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a b s t r a c t

The Lagrange Multiplier (LM) and penalty methods are commonly used to enforce
incompressibility and compressibility in models of cardiac mechanics. In this paper we
show how both formulations may be equivalently thought of as a weakly penalized system
derived from the statically condensed Perturbed Lagrangian formulation, which may be
directly discretized maintaining the simplicity of penalty formulations with the conver-
gence characteristics of LM techniques. A modified Shamanskii–Newton–Raphson scheme
is introduced to enhance the nonlinear convergence of the weakly penalized system and,
exploiting its equivalence, modifications are developed for the penalty form. Focusing on
accuracy, we proceed to study the convergence behavior of these approaches using
different interpolation schemes for both a simple test problem and more complex models
of cardiac mechanics. Our results illustrate the well-known influence of locking
phenomena on the penalty approach (particularly for lower order schemes) and its effect
on accuracy for whole-cycle mechanics. Additionally, we verify that direct discretization
of the weakly penalized form produces similar convergence behavior to mixed formula-
tions while avoiding the use of an additional variable. Combining a simple structure which
allows the solution of computationally challenging problems with good convergence
characteristics, the weakly penalized form provides an accurate and efficient alternative
to incompressibility and compressibility in cardiac mechanics.
� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

The human heart is a remarkably complex organ, translating cellular ATP consumption into the systemic blood flow [1].
Over the last four decades, computational modeling of cardiac mechanics has evolved, incorporating biophysically-based
hyperelastic strain energy laws [2–5], anisotropic tissue structure [6–8], patient-specific geometries [9] and cellular activa-
tion [10] to effectively simulate the myocardial behavior assuming basic Newtonian physics [11]. Based on tunable param-
eters [12,13], cardiac models provide a framework for studying and assessing heart function, offering spatiotemporally
varying metrics– such as strain, stress, work and power– which are otherwise inaccessible clinically [14,15].

While cardiac modeling is capable of providing quantitative data of clinical relevance, a number of modeling questions
remain actively pursued in the community. An issue commonly discussed in cardiac mechanics is the choice of modeling
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myocardial tissue as an incompressible [16,3,17,4,18,19,5,20,21] or nearly incompressible [14,22–24] material. While this
choice is inherently based on tissue behavior which must be determined experimentally, both models continue to be used
either to model incompressible/nearly incompressible behavior or, in some cases, for numerical convenience.

A range of relevant numerical schemes have been applied in heart models, one of the most popular being the penalty
method [25,14,22,15,23]. An advantage of this approach is its simplified form, requiring only the solution of the tissue dis-
placement. However, when applied in the finite element method (FEM) framework, displacement-based formulations near
the incompressible limit exhibit locking leading to sub-optimal convergence rates and poor numerical approximations in
classic elastic models [26–30]. Critically, the penalty method lacks monotonic convergence to the incompressible solution
as the bulk modulus is increased, making it challenging to employ as an approximate model to an incompressible cardiac
material model.

The development of numerical strategies circumventing these issues has been a field of significant research effort in the
solid mechanics community. Among others, the B-Bar method introduced by Hughes [31] and its generalization to finite
strains [32,33], the reduced or selective integration technique [34,30,35], the augmented Lagrangian method [36,37], have
been successfully employed to enforce incompressibility while tackling the numerical difficulties and locking phenomena
associated with the penalty formulation. An alternative approach used extensively in solid mechanics, also known to allevi-
ate locking, is the class of multi-field variational principles, which gained popularity with the pioneering work of Herrmann
on isotropic linear elasticity [38]. Herrmann’s principle was also extended to orthotropic materials by Taylor [39] and Key
[40], to nonlinear formulations [41,42] and elasto-plastic applications [43].

The most common of these mixed formulations is the Lagrange Multiplier (LM) method, a two-field variational approach
which has been used widely to enforce incompressibility of the myocardium by introducing a variable to respresent the
hydrostatic pressure [16,17,4,19,44]. While the LM method is known to improve numerical convergence [45,46,29,47]
and avoid locking phenomena, the use of an additional variable results in increased computational cost and enhanced com-
plexity in the linear algebra involved, due to the indefinite nature of the resulting stiffness matrix [26,45].

The Perturbed Lagrangian (PL) formulation was introduced to address this issue, by augmenting the energy functional of
the LM approach with a penalty/compressibility term [48–50]. The PL is a two-field variational approach suitable for the
solution of nearly incompressible problems, where pressure and displacement are treated as independent variables. Suss-
man and Bathe introduced a generalized form of the PL approach, the u=p formulation, which has been used extensively
in the computational mechanics literature [51,52,48] and has also been applied in the myocardium [44]. Similarly, the well
established three-field Hu-Washizu formulation by Simo et al. [33] extends the PL formulation by introducing pressure and
dilatation as independent variables [37,46,51,53]. This approach has also been employed in cardiac mechanics [24] (though
this procedure comes with the cost of computing an additional variable). The use of a separate interpolation for the indepen-
dent variables, allows efficient and accurate approximations, alleviating the numerical difficulties associated with both the
penalty and LM methods. The efficiency of these methods was also enhanced with the use of discontinuous interpolation for
the pressure and dilatation fields (static condensation) [50,47,33,46] allowing the estimation of these fields on element level
and leading to a generalized displacement-only formulation. Further, Bercovier [50] proved that, for Herrmann’s principle,
the PL (and its statically condensed equivalent) converges monotonically to the incompressible problem as the bulk modulus
is increased. Nevertheless, as suggested by Sussman and Bathe [47], static condensation may exhibit convergence difficulties
during the Newton–Raphson procedure.

In this paper, we consider the statically condensed Perturbed Lagrangian formulation of Bercovier [50] and others [48,49],
which may be conveniently thought of as a weakly penalized form with an optional choice of projection operator. In this
generalized form, with an appropriate choice of the projection operator, we may choose to strengthen or weaken the con-
straint resulting in the PL, LM or penalty formulations. Using this generalization, we derive an estimate detailing the error
convergence of these methods (in a linear setting) and introduce modifications to a Newton-Raphson scheme [54,55] to sig-
nificantly improve nonlinear convergence properties for standard and weakly penalized formulations (particularly for high
bulk modulus). The scheme is further augmented to take advantage of a Shamanskii-type Newton scheme [54,55] boosting
computational performance by enabling re-use of the Jacobian matrix (and its inverses or preconditioners) estimated at pre-
vious time/loading steps. As this re-use is particularly sensitive to stiffness, we modify the scheme to effectively maintain
nonlinear convergence behavior. Further, we examine the direct numerical discretization of the weakly penalized form
which may be made efficient through the use of discontinuous projection operators. The weakly penalized form is then com-
pared with the mixed variational formulations (LM, PL), as well as the penalty method, showing that the modified form
maintains the convergence characteristics of the mixed variational forms and avoids locking behaviors observed in the pen-
alty method. This comparison is performed on a model left ventricle, which to the best of our knowledge is the first appli-
cation of this combination of the PL method and static condensation in cardiac mechanics. Further we verify the result
proven for linear problems in [50], showing that the error between the weakly penalized formulation and the incompressible
solution indeed decreases with a rate inversely proportional to the bulk modulus. As a result, the formulation enables mod-
eling of the myocardium as nearly incompressible or incompressible (with an error proportional to 1=k, with k being the bulk
modulus).

Below we expand on this approach to illustrate the general minimization problem (Section 2.1) and show how both
penalty and LM formulations may be thought of equivalently as weakly penalized constraints in the continuous setting
(Section 2.1.1). The basis for locking is then reviewed in Section 2.2, motivating the introduction of the weakly penalized
approach. The different convergence behavior of the various schemes is also illustrated through their error estimates at
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the solution of a linear incompressible problem (Section 2.4). We then introduce modifications to the mechanical system to
improve the nonlinear convergence behavior of the weakly penalized scheme for high values of the bulk modulus
(Section 2.5.3). Moreover, we modify the SNR scheme for the weakly penalized and penalty formulations to enable better
computational efficiency (Section 2.5.4). The numerical convergence of these different methods is then compared, showing
optimal convergence and locking phenomena in the various schemes [27,56] for a two-dimensional problem and a cardiac
model (Section 3). Finally, the LM, penalty and weakly penalized formulations are compared in terms of accuracy and
convergence for whole-cycle cardiac mechanics. Our results suggest that the weakly penalized form provides an accurate
and computationally efficient alternative to the LM, PL and penalty methods and can be applied successfully in the numerical
implementation of incompressible and nearly incompressible cardiac models (Section 4).

2. Methods

In this section we show how LM and Penalty formulations can be viewed uniformly through a weakly penalized form (PL)
(Section 2.1). Subsequently, we introduce the discretized forms, illustrating the deviation of the two schemes and resulting
locking phenomena (Section 2.2). These motivate the use of an alternative discretization strategy, leading to a displacement-
only formulation. The solution to this system is then demonstrated and optimized to accommodate the numerical stiffening
due to the weakly penalized terms.

2.1. Continuous minimization problem

Problems of static (or quasi-static) solid mechanics involve finding the deformation, u, of a body defined over a domain X
as shown in Fig. 1. Here, the body is under the action of a body force, f : X! Rd; d P 1, and some boundary traction
t : CN ! Rd.

The solution u is a function commonly sought in an appropriate function space X (usually X � H1ðXÞ or a space smooth
enough to ensure existence and uniqueness of the solution of the minimization problem [61,48]), subject to the Dirichlet
boundary condition ujCD

¼ g, i.e.
Fig. 1.
Dirichle
XD ¼ fv 2 Xjv jCD
¼ gg:
The displacement of the body may be obtained by the principle of virtual work, equivalent to the principle of stationary po-
tential energy [45]. Following the principle of stationary potential energy we seek to find a minimizer of the total potential
energy functional, P : XD ! R, describing the total potential energy of the body under consideration (see Fig. 1). Assuming
that the traction and body forces are not functions of the displacement u, then under static equilibrium, the total potential
energy for a hyperelastic body may be expressed as a sum of the internal and external potential energy as,
PðvÞ ¼ PintðvÞ þPextðvÞ; ð1Þ

PintðvÞ ¼
Z

X
WðvÞdV ; PextðvÞ ¼ �

Z
X

f � vdV �
Z
@X

t � vdA; ð2Þ
where W : X ! Rþ represents the strain energy function [45]. According to the principle of stationary potential energy, the
body will deform in a way that minimizes its total potential energy P. This problem can be expressed as,
PðuÞ ¼ inf
v2XD

PðvÞ: ð3Þ
In the case of incompressibility, the deformation is required to preserve the determinant of the deformation gradient Fv ,
Jv � 1 ¼ 0; Jv ¼ jFv j ¼ jrv þ Ij:
In this case, the solution is found [29], which satisfies,
PðuÞ ¼ inf
v2XJ

PðvÞ; ð4Þ

XJ ¼ fv 2 XDjJv � 1 ¼ 0; a:e: on Xg: ð5Þ
The undeformed and deformed body under consideration. Here X represents the reference state of the body, C ¼ CD [ CN its boundaries subject to
t and traction conditions, respectively.
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We note that as it is not, in general, straightforward to construct the space XJ it is often preferable to seek the solution in the
entire XD space.

2.1.1. Weakly penalized form and the penalty/LM/PL methods
For later comparisons, in this section we introduce a weakly penalized form of the mechanical problem and show its

equivalence with both penalty and LM formulations. Here we introduce the projection operator pW : L2ðXÞ !W which,
for any function g 2 L2ðXÞ, denotes the orthogonal projection onto W, i.e.
ðg � pWðgÞ; qÞ :¼
Z

X
½g � pWðgÞ�qdV :¼ 0; 8q 2W: ð6Þ
In this way, we may elect to represent g coarsely or finely by adjusting the selection of the space W (as we will discuss fur-
ther in the following sections). We may then introduce the weakly penalized total potential energy functional,
PPðvÞ ¼
Z

X
WðvÞ þ 1

2
k½pW ðJv � 1Þ�2dV þPextðvÞ; ð7Þ
where an additional penalty term has been added, representing the growth in energy resulting from material compression as
is typical for many penalty methods. However, the presence of the projection pW enables the selective weakening or
strengthening of the constraint by allowing it to hold weakly through Eq. (6). Clearly, when Jv 2W for any v 2 X (for exam-
ple, when W :¼ L2ðXÞ as is the case for the continuous mechanical system [48]), then
pWðJv � 1Þ ¼ Jv � 1 ð8Þ
and Eq. (7) reduces to the classic total potential energy functional,
PkðvÞ ¼
Z

X
WðvÞ þ 1

2
kðJv � 1Þ2dV þPextðvÞ; ð9Þ
where the k-dependent term denotes the volumetric penalty term often used in cardiac mechanics [25,23]. The Perturbed
Lagrangian formulation may be derived by introducing an additional variable, k 2W with,
k :¼ kpv
W : ð10Þ
Substituting the orthogonal projection with the added variable, and adding the Galerkin orthogonality condition (Eq. (6)) we
arrive at the PL functional [50,47,48,57],
Pkðv ; kÞ ¼
Z

X
WðvÞ þ kðJ � 1Þ � k2

2k
dV þPextðvÞ: ð11Þ
This general purpose formulation has been employed for the solution of nearly incompressible materials [47,50,48,49]
and cardiac mechanics [44]. Note that as k!1 the previous formulation becomes the classic LM method [26,29].

In the continuous setting, there is a solution u 2 X which satisfies,
PPðuÞ :¼ inf
v2X

PPðvÞ; ð12Þ

PkðuÞ :¼ inf
v2X

PkðvÞ; ð13Þ

Pkðu; kÞ :¼ inf
v2X

sup
q2W

Pkðv; qÞ ð14Þ
for all approaches and all values of k. However, this equivalence is often lost in the discrete setting as different strategies are
applied to discretize the function space, X, and the orthogonal projection, pW .

2.2. Finite element approximation

In the FEM framework used in the solution of Problems (12)–(14), the domain X is subdivided into a mesh of non-over-
lapping elements [56]. The displacement is then interpolated with functions in Xh � X, consisting of a set of piecewise poly-
nomials (Pku ) on the mesh T ¼ T ðXÞ, i.e.
Xh :¼ fvh 2 Cð�XÞj vhjs 2 Pku ; 8s 2 T ðXÞg;
where ku denotes the order of interpolation used for the displacement and C is the space of continuous vector functions. Let-
ting Uu be an Nu vector function comprised of the basis functions fUigNu

i¼1, the resulting displacement solution is then ex-
pressed as the weighted sum,
uh ¼ U �Uu; U 2 RNu : ð15Þ
In all approaches, the minimization of the total potential energy occurs over Xh � X.
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The primary point of departure between the penalty and PL formulations comes in the choice of orthogonal projection. In
the case of the penalty method, the orthogonal projection pW : L2ðXÞ !W remains on the continuous space W ¼ L2ðXÞ, leav-
ing the total potential energy Pk unchanged. In contrast, the PL approach given in Eqs. (11) and (14) requires a numerical
approximation of the pressure variable, k by kh, it is hence natural to introduce a discrete function space Wh �W , i.e.
Wh :¼ fqh 2 Cð�XÞj qhjs 2 Pkp ; 8s 2 T ðXÞg:
This is equivalent to introducing the projection operator pWh : L2ðXÞ !Wh which satisfies the Galerkin orthogonality condi-
tion (Eq. (6)) on Wh. This change means that pWh projects the incompressibility onto a discrete set of polynomials of degree
kp, effectively relaxing strict satisfaction of the constraint. The weakening of the constraint through the projection operator is
similar to reduced/selective integration techniques which also weaken the constraint on compressibility/incompressibility.
However, while these techniques have been proven consistent for specific quadrature and element schemes [26], proof is
required to ensure each scheme achieves an optimal rate of convergence. The spaces Xh and Wh for the weakly penalized
approach are often selected to satisfy the inf–sup condition (where we note kp < ku), which ensures uniqueness in the mul-
tiplier for all k [58,26,59–61]. Additionally, for appropriately selected spaces Wh– such as Qku �Qkp with ku ¼ kp þ 1– con-
vergence rates in the energy norm are optimal (i.e. Oðhku Þ).

It is well known that these two methods need not be equivalent in the discrete setting, as can also be confirmed by the
presence of locking phenomena in penalty applications [26,27]. These facts can also be observed through the dependence of
the methods on the penalty parameter k. As k!1, the PL becomes the classic LM method and the approximation spaces
reduce to the subsets,
Xh
k ¼ fvh 2 XhjpW ðJvh � 1Þ ¼ 0g; ð16Þ

Xh
k ¼ fvh 2 XhjpWh ðJvh � 1Þ ¼ 0g; ð17Þ
for the penalty and LM methods, respectively. These spaces are nested, i.e.
Xh
k # Xh

k # Xh; ð18Þ
illustrating the more restrictive subset of functions over which the minimization problem can be considered. As a conse-
quence, the space Xh

k is typically a small subset of Xh and can be too restrictive. This occurs as a small violation of the incom-
pressibility constraint can cause a significant increase in the strain energy even though the approximate solution may have a
minor degree of error from the true solution.

In contrast, while the LM approach effectively weakens the satisfaction of the constraint, it also has proven optimal con-
vergence rates when Xh and Wh are chosen to satisfy the inf–sup condition [26]. This circumvents over-constraining of the
approximation space, but comes at the expense of computing an additional variable.

2.3. Discrete weakly penalized form

In the discrete setting, the projection operator pWh : L2ðXÞ !Wh introduced in Eq. (6) can be written as,
ðg � ph
WðgÞ; qhÞ :¼ Q TðRg �MpÞ :¼ 0; 8qh 2Wh; ð19Þ
where qh ¼ Q �Uw is a test function in Wh;ph
WðgÞ ¼ p �Uw denotes the projection of g on Wh; M is the Wh� mass matrix,
½M�ij :¼
Z

X
/i

w /j
wdV ; /i

w;/
j
w 2Wh ð20Þ
and Rg is the weighted function over the test space Wh,
½RJ �j ¼
Z

X
/j

wgdV ; /j
w 2Wh: ð21Þ
Considering the introduced term in Eq. (7), we may write
Z
X

1
2

k½pWðJv � 1Þ�2dV ¼ 1
2

kpT Mp; ð22Þ
where here p �Uw ¼ pðJvh � 1Þ. Following from Eq. (19) and noting the requirement that the projection holds for qh 2Wh is
equivalent to requiring it hold for all Q 2 RNw (where Nw is the dimension of the discrete space Wh), p can be seen to satisfy
the linear system,
Mp ¼ RJ ; ð23Þ
where M is given in Eq. (20)
½RJ �j ¼
Z

X
/j

wðJ
h
v � 1ÞdV ; /j

w 2Wh: ð24Þ
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Inverting M in Eq. (23) and substituting into Eq. (22), the weakly penalized system (Eq. (7)) may be written in discrete form
as,
1 In t
PPðvhÞ ¼
Z

X
WðvhÞdV þ 1

2
kRT

J M�1RJ þPextðvhÞ: ð25Þ
This form, also used by Bercovier [50] and others [48,49], reduces the system into a single minimization problem on Xh,
eliminating the pressure variable. However, the presence of M�1 requires the solve of Eq. (23), incuring similar computa-
tional cost as computing the PL solution. Considering the discrete weak form and its solution (as we show later), this weakly
penalized term requires matrix–matrix products which are (1) expensive, (2) nonlinearly dependent on the solution and (3)
generally of a more dense sparsity than the standard penalty system.

These practical issues presented stem from the choice of global orthogonal projection, pWh , which unfortunately compli-
cates the computation. However, the choice of pWh is, generally speaking, arbitrary and ideally should balance the need for
accuracy with ease of computation. An alternative approach is to use a local orthogonal projection, pWh

loc
, satisfying
Mspl ¼ RJ;s; 8s 2 T ; ð26Þ
where Ms and RJ;s are the mass matrix and the weighted constraint vectors on the element s. That is, the local orthogonal
projection, pWh

loc
, satisfies Eq. (6) on the piecewise discontinuous space,
Wh
loc :¼ fqh 2 L2ðXÞj qhjs 2 Pkp ; 8s 2 T ðXÞg:
Using this locally continuous, but globally discontinuous interpolation space, the total potential energy for the body
becomes,
PPðvhÞ ¼
Z

X
WðvhÞdV þ k

2

X
s2T

RT
J;sM�1

s RJ;s þPextðvhÞ: ð27Þ
This localized projection, also known as static condensation has been employed by Sussman and Bathe [47], Bercovier
[50] and Simo et al. [33,37] to enhance the efficiency of the formulation, while avoiding over-constraining of the approxima-
tion space and locking phenomena. Indeed, by localizing the projection, computations remain on the element level, reducing
the computational cost relative to Eq. (25). Moreover, localization of the penalty term preserves sparsity of the penalty sys-
tem, significantly reducing sparsity to that resulting from Eq. (25). These practical improvements come at the cost of restrict-
ing the approximation space. Again, as we send k!1, the approximation space of the weakly penalized formulation in Eq.
(27) is restricted to the space,
Xh
P ¼ fvh 2 Xhjpvh

Wh
loc
¼ 0g:
which we note is,
Xh
k # Xh

P # Xh
k :
Note that in a practical setting, as k can not be infinite, an augmented Lagrangian iterative scheme can be applied to itera-
tively increase k. In this way, the weakly penalized form can provide equivalent results to the incompressible LM method.

Though the weakly penalized form in Eq. (27) does not mandate the inf–sup condition, usage of inf–sup stable spaces
(such as Nicolaides–Boland [60] or Crouzeix–Raviart [62] elements) with globally discontinuous pressure ensures optimal
convergence. However, as we demonstrate, even for some spaces which are not inf–sup stable (for instance Q2 �Q1

loc), this
weakening of the constraint is sufficient to restore convergence.1

2.4. Error estimates for the generalized weakly penalized form

Using the generalized weakly penalized form, Appendix B shows an error estimate in Lemma 1 in the case of a linear elas-
tic model. Here, the projection and bulk modulus in the discrete model ðph; khÞ are left general, enabling extension to the
methods (LM, PL, and Penalty) considered in the paper. From this analysis, we observe in Lemma 1 (when kh ¼ k) that
the continuous model (u ¼ u� þ ð1=kÞu?) and discrete model satisfy the estimate,
ku� uhk1 6 C inf
yh2Xh

0;div

zh2

�
Xh

0;div

�? kp
hðr � u?Þ �r � u?k þ ku� � yhk1 þ

1
k
þ 1

� �
ku? � zhk1

� �
; ð28Þ
(see Appendix B). Here, the estimate shows the approximation depends on three principle terms which relate the error in-
curred due to the projection as well as the error approximating divergence free and non-divergence free components of the
solution. Importantly, the bound depends on the subspaces Xh

0;div and ðXh
0;div Þ

?
which, in general do not exhibit straightfor-

ward convergence properties. However, as demonstrated in Corollary 1 of Appendix B, if ph projects L2ðXÞ to a discrete space
his paper, we consider only quadrilateral and hexahedral element types.
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which satisfies the inf–sup condition [50,59,26,61], the estimate can be extended so the infimum is taken over Xh
0. This factor

– which is exploited in the LM and PL formulations (as well as the weakly penalized form suggested above) – enables
straightforward application of standard estimates derived from interpolation theory.

However, in the case of the penalty method, p : L2ðXÞ ! L2ðXÞ remains the continuous L2-projection, limiting the exten-
sion discussed. While some simplification can be made (see Corollary 2), the estimate requires use of Xh

0;div which may be
prohibitive, limiting the convergence behavior. While more straightforward estimates may be derived (see for example
[36]), in these the scaling constant C depends on k.

These results are in agreement with the the numerical results presented later in this paper.
2.5. Discrete weak form of the weakly penalized formulation

This section deals with the weak form of the weakly penalized formulation and the modifications introduced in the resid-
ual evaluation to enable improved nonlinear convergence and better performance of the SNR scheme. The discrete weak
form for the weakly penalized formulation can be obtained by requiring that the directional derivative of the total potential
energy functional vanishes in all arbitrary directions duh 2 Xh

0 at uh, i.e.
DPPðuhÞ½duh� ¼ 0; 8duh 2 Xh
0; ð29Þ
with Xh
0 the homogeneous zero Dirichlet subspace of Xh. Following this procedure, the discrete weak form can be written in

operator notation as,
Rðuh; duhÞ :¼ Aðuh; duhÞ þ Cðuh; duhÞ � FðduhÞ ¼ 0; ð30Þ
where R is the residual function and the operators A; F, and C are defined as,
Aðuh; duhÞ ¼
Z

X
FhSh : rduhdV ;

FðduhÞ ¼
Z

X
f � duhdV þ

Z
@X

t � duhdA;

Cðuh; duhÞ ¼ k
X
s2T

dUT
sBT

sM�1
s RJ;s;
where Fh ¼ ruh þ I and Sh are the discrete deformation gradient and second Piola stress tensors, respectively [45]. Here dUs

represents the local basis coefficients for duh on the element and the element matrix Bs denotes the linearized constraint
derived from the PL functional, i.e.
½Bs�ij ¼ Bsð/i
w;u

h;/j
uÞ ¼

Z
s

/i
wJuh F�T

h : r/j
udV ; ð31Þ
with ð/i
w;/

j
uÞ 2Wh

loc � Xh. Note that Ms and RJ;s are identical to those in Eq. (20) and (24) with /i
w 2Wh

loc .
The weak forms for the penalty, LM and PL formulations can be derived similarly as outlined in Appendix A.

2.5.1. Nonlinear solution for the weakly penalized problem
In order to solve the mechanical system introduced in Eq. (30) (as well as the others discussed in the Appendix A), we look

to use the global Shamanskii–Newton–Raphson (SNR) method [54]. This method has been shown to be effective for prob-
lems in fluid–structure interaction [55], enabling faster computation by re-using the Jacobian matrix over multiple time/load
steps. Following the procedure outlined in [55], on the nth SNR iteration we update each subsequent guess of the solution,
uh ¼ Un �Uu, using the iterative formula,
Unþ1 ¼ Un þ dUn; dUn ¼ �an JðUbÞ
h i�1

RðUnÞ: ð32Þ
Here Un denotes the basis weights at the nth iteration, dUn the update vector, and R and J are the residual and Jacobian,
respectively, defined in Eq. (33).
½RðUnÞ�i ¼ RðUn � /u;/
i
uÞ; ½JðUnÞ�ij �

@RðUn � /u;/
i
uÞ

@Un
j

: ð33Þ
The key distinction between the Newton–Raphson method, global Newton–Raphson method and SNR method introduced
in Eq. (32) are the parameters an and b. In classical Newton–Raphson, these parameters play no role in the update process
(in this case ðan; bÞ ¼ ð1;nÞ). The global Newton–Raphson scheme, however, uses the parameter an 2 ½0;1� to scale the
descent direction to minimize kRðUnþ1Þk and ensure that kRðUnþ1Þk 6 kRðUnÞk, i.e. that the residual decays (in this case
b ¼ n).
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Algorithm 1. Shamanskii–Newton–Raphson (SNR)

Given initial guess U0; b, and S0. Compute RðU0Þ, and set n ¼ 0.
while SnkRðUnÞk > TOL

if (b ¼ n) {Compute JðUnÞ and ½JðUnÞ��1 (or preconditioner)}
Solve JðUbÞdU 0 ¼ �RðUnÞ.
Find minfkRðUn þ andU 0Þk; an 2 ½0;1�g.
Set dUn ¼ anU 0;Unþ1 ¼ Un þ dUn.

if (kRðUnþ1Þk > cSnkRðUnÞk or n > ITER) {Set b ¼ nþ 1}
Set n ¼ nþ 1, and Sn ¼ 1

end while

In constrast, the SNR method shown in Algorithm 1 combines the minimization procedure with a re-use scheme, where
b 6 n denotes the use of a Jacobian matrix determined at a previous load step/iteration. The selection of b is based on the
convergence characteristics governed by c; Sn and ITER.2 Here c 2 ð0;1� governs the degree of residual decrease required to
continue using the currently stored Jacobian. ITER may also signal re-computation and enables a cap on the degree of re-use.
Finally, the parameters S0 is used to cope with stiff problems which, due to Dirichlet conditions, may see initial increases in
the residual computation.

2.5.2. Jacobian and residual construction for the weakly penalized problem
As both penalty and LM formulations have been outlined elsewhere, here we focus on the Jacobian and residual evalua-

tions for the weakly penalized approach. Note that J 2 RNu�Nu and R 2 RNu may be written as,
2 Def
3 Not
JðUbÞ ¼ AsðUbÞ þ CsðUbÞ; ð34Þ
RðUnÞ ¼ RA;sðUnÞ þ RP;sðUnÞ; ð35Þ
where is the FEM assembly operator, s 2 T denotes specific elements, the subscript s denotes vector, matrices or oper-
ators constructed on the element and RA;s and RP;s are element-level residual contributions stemming from the weakly
penalized term, RP , and all other terms, RA. Introducing a short-hand notation, i.e. Cb

s ¼ CsðUbÞ, we can express the ele-
ment-level Jacobian contributions As and Cs as,
½Ab
s�ij ¼

1
�

Asðuh
b þ �/

j
u;/iÞ � Fsðuh

b þ �/
j
u;/iÞ � Asðuh

b � �/
j
u;/iÞ þ Fsðuh

b � �/
j
u;/iÞ

h i
; ð36Þ

Cb
s ¼ k½Bb

s�
T
M�1

s Bb
s; ð37Þ

½Rn
s�j ¼ Asðuh

n;/
j
uÞ � Fsð/j

uÞ; ð38Þ

Rn
P;s ¼ k½Bn

s �
T M�1

s Rn
J;s; ð39Þ
The element-level matrix As denotes those terms resulting from the elasticity stress/boundary contributions3 and is evalu-
ated using central finite differencing (typically � ¼ 10�4h, where h is the mesh size). Cs denotes those terms which result from
the weakly penalized form. Here we assume that Bs, defined in Eq. (31), is independent of u when we linearize the C operator
introduced in Section 2.5. This linearization does not seem to impact convergence of the Newton scheme and preserves sym-
metric positive semi-definiteness of the weakly penalized matrix term. As we see, Cs is comprised of the local element mass
matrix Ms and the linearized constraint equation Bs introduced in the previous section. We note that Ms and its inverse are
linear and thus may be computed once for the entire simulation. On the other hand, the linearized constraint must be re-com-
puted due to its nonlinear dependence on the solution. However, computing this matrix is quick as it does not require
differencing.

2.5.3. Residual modifications for the nonlinear solve of the weakly penalized system
As mentioned previously, the weakly penalized system can be thought of as a generalized formulation which can result in

the PL, penalty or statically condensed PL formulations depending on the choice of the projection operator. The equivalence
of these methods under the weakly penalized regime, allows us to combine and take advantage of the good characteristics of
each method. For instance, the weakly penalized formulation combines the simplified structure of the penalty method with
the convergence characteristics of the PL formulation. However, due to the stiffness of the linear system at high values of the
bulk modulus, the penalized formulations (classic penalty/weakly penalized) exhibit deteriorated nonlinear convergence.
This stands in stark contrast to the PL method which (for inf–sup stable schemes) exhibits fast convergence even for high
bulk modulus. However, we observe that, when the choice of ph provides equivalence with the discrete PL method, poor
nonlinear convergence is observed though, in principle, the convergence should be similar. Examining the update formulae
ault values used c ¼ 3=4; S1 ¼ 100 for stiff problems, and ITER ¼ 15.
e that, as the traction t typically depends on the physical domain, the operator Fs often depends on u and is included in the Jacobian.
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for both weakly penalized and PL approaches (see Appendix C), we observe that deteriorated convergence stems from: (1)
initial residual amplification, and (2) the amplification of the residual.

The first factor, mentioned in Section 2.5.1, results from non-monotonicity in the residual. This manifests particularly
early during the nonlinear solve, where the initial residual becomes amplified after the first iteration. This is particularly evi-
dent with Dirichlet conditions on a stiff material, where the norm of the boundary displacement (for example) may be much
smaller than the updated residual due to stiffness in the material. This issue which is not observed in the PL solution, is cir-
cumvented in the Newton–Raphson procedure and the SNR procedure outlined in Algorithm 1 by enabling an initial ampli-
fication of the residual and relaxing strict requirements on monotonicity.

Less trivial issue to address is the amplification of the residual resulting from large k, which can lead to poor convergence
or stalling in the iterative solve. This increased residual, due to strong dependence on the weakly penalized term, often does
not imply divergence but rather results from a k-dependent scaling of the projection problem and its nonlinear dependence
on uh as shown in Appendix C. Based on Eq. (C.7) (and choosing b ¼ n), we may re-write the weakly penalized residual con-
tribution in terms of the linearized guess and a remainder,
Rn
P;s ¼ RP� ;s þ k½Bn

s �
T Re;s; ð40Þ

RP� ;s ¼ k½Bn
s�

T M�1
s ðR

n�1
J;s þ Bn�1

s dUn�1
s Þ; ð41Þ

Re;s ¼ M�1
s ðR

n
J;s � Rn�1

J;s � Bn�1
s dUn�1

s Þ: ð42Þ
Here the first term approximates the current linearized guess of the projection, while the second examines how well the
current guess satisfies the projection problem. In other words, the first term denotes the hydrostatic contribution to momen-
tum, while the second represents the error remaining in the projection problem amplified by the bulk modulus k. For large k,
the later term can become disproportionately scaled, making nonlinear convergence more challenging. Moreover, this issue
is avoided in the PL formulation where the hydrostatic constraint is not scaled by k as can be seen in the residual terms of Eq.
(C.3).

To circumvent this, we modify the Newton–Raphson scheme to measure convergence of kRþ RP� k instead of kRþ RPk.
Clearly, kRn

P� ;s � Rn
P;sk ! 0 as kdUn

sk ! 0; however, measuring convergence of RP� avoids issues due to high bulk modulus.
Further, extending this form to the Penalty formulation, we must select the projection ph : L2ðXÞ ! L2ðXÞ. As, in this case,
the rank of M is no longer finite dimensional, we may instead write the modified Penalty form in its equivalent integral
form, i.e.
Rn
P;s ¼ RP� ;s þ Re;s; ð43Þ

ðRP� ;sÞi ¼
Z

X
kðJn�1 þ Jn�1ðFn�1

h Þ�T
: rduh;n�1ÞJnðFn

hÞ
�T

: r/idV ; ð44Þ

ðRe;sÞi ¼
Z

X
kðJn � Jn�1 � Jn�1ðFn�1

h Þ�T
: rduh;n�1ÞJnðFn

hÞ
�T

: r/idV : ð45Þ
Similarly to the modifications introduced in the weakly penalized approach, in the modified penalty formulation we mea-
sure the convergence of kRþ RP� k instead of kRþ RPk. This avoids the amplification of the error in the second term of the
residual, allowing better nonlinear convergence of the scheme.

2.5.4. Residual modifications for the SNR solve of the weakly penalized system
While the Shamanskii–Newton–Raphson scheme can significantly enhance performance of the PL scheme, acceleration in

the SNR approach for penalized methods is minimal or even worse than standard Global Newton–Raphson. This deteriora-
tion in performance is due, predominantly, to the stiffness of the system for high k and the inevitable inaccuracies introduced
in the descent direction by the re-used Jacobian. In contrast, this deterioration in performance is not observed in both PL and
LM formulations, which can take significant advantage of matrix re-use (as we will show). Once more, by examining the
equivalence between weakly penalized and PL formulations (see Appendix C), we observe this deterioration may be circum-
vented using the modified form,
Rn
P;s ¼ RP� ;s þ k½Bb

s�
T
Re;s; ð46Þ

RP� ;s ¼ k½Bn
s�

T M�1
s ðR

n�1
J;s þ Bb

sdUn�1
s Þ; ð47Þ

Re;s ¼ M�1
s ðR

n
J;s � Rn�1

J;s � Bb
sdUn�1

s Þ: ð48Þ
Note that, as kdUnk ! 0, the difference in the constraint residual kRn
J;s � Rn�1

J;s k ! 0 and as a result,
Rn
P;s ! k½Bn

s�
T M�1

s Rn
J;s;
which represents the standard residual resulting from Eq. (30). That is, as we converge, the modified residual RP;s converges
to that given by evaluating C. Further, we note that if b ¼ n, the first term in the definition RP;s drops away, leaving us with
the expected residual.
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The modifications we introduced to the residual of the weakly penalized formulation can also be applied in the penalty
method to improve its nonlinear convergence behavior by once more selecting the projection operator ph : L2ðXÞ ! L2ðXÞ
and using the equivalence of the weakly penalized/penalty forms. Expressing these modifications in integral form, we
may write the modified Penalty form with residuals,
Fig. 2.
(side w
(DOFS)
Rn
k;s ¼ Rk� ;s þ Rek;s; ð49Þ

ðRP� ;sÞi ¼
Z

X
kðJn�1 þ JbðFb

hÞ
�T

: rduh;n�1ÞJnðFn
hÞ
�T

: r/idV ; ð50Þ

ðRe;sÞi ¼
Z

X
kðJn � Jn�1 � JbðFb

hÞ
�T

: rduh;n�1ÞJbðFb
hÞ
�T

: r/idV : ð51Þ
With the introduced modifications in the residual monitored for convergence, the modified penalty method is able to signif-
icantly exploit matrix re-use, and substantially improve its computational efficiency.

3. Results

In this section we study the convergence behavior of the LM, PL, penalty and weakly penalized formulations outlined in
Section 2, in the solution of incompressible mechanics problems, for varying values of k. Furthermore, the PL, penalty and
weakly penalized approaches are compared on nearly-incompressible solid mechanics problems, assuming various values
for the bulk modulus.

3.1. Mechanical tests

3.1.1. Elongation of a two-dimensional square domain
The convergence behavior of the LM, penalty and weakly penalized methods was compared on the simple case of the

stretch of a square domain (Fig. 2(a)). The body was assumed to be made of a Neo-Hookean material, described by the devi-
atoric strain energy/Second-Piola stress tensor [45],
WðCÞ ¼ l
2

IC

III1=d
C

� d

 !
; S ¼ l

III1=d
C

I � IC

d
C�1

� �
; ð52Þ
where the material parameter l is analogous to the shear modulus of linear elasticity, C is the right Cauchy–Green defor-
mation tensor, I is the unity tensor, IC ¼ trðCÞ and IIIC ¼ det C are the first and third invariants of C, and d is the dimension
of the domain (in our case d ¼ 2).

The domain was discretized using six different meshes of inf–sup stable Q2 �Q1 Taylor–Hood quadrilateral elements
[26]. For the weakly penalized formulation, a quadratic interpolation was used for the displacement field and a discontinu-
ous linear interpolation was used for the pressure. The actual solution was approximated using the LM and PL solution (for
the incompressible and nearly-incompressible comparison respectively) on a finer mesh (mesh7), with a cubic interpolation
for the displacement and a quadratic interpolation for the pressure. Fig. 2(b) presents the number of elements in all seven
meshes, and the corresponding degrees of freedom when the LM, PL, penalty and weakly penalized methods were used.

3.1.2. Cardiac mechanics in the left ventricle
The three methods were tested on a model of the passive inflation of a left ventricle under diastolic loading conditions.

The left ventricle (LV) was modeled as a thick-walled truncated ellipsoid (Fig. 3(a)). A standard generic heterogeneous fiber
field was used to represent the structure of the tissue [7], where the fiber angle varied linearly between 60	 and �60	, from
endocardium to epicardium [63].

Several hyperelastic constitutive laws have been proposed to model the myocardial tissue. In this work, the myocardium
was modeled using the transversely isotropic exponential law introduced by Guccione et al. [3], a model used frequently in
(a)

Mesh 1 2 3 4 5 6 7

no. elem. 16 64 256 1,024 4,096 16,384 262,144
no. DOFS 187 659 2,467 9,539 37,507 148,739 5,875,363
no. DOFS 162 578 2,178 8,450 33,282 132,098 4,924,738

(b)

Discretization of the two-dimensional square domain: (a) A Neohookean material in a square domain (1� 1) under no slip (bottom edge), no traction
alls), and vertical displacement of 20% (top edge). The shear modulus of l ¼ 100 Pa was used. (b) Number of elements and degrees of freedom
in each discretization for the (y) LM/PL and (z) weakly penalized/penalty methods.



Fig. 3. Discretization of the cardiac model: (a) The idealized LV was modeled as a thick-walled ellipsoid truncated at 3
4 of the total height. Typical cardiac

dimensions were used (semi-major axis=8cm, semi-minor axis=5:5 cm, wall thickness= 0:5 cm at the apex, 1 cm at the base). The red and blue curves
denote the epicardium (fepi) and endocardium (fendo) fiber directions [63,7], respectively. Zero traction condition was applied on the epicardial surface, and
the base was held fixed. (b) Number of elements and degrees of freedom (DOFS) in each discretization and error of the three methods when used in the
cardiac cycle test (k ¼ 107 for the penalty (PEN) and weakly penalized (WP) methods). (For interpretation of the references to colour in this figure caption,
the reader is referred to the web version of this article.)
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the literature.4 This constitutive law is defined with respect to the fiber coordinate system where a coordinate system aligned
with local tissue structure is defined everywhere in the material by orthogonal fiber f̂ , sheet ŝ, and sheet normal n̂ unit vectors
[5,11]. Letting,
4 The
it is not
reparam
Evw ¼ E : ðv̂ 
 ŵÞ; v̂; ŵ 2 ff̂ ; ŝ; n̂g; ð53Þ
denote the components of strain aligned with the local tissue structure directions, then the fiber oriented Green strain is,
EF ¼ Q T EQ ¼
Eff Efs Efn

Esf Ess Esn

Enf Ens Enn

0B@
1CA; ð54Þ
with Q ¼ ½f̂ ; ŝ; n̂�. The strain energy and second Piola stress tensor may then be written as [3],
WðEÞ ¼ C
2
ðeQ � 1Þ; Q ¼ ðA 	 EFÞ : EF ;

S ¼ CeQ QðA 	 EFÞQ T ;
where A stores the material parameters governing the stress response to strain in fiber/sheet/normal directions, i.e.
A ¼
bf bfs bfs

bfs bt bt

bfs bt bt

0B@
1CA: ð55Þ
The parameters used were C ¼ 1760Pa; bf ¼ 18:5; bt ¼ 3:58; bfs ¼ 1:63 [25]. The endocardial surface of the ventricular model
was passively loaded to 3kPa (22:5 mm Hg), to cover normal and pathological LV functions at end diastole. The LV was in-
flated using 150 equal load steps, by setting the boundary traction t equal to the product of the pressure and the deformed
surface normal.

In order to simulate a cardiac cycle, the cardiac model was modified to include myocardial contraction through an
active tension generation model [10]. Active tension generation was incorporated into the cardiac model by the addition
of the active stress in the fiber direction of the stress tensor. The cardiac model was also coupled to a Windkessel model
representing the systemic circulation using the parameters given by Korakianitis et al. [64]. The coupling was enabled
through the use of a Lagrange Multiplier which enforces the same rate of change of LV volume in the two models [65].
original formulation proposed by Guccione et al. does not use the isochoric split of the deformation gradient [44]. Although this might incur some error,
expected to alter the trend of the results presented in this work, therefore the original version of the constitutive law was used, avoiding the required
eterization of the isochoric version.
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The LV was discretized using four different meshes of hexahedral elements (Fig. 3(b)). On the first three discretizations, a
quadratic interpolation was used for the displacement. The pressure field was interpolated using linear continuous (for the
LM/PL methods) and discontinuous (for the weakly penalized formulation) Lagrange polynomials. In the cardiac tests the
results on the first three meshes were compared with the LM and PL solution on mesh4 (for the incompressible and com-
pressible comparison respectively), where a quadratic-linear interpolation scheme was employed.

3.2. Numerical solution

The solid mechanics tests presented in Section 3.1 were used to test the convergence behavior of the methods discussed.
The convergence rate of each method was acquired by observing the change in the error between a high resolution bench-
mark solution and the approximate solution, with mesh refinement. As compressible methods may be selected as an approx-
imation to incompressible behavior, we tested the convergence characteristics of the penalty and weakly penalized
approaches to the incompressible LM solution (i.e. k ¼ 1 in Eq. (11)). We also examined the ability of these approaches
to model compressible behavior, comparing the results with a fine grid compressible solution(s) (PL solution(s)). The error
tolerance for these tests was set to 1� 10�9.

The problems under consideration were implemented in CHeart –a multi-physics software tool based on [66–68,55] and
expanded by the CHeart team at KCL. All problems were solved on a Dell OPTIPLEX 990, quad-core (Intel

�
Core™ i7–2600

CPU @ 3.40 GHz), on an 2.1 GHz AMD Opteron™ Interlagos 32 processor and on an SGI with 640 2.67 GHz processors (Intel
�

Xeon
�

CPU E7–8837).

3.3. Numerical results for the convergence rates

The LM, penalty and weakly penalized formulations were initially compared to the incompressible formulation of the
elongation problem (Section 3.1.1). Fig. 4 compares the error of the penalty and weakly penalized methods in the solution
of the incompressible elongation problem measured over the entire domain as well as a horizontal patch excluding the cor-
ners (where singularities in the solution occur). Finally, the importance of interpolation order is highlighted in Fig. 5, where
linear interpolation was used for both penalty and weakly penalized formulations (where the local orthogonal projection
was selected as the set of piecewise-discontinuous constants).

Similar results can be observed in the passive inflation problem detailed in Section 3.1.2. Here convergence of the L2-norm
displacement error in the different methods is shown in Fig. 6 for both approximations to the fine grid incompressible (for
k 2 ½104;107� Pa) and compressible passive inflation problems (with k ¼ 104 Pa and k ¼ 107 Pa). The LM, penalty and weakly
penalized methods were also compared on the cardiac cycle model showing consistent results to those illustrated in the pas-
sive inflation test. Representative results of this comparison are illustrated in Fig. 3(b), while Fig. 7(a) illustrates convergence
of the weakly penalized pressure–volume loops with mesh refinement.

Examining the different effects of these methods on cardiac mechanics, we solved each model over a single cardiac cycle,
comparing the differences in their behavior, using the LM method as the point of reference. The cardiac cycle was solved on
(a) (b) (c)

Fig. 4. Comparison of the convergence behavior of the 3 methods on the two-dimensional elongation problem (the slope of these curves is denoted by a):
The error between the (a) penalty and (b) weakly penalized approaches (u) and the incompressible fine grid solution (uinc) for six different values of the bulk
modulus k. Convergence of the LM method is shown in black for comparison, whereas the red line represents the highest value of k. (c) Illustration of the
error for penalty/weakly penalized (k ¼ 107 Pa) approaches measured over a subset of the domain excluding the region around the four corners of the
square.



Fig. 5. Comparison of the convergence behavior of the penalty and weakly penalized formulations when a lower order interpolation scheme is used: The
errors between the (red) penalty and (black) weakly penalized forms (u) and the fine grid solution to the incompressible (uinc) elongation problem using
linear interpolations are illustrated. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
article.)

(a) (b)

(c) (d)

Fig. 6. Comparison of the L2 norm error of the various formulations compared to fine grid (a, b) incompressible and (c, d) compressible solutions of the
passive inflation problem: (Top) Comparison as an approximation to the incompressible problem (LM solution) for (a) penalty and (b) weakly penalized
methods for different k values. (Bottom) Comparison as an approximation to the compressible problem for PL, penalty and weakly penalized (WP) forms
with (c) k ¼ 104 Pa and (d) k ¼ 107 Pa. a denotes the slope of the LM and PL curves.
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Fig. 7. Comparison over the cardiac cycle: (a) Display of the pressure–volume loops of the weakly penalized solution of the cardiac cycle on the first three
meshes. These pressure–volume loops are converging to the pressure–volume loop of the LM solution on mesh4. (b) The L2 norm (top) and H1 semi-norm
(bottom) comparison of the displacement error between the penalty and weakly penalized formulations (k ¼ 107) in different phases of the cardiac cycle on
mesh2. Letters A, B, C, D map the time in cycle (b) to cardiac phase on the pressure–volume loop (a).
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an intermediate mesh (mesh2), using a quadratic-linear interpolation scheme for the displacement and pressure variables.
Fig. 7 illustrates the pressure–volume loop derived from the coupled Windkessel-ventricle model as well as the differences
between the LM model and both penalty and weakly penalized methods (with k ¼ 107) throughout the cycle. Fig. 9 shows
the fiber strain, Eff of the LM method, at the point where the most significant variations are observed (t ¼ 361 ms after end
diastole) as well as the absolute difference in fiber strain between the LM solution on every mesh and the respective penalty
and weakly penalized approximations.
3.4. Numerical results for the efficiency of the different formulations

The PL, penalty and weakly penalized formulations were compared in terms of their nonlinear convergence behavior.
Representative values for the number of iterations of the Newton–Rapson scheme, the number of Jacobian matrix compu-
tations (and their respective times) along with the linear solution time and total time are presented in Table 1. The improve-
ment in the efficiency of the different methods when the SNR scheme is applied is presented as well. Finally, the effect of the
modifications we introduced in the SNR scheme for the penalty method can be deduced as the table compares the applica-
tion of the SNR scheme to the penalty method with and without the introduced modifications. Note that although not pre-
sented here, the nonlinear behavior of the weakly penalized system when the SNR is applied without the introduced
modifications is similar to that of the penalty method without the introduced modifications (PEN). Similar observations
can be made using Fig. 8 which compares the number of Jacobian and residual computations when the classic Newton–
Raphson and the SNR scheme are used for the different methods.
Table 1
Comparison of average number of Newton–Raphson iterations and Jacobian computations per load step as well as their respective average times between
Newton–Raphson and Shamanskii–Newton–Raphson schemes. The efficiency of the SNR scheme with (PEN-MOD) and without (PEN) the introduced
modifications on the penalty method is presented as well. The total solve time per load step and the total time per load step are illustrated as well. This
comparison was performed on the passive inflation test (Section 3.1.2) on mesh2 (k ¼ 107 for the penalty, weakly penalized and Perturbed Lagrangian (PL)
methods), the simulations were run on a single processor and a direct solver was used.

J compute time [s]a J computationsa R compute time [s]a R Computations a Solve time [s]a Total time [s]a

Newton–Raphson
PEN 181.55 4 1.93 4 47.51 231.13
WP 242.05 3.81 2.42 3.81 41.46 286.06
PL 246.77 3.88 2.49 3.88 45.36 294.75

Shamanskii–Newton–Raphson
PEN 25.80 0.46 11.67 10.82 7.2 44.81
PEN-MOD 10.14 0.113 14.07 9.51 1.76 26.08
WP-MOD 3.95 0.047 13.19 9.79 1.18 18.47
PL 4.66 0.053 13.43 9.88 1.37 19.61

a Times/iterations given as the average per load step.
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4. Discussion

4.1. Comparison of the methods for modeling incompressibility

Examining the ability of all approaches to model imcompressibility, as we noted in the introduction the most straight-
forward is the incompressible LM method which enforces weak incompressibility. However, we could consider the com-
pressible penalty and weakly penalized approaches as approximations to the incompressible system. With this in mind,
from Eq. (11), the error for any method should converge to zero with a rate proportional to 1=k. For the penalty method,
we see from Fig. 4(a) and Fig. 6(a) that the error relative to the incompressible solution was generally higher and in-
creased with increasing k, as a result of the well-known locking phenomena associated with displacement-only formu-
lations. In the cardiac model, with k ¼ 107 the error was actually uniformly worse than all other values of the
parameter at almost all levels of refinement, making the selection of an appropriate k to model incompressible behavior
non-trivial.

As discussed in Section 2.2, we initially hypothesized that issues affiliated with the penalty method could be cir-
cumvented by projecting the constraint using an orthogonal projection operator, pWloc

, resulting in the displacement-
based formulation suggested by Bercovier [50] and others [48,49]. Indeed, from Fig. 4(b) and Fig. 6(b), we see that
as k increased, the error in the approximation decreased proportionally to 1=k and became indistinguishable from
the convergence of the LM method itself. The existence of a k-dependent error bound for the weakly penalized ap-
proach enables regulation of the error by an appropriate choice of k. Moreover, due to its dependence on the discret-
ization, the error showed plateauing behavior for values of k which incured an error larger than the error associated
with the discretization.

The locking behavior of the penalty method is observed to worsen with lower order as shown in Fig. 5, where linear ele-
ments were used. In this case, as the bulk modulus increased, the rate of convergence observed in the penalty method dete-
riorated to nearly zero. In contrast, the weakly penalized approach exhibited consistent linear convergence for k > 105.

We notice that for both elongation/cardiac problems, the rates of convergence from all methods were not optimal as we
would expect based on the error estimates [61]. As the sub-optimal convergence rates appear in the application of all meth-
ods, we can assume that this is not a method-dependent issue. We believe that it is due to singularities in the two problems
which limit convergence. In the elongation problem, singularities occur at all corners of the domain. Measuring convergence
in a horizontal patch excluding corners as shown in Fig. 4(c), we see that for k ¼ 107 the rate of convergence in the weakly
penalized method is restored to the expected order Oðh2Þ (for the H1 semi-norm). In contrast, due to locking, no improve-
ment to the rate of convergence is observed in the penalty approach. In the cardiac model, sub-optimal convergence is due to
fixing the base plane of the model and the singularity in the fiber field near the apex. Even though the specific boundary
condition and fiber field incur singularities, they were chosen because of their frequent use in cardiac models.
4.2. Comparison of the methods for modeling compressibility

Similar conclusions can be deduced by the application of the PL, penalty and weakly penalized formulations in the solu-
tion of compressible problems. In compressible problems, the three formulations should provide consistent results for low
and moderate values of k. This is observed in Fig. 6(c). While we observed flattening of the convergence behavior to the
incompressible solution for k ¼ 104 in both penalty and weakly penalized methods (and, though not shown, for PL), we
see uniform and consistent convergence to the compressible solution.
(a) (b) (c)

Fig. 8. Comparison of the number of Jacobian and residual computations for (a) the penalty, (b) the weakly penalized and (c) the PL formulation. The
methods are compared over the passive inflation simulation (Section 3.1.2) on mesh 2 (k ¼ 107 for the penalty, weakly penalized and Perturbed Lagrangian
(PL) methods). The solid black line presents the number of Jacobian and residual computations for the classic Newton–Raphson scheme and the dotted lines
present the number of Jacobian (black line) and residual (red line) computations when the SNR scheme is applied. (For interpretation of the references to
colour in this figure caption, the reader is referred to the web version of this article.)
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Increasing k, however, caused deterioration in the convergence of the penalty method as shown in Fig. 6(d). Here, the
error increased by almost an order of magnitude, while convergence remains consistent between the PL and weakly penal-
ized methods. We note that identical behavior was observed in the 2D elongation problem and, while measurement of the
error excluding corners, restored optimal convergence rates in the PL and weakly penalized methods, no improvement in the
rate was observed in the penalty method.
4.3. Comparison over the cardiac cycle

In Fig. 7(b), we compare all methods over a cardiac cycle plotting the difference between both penalty and weakly penal-
ized approaches (with k ¼ 107) and the incompressible LM method on the same discretization. This comparison was per-
formed on an intermediate mesh, mesh2, consisting of 448 elements. Here we see that the LM and penalty methods differ
in the H1 semi-norm (which is indicative of errors we could expect in strain) by up to 20%, while the peak difference be-
tween weakly penalized and LM approaches remains below 8%. These differences in strain occured primarily during the sys-
tolic phase, with decreased error through the rest of the cardiac cycle. Similar conclusions can be deduced from the bulk
behavior of these models as seen in Fig. 9, presenting a larger difference in fiber strain between the penalty and LM methods
than the weakly penalized and LM methods. Interestingly, in this case the error of both the penalty and weakly penalized
formulations decreased with mesh refinement.

The influence of these effects is heavily dependent on the k chosen for the model. Considering convergence (i.e. mesh3

with fine grid mesh4) of the compressible model over the cardiac cycle (even though not shown here), the maximum error
for k ¼ 107 was �1% for the weakly penalized and LM methods and �10% for the penalty method. However, for k ¼ 105 the
error for weakly penalized and LM methods remained around �1% while the error observed in the penalty method dropped
to �3%. As the bulk modulus represents the tissue’s resistance to compression, its value is tied to the other cardiac consti-
tutive parameters. Thus the influence of locking in the penalty method depends on the level of compressibility which is
acceptable in the model. In general it seems that as k=C > 103, where C is the bulk scaling on the strain energy in Sec-
tion 3.1.2, locking becomes increasingly more predominant.
4.4. Comparison of linearized systems and solution

In Section 2.5.2, we outlined the solution procedure for the weakly penalized formulation illustrating that the linearized
system involves only the body displacement, uh. Considering the Jacobian for the LM (Jk), and penalty methods (Jk), shown in
Eq. (56), the LM formulation has an indefinite saddle point structure while the penalty method adds to the principle A�
block,
5 We
quadrat
Jk ¼
A BbB 0

� �
; Jk ¼ Aþ P: ð56Þ
Similar to Jk, the Jacobian of the weakly penalized formulation shown in Eq. (34) also augments the A� block with a matrix, C
which, by construction, is symmetric positive semi-definite. Further, the Jacobian of the PL method augments the zero block
matrix with a k-dependent term, avoiding the indefinite nature of the LM Jacobian (the Jacobians of the different formula-
tions are outlined in Appendix A).

The structure of these systems has a significant impact on their solution. While the actual system sizes (shown in Fig. 2(b)
and 3(b)) are not substantially different, the indefinite structure of Jk makes it more challenging to solve, requiring direct
methods, ‘‘sophisticated’’ preconditioners or splitting schemes [70]. In contrast, the penalty, PL and weakly penalized strat-
egies are more straightforward in structure, making them more ammenable to classic preconditioning strategies. However,
as the bulk modulus k increases, care must be taken to deal with the conditioning of the linear system.

In addition to having contrasting linear structure, the methods also exhibited differing convergence behavior in the New-
ton–Raphson scheme outlined in Section 2.5.1.5 In general, the non-linear convergence of the weakly penalized formulation
averaged �3.81 iterations per load step when the classic Newton–Raphson scheme was employed (Table 1). The modifications
we introduced in the weakly penalized form (Section 2.5.2), enhanced the numerical ability of the scheme, which exhibited
marginally better non-linear convergence behavior than that of the PL method.

Furthermore, the PL and weakly penalized forms were able to exploit the Jacobian re-use strategy (Shamanskii–
Newton–Raphson scheme), leading to approximately 93% decrease in the computational time of the Jacobian matrix J (build
and solution) and a 94% reduction in the total time per loading step (for the weakly penalized form). By modifying the
weakly penalized scheme to avoid the high sensitivity to the bulk modulus associated with displacement formulations,
the weakly penalized formulation allows efficient re-use of the Jacobian matrix, whereas the performance of the penalty
formulation (PEN) is not significantly improved when the SNR scheme is applied. When these modifications were also
extended to the penalty method (PEN-MOD), they resulted in significant improvements in both the computational time
note that in the examples presented in this work, the cost of computing the Jacobian is larger than the Newton–Raphson solution process, due to the
ic interpolation used for the displacement and the higher order quadrature rule applied.



Fig. 9. Illustration of the absolute difference (error) in fiber strain (Eff ) at 361 ms, between the Penalty and LM method (a, d, g) and the weakly penalized and
LM method (b, e, h) on the first three meshes (colors representing values of the error between 0 (blue) and 0:025 (red)). Additionally, the fiber strain for the
LM method on each mesh is displayed (c, f, i), with colors ranging from blue (�0:1) to red (0:1). Figures created in CMGUI [69]. (For interpretation of the
references to colour in this figure caption, the reader is referred to the web version of this article.)
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of the Jacobian matrix J (87% decrease) and the total time per loading step (89% decrease) compared to the classic
Newton–Raphson scheme.

Similar conclusions can be deduced from Fig. 8 which compares the Jacobian and residual computations over the iteration
number, with and without the SNR scheme. Clearly, the SNR scheme significantly reduces the number of Jacobian compu-
tations for all methods. It is important to note that these observations are consistent in all formulations, indicating that the
modifications we introduced in the SNR scheme for both the weakly penalized and penalty formulations were able to sig-
nificantly improve the performance of the methods.
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4.5. Weakly penalized formulation

In Section 2.1.1 we illustrated how the energy functional for a hyperelastic solid can be written consistently for both pen-
alty and LM methods by choosing both an appropriate space of solutions, X, and orthogonal projection, pW . In the finite ele-
ment context, we showed that in the LM method both X and pW were necessarily discretized as both the displacement and
pressure variables need to be computed, while in the penalty formulation the orthogonal projection is not necessarily dis-
cretized as the only unknown variable is the displacement (Section 2.2). As we have shown, this discretization of the orthog-
onal projection can restrict the approximation space Xh for high values of k.

To circumvent this issue while retaining the single field approach, in Section 2.3 we apply a displacement-only formula-
tion introduced by Bercovier [50] and others [48,49] which uses a localized discrete orthogonal projection operator, pWloc

.
Similar to augmented Lagrangian and reduced integration techniques [26], the aim of the discrete projection is to weaken
the compressible/incompressible constraint, thereby enhancing the approximation space in the limit as k gets large. Further-
more, by appropriate restructuring of the weakly penalized system, we avoid the poor nonlinear convergence for high bulk
modulus associated with displacement-only formulations. As shown in Figs. 4 and 6, the weakly penalized formulation re-
stores convergence behavior while maintaining the simplicity of a single field approach. Finally, viewing the various meth-
ods under the same generalized framework allows us to extend the SNR modifications of the weakly penalized form to the
penalty approach, significantly improving the computational performance of the scheme.

A convenient feature of the weakly penalized approach is that it enables more straightforward analysis by tapping into
known finite element spaces. Though for uniqueness inf–sup stability is not necessary, this condition ensures optimal con-
vergence in the null space of pW for linear problems, for appropriately chosen spaces. In the examples presented here, the
projection was chosen to be one polynomial order less and piece-wise discontinuous. Though this pairing is not inf–sup sta-
ble, for the quadrilateral and hexahedral elements considered, this restored convergence. Another convenient choice are
Nicolaides–Boland [60] elements, which give consistent results to those presented here.

5. Conclusion

In this paper we compared the use of different methods for approximating incompressible and compressible tissue
mechanics in the heart. Noting that the choice of model is governed by both model validity and numerical considerations,
we assessed the use of Lagrange (LM and PL) and penalty methods as models of both incompressible and compressible
behavior. Motivated by the classic locking phenomena observed for linear mechanics [26,27], we apply an enhancement
of the Bercovier [50] formulation which enables the single field approach while providing similar convergence behavior
to the LM method. To the best of our knowledge this is the first application of this approach on heart models.

Observing the convergence behavior of these methods on a simple solid mechanics test and on cardiac models, we high-
light the fact that the LM and penalty methods, although often used equivalently in cardiac mechanics, may present signif-
icant variations in results. This is due to the well-known deterioration of the convergence behavior of the penalty method for
large values of the bulk modulus. Indeed in both the 2D elongation problem and the cardiac models, the penalty method
generally has a larger error than the other two methods for all values of the bulk modulus. In contrast, the single field weakly
penalized approach provides both improved rates of convergence and avoids issues associated with locking phenomena over
these test problems. Further modifications introduced in this work enhance the computational performance of the numerical
scheme, by allowing efficient application of the SNR re-use strategy and significantly reducing the computational time. The
weakly penalized formulation can therefore provide an accurate and computationally inexpensive method that can be used
to deal with incompressibility and near incompressibility in problems of cardiac mechanics and solid mechanics in general.
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Appendix A. Discrete weak forms/Jacobian matrices for the penalty, PL and LM methods

The aim of this section is to provide the discrete weak forms of the formulations implemented and used in this work. A
detailed derivation of the weak forms of the penalty, LM and PL methods is provided in various textbooks [45,29]. Specifi-
cally, the weak form for the penalty method is acquired by requiring that the directional derivative of the penalty functional
Pk vanishes for all arbitrary directions duh in the homogeneous zero Dirichlet space Xh

0, i.e.
DPkðuhÞ½duh� ¼ 0; 8duh 2 Xh
0: ðA:1Þ
Similarly, the PL method requires that,
DPkðuh; khÞ½duh; dqh� ¼ 0 ðA:2Þ
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for every ðduh; dqhÞ 2 Xh
0 �Wh. The discrete weak forms for the penalty, PL and LM systems can also be written in operator

notation as,
Aðuh; duhÞ þ Pðuh; duhÞ ¼ FðduhÞ; ðA:3Þ

Aðuh; duhÞ þ Bðph;uh; duhÞ þ bBðuh; dphÞ � 1
k

Mðph; dphÞ ¼ FðduhÞ; ðA:4Þ

Aðuh; duhÞ þ Bðph;uh; duhÞ þ bBðuh; dphÞ ¼ FðduhÞ; ðA:5Þ
where the operators A; P; F;B; bB;M, and C are defined as,
Aðuh; duhÞ ¼
Z

X
FhSh : rduhdV ;

Pðuh; duhÞ ¼
Z

X
kJuh ðJuh � 1ÞF�T

h : rduhdV ;

FðduhÞ ¼
Z

X
f � duhdV þ

Z
@X

t � duhdA;

Bðkh;uh; duhÞ ¼
Z

X
khJuh F�T

h : rduhdV ;

bBðuh; dqhÞ ¼
Z

X
dqhðJuh � 1ÞdV ;

Mðkh; dqhÞ ¼
Z

X
khdqhdV ;
where Fh ¼ ruh þ I and Sh represent the discrete deformation gradient and second Piola stress tensors, respectively.
The Jacobian of these formulations is then derived by taking the directional derivative of the discrete weak forms with

respect to displacement (and pressure). For the penalty method, the Jacobian can not be derived analytically due to the non-
linearity of hyperelastic laws and is usually estimated by the finite difference approximation of the gradient of the operators
A; P and F:
Jk ¼ Aþ P; ðA:6Þ

½A�ij ¼
1
�

Aðuh þ �/j
u;/iÞ � Fðuh þ �/j

u;/iÞ � Aðuh � �/j
u;/iÞ þ Fðuh � �/j

u;/iÞ
� �

;

½P�ij ¼
1
�
ðPðuh þ �/j

u;/iÞ � Pðuh � �/j
u;/iÞÞ; ðA:7Þ
where we note that, the operator F is included in the Jacobian estimation as it often depends on u.
The Jacobian of the PL method is written in matrix form as
JPL ¼
A BbB �1

k M

 !
; ðA:8Þ
where the block matrices A; B and bB are defined as
½A�ij ¼
1
�

Aðuh þ �/j
u;/iÞ þ Bðkh;uh þ �/j

u;/iÞ � Fðuh þ �/j
u;/iÞ � Aðuh � �/j

u;/iÞ � Bðkh;uh � �/j
u;/iÞ þ Fðuh � �/j

u;/iÞ
� �

;

½B�ij ¼ Bð/j
w;u

h;/i
uÞ; ðA:9Þ

½bB�ij ¼ Bð/i
w;u

h;/j
uÞ; ðA:10Þ
The block matrix M is the mass matrix defined in Eq. (20).
The Jacobian matrix of the LM formulation can be derived from the Jacobian of the PL formulation by assuming k!1, as
Jk ¼
A BbB 0

� �
; ðA:11Þ
where the 0 block matrix results in a non-positive definite Jacobian matrix which may cause numerical difficulties.

Appendix B. Error estimate for the generalized weakly penalized form

In this section we present an error estimate for the generalized weakly penalized form and illustrate how this may be
used to derive estimates for the Perturbed Lagrangian, incompressible and/or nearly incompressible forms. For ease, a linear
elastic material is considered with Homogenous Dirichlet boundary conditions, giving the continuous weakly penalized
problem: find uk 2 X0 ¼ fu 2 ½H1ðXÞ�dju ¼ 0 on Cg such that,
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Z
X

EDuk : DwdV þ
Z

X
kpðr � ukÞr �wdV ¼

Z
X

f �wdV ; 8w 2 X0; ðB:1Þ
where E : X! Rd�d is the elasticity tensor, Dð�Þ ¼ 1=2ðrð�Þ þ ð�ÞrÞ; k > 0 is the bulk modulus of the material, p the projection
operator (in this case the L2ðXÞ projection) and f 2 L2ðXÞ is given data. Here we assume E is a symmetric positive definite
matrix satisfying, for any v ;w 2 X0, the linear coercivity and continuity conditions (where k � k1 is the norm on H1ðXÞ),
akvk2
1 6

Z
X

EDv : DvdV ;
Z

X
EDv : DwdV 6 ckvk1kwk1: ðB:2Þ
We note that here, given u 2 X0ðXÞ, using Korn’s inequality [71] there exists an equivalence between kDvk and kvk1 (which,
for ease, are included in these bounds). Due to the coercivity/continuity conditions, the existence and uniqueness of solu-
tions is ensured by Lax–Milgram lemma [61].

Noting that the space X0 ¼ X0;div � ðX0;div Þ? (with X0;div ¼ H1
0;div ðXÞ) is separable into divergence free and non-divergence

free functions, we may also write uk ¼ u�k þ ð1=kÞu?k with u�k 2 X0;div and u?k 2 ðX0;div Þ?, which satisfies,
Z
X

ED u�k þ
1
k

u?k

� �
: DwdV þ

Z
X
pðr � u?k Þr �wdV ¼

Z
X

f �wdV ; 8w 2 X0: ðB:3Þ
The weakly penalized form introduced in Eq. (B.1) can be easily related to the equivalent continuous Perturbed Lagrangian,
Penalty and Lagrange Multiplier forms (with appropriate selection of k). As any w 2 X0 satisfiesr �w 2 L2ðXÞ, it is clear that
pðr � ukÞ ¼ r � uk. Inserting this relation into Eq. (B.1) yields the continuous penalty form. Moreover, from the continuous
constraint of the Perturbed Lagrangian we observe that pðr � ukÞ ¼ k=k (or pðr � u?k Þ ¼ k), enabling condensation of the PL
form into the weakly penalized variant. Finally, in the limit as k!1 it is clear that in Eq. (B.1) u 2 X0;div , yielding equiva-
lence with the LM form [50].

In the following, we shall consider an error estimate for the discrete weakly penalized problem: find uh 2 Xh
0 � X0 such

that,
 Z
X

EDuh : DwhdV þ
Z

X
khphðr � uhÞr �whdV ¼

Z
X

f �whdV ; 8wh 2 Xh
0; ðB:4Þ
where E is the elasticity tensor and initial data f are defined as above. Here we let kh > 0 denote the bulk modulus of the
discrete model, acknowledging that we may choose (for numerical convenience, for example) to compute solutions using
a bulk modulus which is different from the continuous model (i.e. kh – k). Further, we consider
ph : L2ðXÞ ! S # L2ðXÞ; ðB:5Þ
to be the L2 projection operator onto the subspace S # L2ðXÞ. As a consequence, it is clear that,
kphðgÞk 6 kgk; g 2 L2ðXÞ; ðB:6Þ
(where k � k denotes the L2ðXÞ norm). Moreover, due to symmetry in the discrete projection, for any vh;wh 2 Xh
0,
Z

X
phðr � vhÞr �whdV ¼

Z
X
phðr � vhÞphðr �whÞdV : ðB:7Þ
From Eqs. (B.2), (B.6) and (B.7), the discrete form retains continuity and coercivity yielding a unique solution as in the con-
tinuous case. Similar to above, equivalence of this form to other methods (in their discrete form) can be obtained with appro-
priate selections of ðS; khÞ, i.e. LM ðWh;1Þ, PL ðWh; kÞ, and Penalty ðL2ðXÞ; kÞ.

Finally, we may derive the following error estimate between the weakly penalized form in Eq. (B.4) and the continuous
form introduced in Eq. (B.1).

Lemma 1. Let uk and uh be the solutions to Eqs. (B.1) and (B.4), with uk ¼ u�k þ ð1=kÞu?k with u�k 2 X0;div and u?k 2 ðX0;div Þ?. Then
the difference between discrete and continuous solutions (when k ¼ kh) is given by,
kukh
� uhk1 6 C inf

yh2Xh
0;div

zh2 Xh
0;div

� �? kp
hðr � u?kh

Þ � r � u?kh
k þ ku�kh

� yhk1 þ
1
kh
þ 1

� �
ku?kh

� zhk1

� �
; ðB:8Þ
where Xh
0 ¼ Xh

0;div � ðX
h
0;div Þ

?
and Xh

0;div :¼ fvh 2 Xh
0j kphðr � vhÞk ¼ 0g are the discrete projected null and perpendicular spaces,

respectively. When k – kh,
kuk � uhk1 6 kukh
� uhk1 þ C0 max

1
k
;

1
kh

� �
; ðB:9Þ
with C;C0 > 0 being positive constants independent of h.
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Proof. Selecting w ¼ wh in Eq. (B.1) and noting equality of the RHS with Eq. (B.4), it is clear that,
Z
X

EDuh : DwhdV þ
Z

X
khphðr � uhÞr �whdV ¼

Z
X

EDukh
: DwhdV þ

Z
X

khpðr � ukh
Þr �whdV : ðB:10Þ
Letting eh ¼ uh � vh and e ¼ ukh
� vh for some vh 2 Xh

0, we may express Eq. (B.10) as,
Z
X

EDeh : DwhdV þ
Z

X
khphðr � ehÞr �whdV ¼

Z
X

EDe

: DwhdV þ
Z

X
khphðr � eÞr �whdV þ

Z
X

kh½pðr � ukh
Þ � phðr � ukh

Þ�r �whdV : ðB:11Þ
Selecting wh ¼ eh, applying the coercivity/continuity conditions in Eq. (B.2), Cauchy Schwarz Inequality and noting the sym-
metry condition in Eqs. (B.7) and (B.11), (B.11) may be further reduced,
akehk2
1 þ khkphðr � ehÞk2

6

Z
X

EDe : DehdV þ
Z

X
khphðr � eÞr � ehdV þ

Z
X

kh½pðr � ukh
Þ � phðr � ukh

Þ�r � ehdV

6 ckek1kehk1 þ kh kphðr � eÞk þ kpðr � ukh
Þ � phðr � ukh

Þk
� 	

kr � ehk: ðB:12Þ
Noting kr �wk 6
ffiffiffi
d
p
kwk1 for any w 2 X0, Eq. (B.12) yields,
akehk1 6 ckek1 þ
ffiffiffi
d
p

kh kphðr � eÞk þ kpðr � ukh
Þ � phðr � ukh

Þk
� 	

: ðB:13Þ
Further, observing that eh ¼ uh � ukh
þ e and applying the reverse triangle inequality,
akukh
� uhk1 6 ðcþ aÞkek1 þ

ffiffiffi
d
p

kh kphðr � eÞk þ kpðr � ukh
Þ � phðr � ukh

Þk
� 	

: ðB:14Þ
Finally, splitting vh :¼ yh þ ð1=khÞzh where ðyh; zhÞ 2 Xh
0;div � ðX

h
0;divÞ

?
and ukh

¼ u�kh
þ ð1=khÞu?kh

as in Eq. (B.3) and applying the
triangle inequality,
kukh
� uhk1 6

ðcþ aÞ
a

kek1 þ
ffiffiffi
d
p

kh

a
kphðr � eÞk þ kpðr � ukh

Þ � phðr � ukh
Þk

� 	
:

6
ðcþ aÞ

a
ku�kh

� yhk1 þ
1
kh
ku?kh

� zhk1

� �
þ

ffiffiffi
d
p

a
kphðr � ½u?kh

� zh�Þk þ kpðr � u?kh
Þ � phðr � u?kh

Þk
h i

:

6 C ku�kh
� yhk1 þ

1
kh
þ 1

� �
ku?kh

� zhk1 þ kr � u?kh
� phðr � u?kh

Þk
� �

: ðB:15Þ
where C ¼maxfd=a; ðcþ aÞ=ag. Taking the infimum, we arrive at the first result of Lemma 1. The second result follows di-
rectly from [50] where the error between u1 and uk satisfies the estimate,
ku1 � ukk1 6 C=k
for any k > 0. Consequently,
C=k P ku1 � ukk1 ¼ ku1 � ukh
þ ukh

� ukk1 P kukh
� ukk1 � ku1 � ukh

k1

¼ kukh
� uh þ uh � ukk1 � ku1 � ukh

k1 P kuh � ukk1 � kukh
� uhk1 � ku1 � ukh

k1 ðB:16Þ
which may be re-arranged to show the final result. �

The error estimate presented in Lemma 1 enables us to interpret the error for any choice of ðS; khÞ and k, enabling the
derivation of different permutations. A case of particular interest occurs when the projection ph is defined on a space S which
satisfies the inf–sup condition, i.e. there is a b > 0 such that [50,59,26,61],
sup
vh2Xh

0

R
X phðgÞr � vh

kvhk1
P bkphðgÞk; b > 0; g 2 L2ðXÞ: ðB:17Þ
In this case, the estimates in Lemma 1 may be simplified as shown in Corollary 1.

Corollary 1. Using the estimate in Lemma 1, and supposing the subspace S corresponding to the projection operator
ph : L2ðXÞ ! S is selected such that the inf–sup condition in Eq. (B.17) holds, then the weakly penalized form satisfies (for k ¼ kh),
kukh
� uhk1 6 C inf

yh ;zh2Xh
0

kphðr � u?kh
Þ � r � u?kh

k þ ku�kh
� yhk1 þ

1
k
þ 1

� �
ku?kh

� zhk1

� �
; ðB:18Þ
with C > 0 being positive constants independent of h.
Proof. From [61], we observe that the weakly divergence free subspace Xh
0;div for a projection ph onto a space S which sat-

isfies the inf–sup condition satisfies,
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inf
yh2Xh

0;div

ku�kh
� yhk1 6

ffiffiffi
d
p

b
þ 1

 !
inf

yh2Xh
0

ku�kh
� yhk1: ðB:19Þ
As a consequence of this extension, we also observe that,
inf
yh2Xh

0

kukh
� yhk1 ¼ inf

yh2Xh
0;div

zh2 Xh
0;div

� �? ku
�
kh
� yh þ u?kh

� zhk1 P inf
zh2ðXh

0;div Þ
?
ku?kh

� zhk1 � inf
yh2Xh

0;div

ku�kh
� yhk1
and hence
inf
zh2ðXh

0;div Þ
?
ku?kh

� zhk1 6 inf
zh2Xh

0

ku?kh
� zhk1 þ

ffiffiffi
d
p

b
þ 2

 !
inf

yh2Xh
0

ku�kh
� yhk1 ðB:20Þ
enabling the extension seen in the corollary. �

From Corollary 1, it is clear that, when the inf–sup condition holds, optimal convergence rates may be obtained by apply-
ing standard interpolation theory for Xh

0 and the projection ph : L2ðXÞ ! S. While the PL, LM and weakly penalized forms may
exploit this, the penalty formulation is subject to stricter conditions on ph, namely ph : L2ðXÞ ! L2ðXÞ. Consequently, the er-
ror bound for this projection may be expressed as seen in Corollary 2.

Corollary 2. Using the estimate in Lemma 1, and supposing the subspace S ¼ L2ðXÞ corresponding to the projection operator
ph : L2ðXÞ ! S is selected, then the weakly penalized form satisfies (for k ¼ kh),
kukh
� uhk1 6 C inf

yh2Xh
0;div

zh2ðXh
0;div

Þ
?

ku�kh
� yhk1 þ

1
k
þ 1

� �
ku?kh

� zhk1

� �
; ðB:21Þ
where Xh
0 ¼ Xh

0;div � ðX
h
0;divÞ

?
and Xh

0;div :¼ fvh 2 Xh
0j kr � vhk ¼ 0g.

Here we note that Xh
0;div in Corollary 2 can be quite restrictive, yielding deterioration in the rate of convergence.

Appendix C. Derivation of the residual modifications

As mentioned before, the weakly penalized formulation is a generalization of the PL method, and as such should be able to
present similar nonlinear behavior. To this end, the residual of the weakly penalized approach in Sections 2.5.3 and 2.5.4 is
modified based on the residual derived from the PL method, in order to achieve the same nonlinear convergence. The static
condensation used in the weakly penalized system follows the linear algebra used in this section in order to eliminate the
pressure variable from the PL formulation. We can therefore use the PL formulation in order to study and understand the
sources of poor nonlinear convergence for the weakly penalized formulation.

For later comparison, we first present the linearized system for the weakly penalized formulation, when the SNR scheme
is applied, without the modifications introduced in this work. Based on Eq. (32), the update dUn for the nth iteration of the
weakly penalized formulation is given by
JðUbÞdUn ¼ �RðUnÞ; ðC:1Þ
where the Jacobian is computed at a previous iteration b (the parameter an will be added in later through the minimization
step). Using Eq. (34), the linearized system for the weakly penalized formulation can be written as
ðAb þ k½Bb�T M�1BbÞdUn ¼ �RAðUnÞ þ k½Bn�T M�1Rn
J : ðC:2Þ
The linearized system for the ðnþ 1Þth iteration of the PL method when the SNR scheme (Section 2.5.4) is applied, can be
expressed as
Ab ½Bb�T

Bb �1
k M

 !
dUn

dpn

� �
¼ �Rn

A � ½B
n�T pn

�Rn
J þ 1

k Mpn

 !
; ðC:3Þ
where we use the Jacobian matrix of the PL system (Eq. (A.8)) computed at a previous iteration b in the SNR iterative process.
The updates for the displacement and pressure at the nth iteration are given by vectors dUn and dpn. The right hand side of the
matrix equation (C.3) denotes the residual at the nth iteration, where Rn

A denotes the residual used in Eq. (35) and Rn
J refers to

the residual defined in Eq. (21).
The matrix Eq. (C.3) can be decomposed into the following equations:
AbdUn þ ½Bb�Tdpn ¼ �Rn
A � ½B

n�T pn; ðC:4Þ
dpn ¼ kM�1BbdUn þ kM�1Rn

J � pn: ðC:5Þ
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Combining the two equations we obtain
ðAb þ k½Bb�T M�1BbÞdUnþ1 ¼ �Rn
A þ ½B

b�T pn � k½Bb�T M�1Rn
J � ½B

n�T pn: ðC:6Þ
Note that if b ¼ n always, this equation matches Eq. (C.2) of the weakly penalized approach thus the convergence behavior of
the two formulations should be the same.

Taking into account Eq. (C.5), we can see that pn ¼ pn�1 þ dpn�1 ¼ kM�1ðBbdUn�1 þ Rn�1
J Þ, which represents the linearized

estimate for Rn
J . Using this estimate,
ðAb þ k½Bb�T M�1BbÞdUnþ1 ¼ �Rn
A � k½Bn�T M�1ðBbdUn�1 þ Rn�1

J Þ þ k½Bb�T M�1ðRn�1
J þ BbdUn�1 � Rn

J Þ: ðC:7Þ
The last formulation can be used for a better understanding of the poor nonlinear convergence behavior of the weakly penal-
ized formulation.
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