting fragment ion masses in the

MS/MS scan allowed identification of succination on both sites.

Generally, we observed higher succination at C451 (�90%)

compared to C448 (�10%) as determined by Mascot analysis.

Human ACO2 Is Succinated at Homologous Residues
When Expressed Stably in Fh1KO MEFs
To determine if human ACO2 can be succinated on homologous

cysteine residues, we transfected Fh1WT and Fh1KOMEFs with

a V5-tagged ACO2 gene. LC-MS/MS analysis following V5

immunoprecipitation confirmed succination at all three cysteine

residues (C385, C448, and C451) within the active site in ACO2

expressed in only Fh1KO MEFs. To complement the mouse

data, we detected succination at C448 and C451 simultaneously

from the same tryptic peptide, 438DLGGIVLANA(2SC)GP(2SC)

IGQWDRK458 (Figure S1C).

Fumarate-Mediated Succination Reduces ACO2Activity
In Vitro
The three cysteine residues C385, 448, and 451 are crucial for

iron-sulfur cluster binding in ACO2 (Figure 2A). To investigate if

succination of ACO2 impairs its enzymatic activity, we preincu-

bated pig heart ACO2 with fumarate and assayed its activity

in vitro. One hour pre-exposure of ACO2 to increasing concen-

trations of sodium fumarate at pH 7.4 resulted in dose-depen-

dent inhibition of its activity in the range of 1–50 mM fumarate,

which parallels detection of 2SC by immunoblotting (Figure 2B).

We then performed LC-MS/MS analyses of trypsin-digested

ACO2 derived from assay mixtures. Succination was detected

at five cysteine residues (C126, C385, C410, C451, and C592),

and further, the levels of succination of the C385- and C448/

C451-containing peptides increased with increasing fumarate

concentration (Figures 2C, 2D, and S2A). We correlated ACO2

activity with succination in the range of 5–50 mM fumarate and

obtained a negative linear correlation with succinated peptides

containing 2SC385 and 2SC451/448 (Figure S2B). To relate the

in vitro data to pathophysiological settings, we measured fuma-

rate concentrations by capillary electrophoresis time-of-flight

mass spectrometry (CE-TOFMS) (Soga et al., 2003) in FH-defi-

cient mouse kidneys and HLRCC tumors; these were estimated

to contain 1.7 ± 0.4 mM and 3.4 ± 1.2 mM fumarate, respectively



Table 1. Proteomic Screen of 2SC Targets in an Fh1-Deficient Background

Swiss-Prot

Accession No. Gene Symbol Protein Name Succination Site(s) Source PSMs

Sequence

Coverage

2SC Peptide

Instances

Q8BGQ7 Aars alanine-tRNA ligase, cytoplasmic C403 M(c) 302 49.9% 3

Q99KI0 Aco2 aconitate hydratase, mitochondrial C385, C448, C451 M(m) 1,340 66.7% C385(30), C451(3)

Q9R0X4 Acot9 acyl-coenzyme A thioesterase 9, mitochondrial C154 K 121 57.9% 13

Q99NB1 Acss1 acetyl-coenzyme A synthetase 2-like, mitochondrial C41 K 86 47.8% 6

P00329 Adh1 alcohol dehydrogenase 1 C83 K 508 63.7% 25

Q9WTP6 Ak2 adenylate kinase 2, mitochondrial C208 K 51 53.9% 13

Q9WTP7 Ak3 GTP:AMP phosphotransferase, mitochondrial C85 K 33 70.9% 4

P07724 Alb serum albumin C471 K 26,069 89.6% 501

Q9Z110 Aldh18a1 d-1-pyrroline-5-carboxylate synthase C88, C612 M(n) 1,185 77.9% C88(10), C612(27)

P10107 Anxa1 annexin A1 C189, C324 M(n,c) 407 73.4% C189(5), C324(7)

P07356 Anxa2 annexin A2 C223 M(n,c),K 1,001 77.0% 6

Q8K0Q5 Arhgap18 Rho GTPase-activating protein 18 C637 K 8 5.0% 5

Q9D0L7 Armc10 isoform 2 of Armadillo repeat-containing protein 10 C275 M(n) 38 57.2% 4

O55143 Atp2a2 sarcoplasmic/endoplasmic reticulum calcium ATPase 2 C998 M(n) 380 47.9% 8

Q91YN9 Bag2 BAG family molecular chaperone regulator 2 C16 M(n) 53 70.0% 2

P12658 Calb1 calbindin C187 K 143 67.4% 2

Q6ZQ38 Cand1 cullin-associated NEDD8-dissociated protein 1 C942 M(n) 299 55.3% 6

Q8K354 Cbr3 carbonyl reductase (NADPH) 3 C160 K 128 83.0% 3

P80314 Cct2 T complex protein 1 subunit b C535 M(n,c) 443 82.4% 5

Q9CQB5 Cisd2 CDGSH iron-sulfur domain-containing protein 2 C92 M(m) 26 62.2% 3

Q8BMK4 Ckap4 cytoskeleton-associated protein 4 C79 M(n,m), K 813 82.8% 4

P30275 Ckmt1 creatine kinase U-type, mitochondrial C317 K 110 54.8% 8

Q68FD5 Cltc clathrin heavy-chain 1 C870 M(n,c) 1,297 65.6% 16

A6H584 Col6a5 collagen a-5(VI) chain C1974 K 267 45.8% 15

Q61656 Ddx5 probable ATP-dependent RNA helicase DDX5 C200 M(n) 346 62.5% 19

Q501J6-1 Ddx17 isoform 1 of Probable ATP-dependent RNA helicase DDX17 C191, C198 M(n) 144 56.5% C191(1), C198(19)

Q9R0P5 Dstn destrin C23 M(c) 64 55.8% 3

Q9CQ43 Dut deoxyuridine triphosphatase C3 M(c) 65 63.6% 10

Q9JHU4 Dync1h1 cytoplasmic dynein 1 heavy-chain 1 C4284 M(n) 1,054 57.6% 1

Q8QZV3 Eci1 Dci enoyl-CoA d isomerase 1, mitochondrial C87 K 91 63.0% 25

P58252 Eef2 elongation factor 2 C41 M(c,n) 1,746 71.2% 33

Q8BGD9 Eif4b eukaryotic translation initiation factor 4B C457, C543 M(n) 231 56.0% C457(4), C543(2)

Q8C9X6-2 Epc1 isoform 2 of Enhancer of polycomb homolog 1 C515 M(n) 3 4.1% 3

Q99M71-1 Epdr1 isoform 1 of Mammalian ependymin-related protein 1 C88 M(n) 14 37.5% 1

Q8CGC7 Eprs bifunctional aminoacyl-tRNA synthetase C744 M(c) 503 49.5% 8

Q8BTM8 Flna filamin-A C8, C574 M(n) 2,440 78.8% C8(5), C574(27)

(Continued on next page)
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Table 1. Continued

Swiss-Prot

Accession No. Gene Symbol Protein Name Succination Site(s) Source PSMs

Sequence

Coverage

2SC Peptide

Instances

Q80X90 Flnb filamin-B C1434, C2501 M(n), K 2,264 82.1% C1434(25), C2501(9)

P97494 Gclc glutamate-cysteine ligase catalytic subunit C501 K 246 63.3% 6

P16858 Gapdh glyceraldehyde-3-phosphate dehydrogenase C22, C150 M(c,n) 137 62.0% C22(13), C150 (42)

P53702 Hccs cytochrome c-type heme lyase C39 M(m) 117 65.4% 11

P70333 Hnrnph2 heterogeneous nuclear ribonucleoprotein H2 C267 M(n) 177 49.2% 15

P61979-2 Hnrnpk isoform 2 of Heterogeneous nuclear ribonucleoprotein K C132 M(n) 700 62.9% 16

Q8R081 Hnrnpl heterogeneous nuclear ribonucleoprotein L C469 M(n) 333 79.9% 8

Q9D0E1-1 Hnrnpm isoform 1 of Heterogeneous nuclear ribonucleoprotein M C26, C652 M(n) 416 80.5% C26(3), C652(4)

P47879 Igfbp4 insulin-like growth factor-binding protein 4 C211 K 2 7.1% 1

Q8CAQ8-2 Immt isoform 2 of Mitochondrial inner membrane protein C172 M(m), K 14 81.8% 27

Q0GNC1-1 Inf2 isoform 1 of Inverted formin-2 C284 M(n) 67 35.6% 9

Q60749 Khdrbs1 KH domain-containing, RNA-binding, signal transduction-associated

protein 1

C19 M(n), K 53 26.0% 7

P06151 Ldha L-lactate dehydrogenase A chain C84 M(c) 822 72.6% 21

P48678 Lmna isoform A of Prelamin-A\C C572 M(n), K 201 60.6% 4

Q3UMR5 Mcu calcium uniporter protein, mitochondrial C190 K 16 28.3% 4

Q9CQ65 Mtap S-methyl-50-thioadenosine phosphorylase C130 M(c) 106 69.6% 9

Q791V5 Mtch2 mitochondrial carrier homolog 2 C296 K 45 36.6% 1

Q3V3R1 Mthfd1 monofunctional C1-tetrahydrofolate synthase, mitochondrial C129 M(m) 1,248 82.8% 40

Q8VDD5 Myh9 myosin-9 C988 K 3,408 67.4% 54

Q8K2Z4-2 Ncapd2 isoform 2 of Condensin complex subunit 1 C439 M(n) 176 42.8% 12

Q3UYV9 Ncbp1 nuclear cap-binding protein subunit 1 C44 M(n) 64 31.5% 9

Q9QZ23 Nfu1 NFU1 iron-sulfur cluster scaffold homolog, mitochondrial C213 M(m) 47 43.5% 3

Q9CRB2 Nhp2 H\ACA ribonucleoprotein complex subunit 2 C18 M(n) 22 66.0% 7

Q99LX0 Park7 protein DJ-1 C106 K 50 89.9% 2

Q8BKZ9 Pdhx pyruvate dehydrogenase protein X component, mitochondrial C170 M(m) 25 31.5% 1

Q5SUR0 Pfas phosphoribosylformylglycinamidine synthase C1055 M(c) 128 32.8% 5

Q9ESW8 Pgpep1 pyroglutamyl-peptidase 1 C108 K 11 34.4% 6

Q80UU9 Pgrmc2 membrane-associated progesterone receptor component 2 C75 M(n,m) 34 38.2% 5

Q61753 Phgdh D-3-phosphoglycerate dehydrogenase C369 M(c) 191 45.6% 35

Q9Z0T6 Pkdrej polycystic kidney disease and receptor for egg jelly-related protein C136 M(c) 3 1.3% 1

Q99K51 Pls3 plastin-3 C104 K 407 75.1% 5

P35700 Prdx1 peroxiredoxin-1 C173 K 236 88.4% 26

P20108 Prdx3 thioredoxin-dependent peroxide reductase, mitochondrial C230 K 47 64.6% 7

P99029-1 Prdx5 peroxiredoxin-5, mitochondrial C96 M(m) 215 74.1% 21

Q9R0Q7 Ptges3 prostaglandin E synthase 3 C58 M(c) 54 44.3% 13

(Continued on next page)
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Table 1. Continued

Swiss-Prot

Accession No. Gene Symbol Protein Name Succination Site(s) Source PSMs

Sequence

Coverage

2SC Peptide

Instances

Q8VI36 Pxn paxillin C535, C538 K 6 61.9% 5

Q64012 Raly RNA-binding protein Raly C255 M(n), K 5 64.2% 11

Q60973 Rbbp7 histone-binding protein RBBP7 C116 M(n) 6 74.8% 2

Q8BG51-3 Rhot1 isoform 3 of Mitochondrial Rho GTPase 1 C535 K 1 14.3% 1

P62717 Rpl18a 60S ribosomal protein L18a C22, C109 M(n,m,c) 28 58.0% C22(10) C109(30)

P47955 Rplp1 60S acidic ribosomal protein P1 C61 M(n,m,c) 11 67.5% 30

Q91YQ5 Rpn1 dolichyl-diphosphooligosaccharide protein glycosyltransferase

subunit 1

C478 M(m,n) 60 68.8% 11

D3YXK2 Safb scaffold attachment factor B C81 M(n) 8 35.5% 4

O70456 Sfn 14-3-3 protein s C38 K 2 61.3% 2

Q8VEM8 Slc25a3 phosphate carrier protein, mitochondrial C71 K 28 61.1% 12

Q9CYN2 Spcs2 signal peptidase complex subunit 2 C26 M(m,n), K 14 61.1% 73

Q62266 Sprr1a cornifin-A C41, C120 K 43.8% C41(2), C120(4)

Q64674 Srm spermidine synthase C89 M(c) 5 44.0% 3

Q921F2 Tardbp TAR DNA-binding protein 43 C50 M(n) 1 63.8% 8

Q9R099 Tbl2 transducin b-like protein 2 C43 M(n) 7 59.5% 3

O08784 Tcof1 treacle protein C580 M(n,c) 6 29.5% 12

Q61029-1 Tmpo isoform b of Lamina-associated polypeptide 2, isoforms b\d\ε\g C362 M(n) 1 61.5% 13

P17751 Tpi1 triosephosphate isomerase C71, C77 K 23 81.5% 13

P21107-2 Tpm3 isoform 2 of Tropomyosin a-3 chain C233 M(n) 3 71.8% 11

Q9Z1Q9 Vars valyl-tRNA synthetase C41 M(n), K 32 53.4% 2

Q60930 Vdac2 voltage-dependent anion-selective channel protein 2 C77, C228 M(m), K 48 65.7% C77(2), C228(1)

Q60931 Vdac3 voltage-dependent anion-selective channel protein 3 C8, C65 M(m), K 36 66.1% C8(3), C65(13)

Q62468 Vil1 villin-1 C134 K 26 60.2% 23

2SC targets identified from Fh1KO MEFs and mouse kidney tissue and fluid. Succinated proteins are listed alphabetically by gene symbol, with suc nated cysteine residues indicated. PSM,

peptide spectrum matches; M, MEFs; c, cytosolic fraction; m, mitochondrial fraction; n, nuclear fraction; K, kidney tissue or fluid. See also Figure S
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(Figures 2E and 2F). We calculated the fumarate concentration

on the basis of tissueweight, but these values are likely an under-

estimate because the tissue is comprised of a heterogeneous

population of cells, and no estimate was made of the aqueous

volume of the tissue.

ACO2 Activity Is Impaired in Fh1KO MEFs
When whole-cell lysates of Fh1WT and Fh1KO MEFs were

compared to determine if succination impairs endogenous

ACO2 activity, Fh1KO MEFs displayed significantly reduced

aconitase activity (Figure 3A). To differentiate mitochondrial

and cytosolic aconitase activity (ACO2 and ACO1, respectively),

we utilized two cell lines derived from the Fh1KOMEFs, reconsti-

tuted with either full-length FH (Fh1KO+FH), or FH restricted to

the cytosol by deleting the mitochondrial-targeting sequence

(Fh1KO+FHcyt) (O’Flaherty et al., 2010). Comparison of whole-

cell lysates from the four MEF cell lines showed that aconitase

activity is completely restored in Fh1KO+FH cells and only

partially restored in Fh1KO+FHcyt, relative to that in Fh1KO cells

(Figure 3A).

Previously, we showed that despite having significantly re-

duced total cellular fumarate compared to Fh1KO, Fh1KO+FHcyt

MEFs (as measured by 1H-nuclear magnetic resonance spec-

trometry) retainabnormalmitochondriamorphologyand impaired

respiration (O’Flaherty et al., 2010). We redetermined fumarate

levels in the four cell lines by CE-TOFMS (Figure 3B) and

confirmed high levels of fumarate in Fh1KO MEFs (�35 fmol/

cell) and above-normal levels of fumarate in Fh1KO+FHcyt (�10

fmol/cell) compared to Fh1WT (�1.5 fmol/cell) and Fh1KO+FH

(�3 fmol/cell) MEFs. To relate these levels to molar concentra-

tions, we performed cell volume measurements of the four MEF

cell lines by atomic force microscopy (Schneider et al., 2004).

These analyses estimated the intracellular fumarate concentra-

tions to be �6 mM for Fh1KO, �0.06 mM for Fh1WT, �0.14 mM

for Fh1KO+FH, and�1.3mM for Fh1KO+FHcyt MEFs (Figure S3).

We postulated that fumarate may be accumulated in the mito-

chondria of Fh1KO+FHcyt MEFs, and consequently, ACO2 may

be succinated in these cells. Therefore, we compared ACO2

succination in the four MEF cell lines by LC-MS/MS analyses of

the 2SC385- and 2SC451/2SC448-containing tryptic peptides.

Whereas no succination was detected at C385 or C451/C448 in

Fh1WT or Fh1KO+FH cells, succination was detected in both

Fh1KO and Fh1KO+FHcyt cells with that in Fh1KO being higher

(Figure 3C). Following fractionation of the four cell lines into

mitochondrial versus cytoplasmic portions, we performed immu-

noblotting of the derived protein extracts and confirmed the

presence of 2SC in both the mitochondria and cytosol of Fh1KO
Figure 1. ACO2 Is Succinated on Critical Cysteine Residues in Fh1KO

(A and B) MS/MS spectra showing succination at C385 in the 379-VGLIGS(2SC

GP(2SC)IGQWDR-457 peptide (B) (upper panels) derived from endogenous ACO

unmodified counterpeptides that are pyridylethylated on the corresponding cyste

as follows: b, N-terminal fragment ion; y, C-terminal fragment ion; *, fragment io

doubly charged fragment ion; PE, pyridylethylated; 2S, succinated. Both theoretic

ion. Fragment ion mass signals that were assigned for both peptide species and c

that do not comprise the modification are highlighted in green. Note that for fragm

shifted according to the mass difference between 2S (116.01 Da) and PE (105.0

shifted by 5.48 Da.

See also Figure S1.
MEFs and also in the mitochondria of Fh1KO+FHcyt MEFs (Fig-

ure S1A). Taken together, our data suggest that the partial resto-

ration of aconitase activity in Fh1KO+FHcyt MEFs may be

a combined effect of functional ACO1 activity and dysfunctional

ACO2 due to succination in the mitochondria.

Succination of Aconitase Causes Alterations to
Metabolism in Fh1KO MEFs
To investigate if succination of aconitase might cause alteration

to cellular metabolism, we first measured the levels of key Krebs

cycle metabolites in Fh1WT and Fh1KO MEFs by CE-TOFMS.

Consistent with FH being dysfunctional, levels of fumarate and

succinate are significantly higher in Fh1KO, whereas that for

malate is drastically lower (Figure 3D). Notably, we observed

low levels of citrate and isocitrate in Fh1KO MEFs. We then

cultured the cells in deuterium-labeled [d5]glutamine for 24 hr

and analyzed them for label incorporation into thesemetabolites.

We observed significant label incorporation in succinate (m+4)

and fumarate (m+2), supporting the oxidative flux of the Krebs

cycle. We also detected isocitrate m+2 but did not observe label

enrichment in citrate (Figure 3E).

Some aerobic glycolytic cancer cells display altered metabo-

lism by utilizing the glutamine-dependent reductive mechanism

to produce citrate, which can be used for lipogenesis and for

anaplerosis of the Krebs Cycle (Metallo et al., 2012; Mullen

et al., 2012; Wise et al., 2011). This pathway uses the

NADP(+)-dependent isocitrate dehydrogenase (IDH)1 and 2 to

reductively carboxylate 2OG to isocitrate and is considered to

occur in both the mitochondria and cytosol (Mullen et al.,

2012). Our data suggest that in Fh1KO MEFs, 2OG can be con-

verted to isocitrate by reversal of the IDH-catalyzed reaction,

but isocitrate cannot be further metabolized to citrate due to

impaired aconitase activity, possibly as a result of succination.

Hence, succination of ACO2 may prevent Fh1KO MEFs from

utilizing the reductive carboxylation pathway for citrate synthesis

as adopted by some cancer cell lines. Furthermore, the absence

of label in citrate suggests that both mitochondrial and cytosolic

aconitase are potentially inactive in Fh1KO MEFs (Figure 3F).

DISCUSSION

Here, we report the results of a proteomic screen to identify 2SC

targets in FH deficiency. We describe the succination of three

cysteine residues crucial for iron-sulfur cluster binding in the

active site of the Krebs cycle enzyme mitochondrial Aconitase2

(ACO2) in Fh1KO cells, which exhibit reduced aconitase activity

compared to Fh1WT cells. We have demonstrated that in vitro
MEFs

)TNSSYEDMGR-395 peptide (A) and at C451 in the 438-DVGGIVLANA(PEC)

2 in Fh1KO MEFs. Spectra are shown in direct comparison with the originally

ines detected in Fh1WT cells (lower panel). Selected fragments were assigned

n minus NH3; 0, fragment ion minus H2O; +, singly charged fragment ion; ++,

al mass (in brackets) and detected mass are given for each assigned fragment

ontain the modified cysteine residue are highlighted in red, whereas fragments

ent ions that include the modified cysteine, singly charged fragment ions are

6) modifications by 10.95 Da, whereas doubly charged fragment signals are
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Figure 2. Fumarate-Mediated Succination Inhibits ACO2 Activity In Vitro

(A) Crystal structure showing the active site of porcine ACO2 with the substrate citrate (pink) and [4Fe-4S] cluster (orange/yellow) bound. The three iron-binding

cysteine residues (C385, C447, and C451) are shown in cyan. Picture was created using PyMOL (Protein Data Bank ID code 1C96).

(B) Activity of porcine ACO2 preincubated with increasing concentrations of fumarate (0.1–150 mM) in 50 mM Tris-HCl (pH 7.4). Untreated ACO2, or ACO2

pretreated with the aconitase inhibitor oxalomalate, was used as a positive or negative control, respectively. Immunoblots for ACO2 and 2SC from the assay

mixtures are displayed beneath the corresponding fumarate concentration, and two film exposures are shown for 2SC (high and low).

(C and D) Representative (one of three triplicate MS analyses) extracted ion chromatograms for the succinated tryptic peptides containing C385 (C) and C448/

C451 (D) derived from porcine ACO2 purified from the aconitase assay mixture, showing the increase in succination with increasing fumarate concentration.

(E and F) CE-TOFMS analyses of fumarate concentrations in HLRCC tumors (E) and in Fh1-deficient kidneys.

All error bars indicate SEM. See also Figure S2.
inhibition of ACO2 is a direct consequence of dose-dependent

fumarate-mediated succination, particularly at R5 mM fuma-

rate, equivalent to concentrations measured in FH-deficient

tissues. Because tissue samples are a heterogeneous mix of

both control and FH-deleted cells, precise determination of intra-
696 Cell Reports 3, 689–700, March 28, 2013 ª2013 The Authors
cellular fumarate is difficult, and the actual concentrations in

these FH-deficient cells could be significantly underestimated.

Fumarate concentrations in subcellular compartments, e.g.,

mitochondria versus cytosol, could also be variable and differen-

tially affect local protein succination. Additionally, compared to



(legend on next page)
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the relatively simple in vitro situation, the catalytic activity of aco-

nitase in cells could be influenced by multiple components such

as cosubstrate and cofactor availability. Interestingly, we did

identify succination of proteins involved in iron-sulfur cluster

assembly in our proteomic screen, potentially further hindering

aconitase activity. Stable isotope tracer studies showed that

Fh1KO MEFs do not utilize the reductive carboxylation mecha-

nism for citrate synthesis, whichmay be a consequence of fuma-

rate-dependent succination of ACO2, adding a further layer

of complexity to the disruption of mitochondrial metabolism

caused by FH deficiency.

Cytosolic Aconitase1 (ACO1) also contains three iron-sulfur-

binding cysteine residues and is a bifunctional enzyme that

acts either as an iron response element (IRE)-binding protein

to regulate iron uptake, sequestration, and utilization or as the

cytosolic aconitase, depending on iron availability (Philpott

et al., 1994). Whether succination affects the IRE-binding

ability of ACO1 and, by inference, iron homeostasis in FH-

deficient cells is an interesting question that warrants future

investigation.

2SC has been described in aging and diabetes, and its func-

tional consequences have been reported for GAPDH and adipo-

nectin in addition to the KEAP1/NRF2 pathway (Adam et al.,

2011; Frizzell et al., 2009; Thomas et al., 2012). Our proteomic

screen for 2SC targets aims to expand our current knowledge

of the extent of this modification and its cellular impacts.

Despite the fact that our screen is biased toward abundant

proteins, it is significant that whereas proteins encompassing

diverse cellular pathways are targets for succination, around

half are involved in metabolism. A few proteins including the

iron-sulfur cluster assembly protein NFU1 and the thioredoxin-

dependent peroxide reductases are succinated on critical

cysteine residues, suggesting that succination may adversely

affect function in these targets. The thioether adduct generated

by fumarate modifications occurs nonenzymatically and is

believed to be irreversible (Alderson et al., 2006; Frizzell et al.,

2011, 2012). However, it is conceivable that 2SC may influence

signal transduction by targeting proteins that are cellular stress

sensors such as KEAP1. Alternatively, 2SC may compete with

other cysteine modifications such as S-nitrosylation and oxida-

tion to sulfinic acid to indirectly target other cellular signaling

events. Although the effects on individual proteins require closer

investigations, our data provide evidence that succination is

a significant posttranslational modification in FH deficiency

and a potential key mechanism linking multiple pathways that
Figure 3. Aconitase Activity Is Reduced in Fh1KO MEFs

(A) Aconitase activities of Fh1WT, Fh1KO, Fh1KO+FH, and Fh1KO+FHcyt MEF ce

used as a negative control.

(B) CE-TOFMS analyses of fumarate concentration in the four MEF cell lines.

(C) Extent of succination of ACO2 at C385 and C451/448 in the four MEF cell lines

(D) CE-TOFMS analyses confirmed significant differences between Fh1WT and K

malate, 2OG, isocitrate, and citrate.

(E) Mass isotopomer analysis of key Krebs cycle metabolites in Fh1WT and Fh1K

(F) Schematic of glutamine metabolism by the Krebs cycle in Fh1KO MEFs. Abb

ACO1 and ACO2, Aconitases 1 and 2; FH, fumarate hydratase; FUM, fumarate;

OAA, oxaloacetate; Succ, succinate; Succ-CoA, succinyl coenzyme A; SDH

dehydrogenase.

All error bars indicate SEM. See also Figure S3.
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may cause dysregulation of cell metabolism and contribute to

oncogenesis.

EXPERIMENTAL PROCEDURES

See also Extended Experimental Procedures.

Aconitase Assay

The aconitase assay is based on the protocol described in the Aconitase Assay

Kit (Cayman Chemical) with modifications. NADPH production was followed

by fluorescence (excitation 340 nm; emission of 465 nm) over 45 min at

37�C. Activation of pig heart aconitase and preparation of MEF cell lysates

followed the manufacturer’s protocol.

Proteomics and Mass Spectrometry

Cell fractionations were performed using Qproteome Mitochondria Isolation

Kit (QIAGEN), or as previously described (Adam et al., 2011). Kidney samples

were homogenized and sonicated in Urea-SDS buffer (O’Flaherty et al., 2010).

Protein extracts were separated by SDS-PAGE and processed for trypsin

digestion and LC-MS/MS analyses as previously described (Adam et al.,

2011). Database searches were performed against SwissProt (06/2011) or

International Protein Index (09/2012) database using Mascot (Perkins et al.,

1999) or CPFP 1.3.0 (Trudgian et al., 2010). For label-free quantitation of

succinated peptides, samples were analyzed in three technical replicates.

Relative quantitation was performed using Progenesis LC-MS v.4.0.

Correlation analysis was performed using GraphPad Prism v.5 assuming

Gaussian populations (Pearson) calculating two-tailed p values with a confi-

dence interval of 95%. Tissue and cell samples for metabolite analysis

by CE-TOFMS were prepared as described before (Adam et al., 2011;

Soga et al., 2006, 2009).

Mice and Human Tissue Samples

All procedures were conducted in line with American Association for Cancer

Research guidelines and performed under UK Home Office regulations after

approval by the Local Ethical Review Process at Oxford University. Anony-

mized human tumor and normal samples were collected with full ethical

approval (MREC 05/Q1605/66) as approved by the Oxford Centre for Histopa-

thology Research.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and Extended Experimental

Procedures and can be found with this article online at http://dx.doi.org/10.
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ll lysates normalized to cell number. The aconitase inhibitor oxalomalate was

determined by measuring abundance of the relevant peptides by LC-MS/MS.

O MEFs in the levels of the key Krebs cycle metabolites fumarate, succinate,

O MEFs cultured with [d5]glutamine for 24 hr.

reviations are as follows: Ac-CoA, acetyl coenzyme A; ACL, ATP citrate lyase;

Gln, glutamine; Glu, glutamate; IDH, isocitrate dehydrogenase; Mal, malate;

, succinate dehydrogenase; 2OG, 2-oxoglutarate; aKGDH, a-ketoglutarate
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