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Abstract

Moisture has for a long time been recognized as a serious contributor to premature degradation of asphaltic pavements.
Many studies have been performed to collect, describe and measure the moisture susceptibility of asphaltic mixes. Most of
these aimed at a comparative measure of moisture damage, either via visual observations from field data or comparative
laboratory tests. The research presented in this paper is part of an ongoing research effort to move away from such com-
parative or empirical measures of moisture induced damage of asphaltic materials and develop a fundamental approach via
a comprehensive energy based computational framework. Such a framework would enable realistic predictions and time
assessment of the failure pattern occurring in an asphaltic pavement under the given environmental and traffic loading,
which could be rutting, cracking, raveling or any combination or manifestation thereof. The paper discusses the fundamen-
tal moisture induced damage parameters and demonstrates the developed model.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Moisture damage; Asphaltic mixes; Energy based model; Elasto-visco-plastic large strains; Finite element modelling
1. Moisture induced damage in asphaltic pavements

Asphaltic mixes are a composition of aggregates and bituminous cement, in which the bituminous cement
(named mastic) consists of bitumen, sand and fine filler particles and could include modifiers such as polymers,
phosphoric acid or hydrated lime. In asphaltic pavements which are exposed to moisture infiltration, separa-
tion of the aggregates from the mix is a commonly encountered problem. The continuing action of moisture
induced weakening and traffic load induced mechanical damage causes a progressive dislodgement of the
aggregates and, in some cases, this damage pattern becomes a dominant mode of failure and a cause for dimin-
ished road safety. This damage phenomenon is known as stripping or raveling of the asphalt wearing surface
and is contributed to a combined weakening of the mastic and a weakening of the aggregate–mastic bond. The
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Fig. 1. Moisture induced damage in asphaltic pavements. (a) Raveling. (b) Pothole formation.
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initial stripping damage can rapidly progress into a more severe degradation of the wearing surface, and ulti-
mately lead to pothole formation (Fig. 1).

Over the years, many elaborate studies have been performed to study this topic (Curtis et al., 1991; Fromm,
1979; Graf, 1986; Hicks, 1991; Ishai and Craus, 1972; Kanitpong and Bahia, 2003; Kandhal, 1992, 1994, 2001;
Lytton, 2002; Majidzadeh and Brovold, 1968; Mcgennis et al., 1984; Riedel and Weber, 1953; Scholz et al.,
1993; Scott, 1978; Stuart, 1990; Takkalou, 1984; Taylor and Khosla, 1983), yet almost all of these studies
aimed at a comparative measure of moisture damage, either via visual observations from field data or labo-
ratory tests or via wet-versus-dry mechanical tests to give a so called moisture damage index parameter. Even
though these tests seem to constitute a quick and simple way of comparing the moisture susceptibility of the
mixes, they are highly subject to the boundary conditions of the experiment, they do not give any fundamental
insight into the causes and evolution of the damage in time within the mix, nor can they directly be used for
mix improvements. Given the fact that an asphalt mix is a composite material, which can have a wide range of
properties and which may be compacted in various ways and levels, completely different material properties
may result, each time an asphalt mix is produced and placed on the pavement. It would take an isolation of
each possible variable to get any information regarding the controlling parameters, which is practically impos-
sible in such empirical tests.

2. New approach towards characterizing and modelling moisture induced damage

Given this lack of tools which give a quantifiable fundamental knowledge of the causes and evolution of
moisture induced damage, an extensive experimental and computational research program has been initiated
in 2003 in the group of Mechanics of Structural Systems of Delft University of Technology, in the Nether-
lands, named RAVEMOD. The aim of this research program is to develop a more fundamental approach
towards the identification and quantification of the moisture induced damage processes and their mechanical
manifestations. The important starting point of this research is the conviction of the researchers that the prob-
lem of moisture induced damage in asphalt cannot be solved by mechanical considerations alone. It has been
shown that, even without any mechanical loading, moisture has a degrading effect on the material properties.
This implies that moisture makes a physical change to the material properties, which exhibits itself in the early
development of damage patterns which, without the moisture, may have not occurred or may have occurred in
a much later stage of the pavement’s service life.

In this context, a new computational tool has been developed for the fundamental analysis of combined
mechanical and moisture induced damage of asphaltic mixes which includes both physical and mechanical
moisture damage inducing processes. The tool is named RoAM (Raveling of Asphaltic Mixes) (Kringos
and Scarpas, 2005; Kringos, 2007), and is a sub-system of the large finite element system CAPA-3D (Scarpas,
2000, 2005).
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In this paper, to indicate the importance of the various moisture sensitivity parameters on the overall
response, the developed model is demonstrated on an idealized representation of an asphaltic mix. But first,
in the following, the formulations of the wet and dry constitutive model are shown, followed by a description
of the dominant moisture susceptibility parameters.

3. Energy based elasto-visco-plastic constitutive model

3.1. Combined physical–mechanical moisture induced damage processes

In this research, moisture induced damage processes are divided into physical and mechanical processes.
The physical processes that are included as important contributors to moisture induced damage are (I) weak-
ening of the mastic and the aggregate–mastic bond due to molecular diffusion of moisture and (II) weakening
of the mastic from an erosion process of the mastic, caused by water flow (Fig. 2(a)). The mechanical damage
process that is identified as a contributor to moisture damage is the occurrence of intense water pressure fields
inside the mix caused by traffic loads and referred to as ‘pumping action’ (Fig. 2(b)).

These material degradation processes are integrated within the developed elasto-visco-plastic constitutive
model for the resulting response of the material. Eventually, moisture induced damage will follow from the
combined effect of the physical and mechanical moisture damage inducing processes, which result into a weak-
ening of the mastic and a weakening of the aggregate–mastic bond (Fig. 2(c)).

In the following, the dry constitutive model is discussed, followed by the inclusion of the moisture induced
damage processes.

3.2. Dry formulation

Mastic in asphalt mixes is known to be a material whose behaviour, depending on strain rate and temper-
ature, exhibits response characteristics varying anywhere between the elasto-plastic and the visco-elastic limits.
Constitutive models for such types of materials can be developed by combining the features of purely elasto-
plastic and purely visco-elastic materials to create a more general category of constitutive models termed elas-
to-visco-plastic. Fig. 3 shows a one-dimensional schematic of the proposed material model consisting of a sin-
gle elasto-plastic component in parallel with an arbitrary number of visco-elastic ones. The actual number of
necessary components is to be decided on the basis of the available experimental evidence.

On the basis of energy arguments and by means of multiplicative decomposition of the deformation gra-
dient tensor F into elastic and plastic F = F1Fp or into elastic and viscous components F = FeFv, a three-
dimensional version of the above parallel model can be derived (Scarpas, 2005; Kringos et al., 2007a) (see
Fig. 4).

To define the general framework of the energy based constitutive model, the Helmholtz free energy function
is expressed as
Fig. 2. Schematic of the new approach towards moisture induced damage.
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W ¼ WvðCeÞ þWpðC1; npÞ ð1Þ
in which Wv(Ce) is the viscous strain energy function, Ce ¼ FT
e Fe is the Cauchy-Green strain tensor, based on

the deformation gradient Fe, Wp(C1,n) is the plastic free energy function, C1 ¼ FT
1F1 is the Cauchy-Green

strain tensor based on the deformation gradient F1 and np is the equivalent plastic strain.
From the second law of thermodynamics, the dissipation inequality can be found as
S :
1

2
_C� oWv

oCe

: _Ce

� �
� oWp

oC1
: _C1 þ

oWp

onp

_np

� �
P 0 ð2Þ
where S is the second Piola-Kirchhoff stress tensor. It can be shown that from the above inequality the stress
tensor S can be additively decomposed into the visco-elastic Se and the elasto-plastic plastic component S1
S ¼ 2F�1
v

oWv

oCe

F�T
v þ 2F�1

p
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F�T

p

¼ Se þ S1

ð3Þ
Furthermore, the following inequalities are obtained
2Fe
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FT
e F�T

e : Felv P 0 ð4Þ

2F1
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FT
1F�T

1 : F1lp �
oWp

onp

_np P 0 ð5Þ
In the following, the dry constitutive model is adjusted to incorporate the moisture induced damage.
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3.3. Wet formulation

To include moisture induced damage, a moisture damage parameter dm is defined, which can be included
into Eq. (1) as an internal variable, in addition to the strain tensors and the plastic damage:
Wmd ¼ WðCe;C1; n; dmÞ ¼ ð1� dmÞW ¼ ð1� dmÞ½WvðCeÞ þWpðC1; nÞ� ð6Þ
Following the same procedure as above, but replacing the free energy function W by the free energy function
Wmd that is dependent also on moisture damage
Smd :
1

2
_C� _Wmd P 0 ð7Þ
Subsequently, the stress tensor can now be formulated as
Smd ¼ ð1� dmÞ½Sp þ Sv� ð8Þ
Also, on the basis of the maximum plastic dissipation principle, for the elasto-plastic component the following
constrained system is obtained
lp ¼ k
of

oSmd

� �

_n ¼ k
of

oqmd

� �

k P 0; f ðSmd; qmdÞ 6 0; kf ðSmd; qmdÞ ¼ 0

ð9Þ
in which lp is the plastic velocity gradient tensor, f is the yield surface, q is the conjugate to _n thermodynamic
force and k is the plastic multiplier.

Similarly, for a visco-elastic component
lv ¼ C�1
v : Smd ð10Þ
with
C�1
v ¼

1

2gD

I� 1

3
I� I

� �
þ 1

9gV

I� I ð11Þ
in which lv is the viscous velocity gradient tensor and gD and gV are the deviatoric and volumetric viscosities
(Reese and Govindjee, 1998). Detailed implementation procedures can be found in Scarpas and Kasbergen
(2006).
3.4. Moisture flow and molecular diffusion

For the simulation of water infiltration into an asphaltic mix, two different phenomena need to be simu-
lated. First of all, considering asphalt on a meso-level, the mix consists of a matrix of coated aggregates which
have ‘macro-pores’ in between them. The infiltration of moisture into these macro-pores will be mainly depen-
dent on hydraulic suction and flow velocity processes. Secondly, once the moisture has reached these macro-
pores, the moisture may infiltrate further within the bulk materials of the aggregate–mastic matrix. This infil-
tration is, in contrast to the previous phenomenon, not a pressure driven process, but a molecular diffusion
driven process which depends on a moisture concentration gradient in the material.

For the simulation of the water flow through the mix, assuming Darcy’s law, the water velocity field can be
described by
divv ¼ �~h
op
ot

ð12Þ
where v is the water velocity, p is the water pressure and ~h is the water capacity, equal to
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~h ¼ /
dS
dp

ð13Þ
in which / is the porosity and S the pressure dependent saturation.
For the simulation of the moisture diffusion into the asphalt mix components, a diffusion flux Jd of Fickean

type is assumed:
Jd ¼ �DrðCmÞ ð14Þ
where D is the molecular diffusion tensor [L2/T]. More details on the computational scheme can be found in
Kringos (2007) and Kringos et al. (2007b, 2008b).

4. Model parameters

4.1. Dry response

The parameters of the developed energy based elasto-visco-plastic constitutive model must be determined
from experimental data. In collaboration with the University of Nottingham an extensive data-base has been
developed which is used for the calibration and validation of the developed model. In Fig. 5 an example is
given of the comparison between experimental results and computational predictions for a creep-recovery test
in compression on an asphaltic sample.

As can be seen from the comparison, a good prediction of the first and secondary material response phase is
found for both the axial and radial response (Kringos, 2007).

4.2. Moisture induced damage parameters

The physical moisture induced damage that is caused by the two types of moisture infiltration is also quite
different. Depending on the overall mix permeability, a fast flow field may cause an erosion process of the mas-
tic film, caused by a high velocity field in combination with weakened adsorption and dispersion characteris-
tics of the film. The moisture diffusion into the asphalt components is a more gradual process, which drives the
moisture into the asphalt components on a longer time scale and which will cause a gradual softening of the
mastic and the aggregate–mastic bond.

In the developed model, the moisture sensitivity of the mix is governed by six fundamental material param-
eters, which are explained in the following.

Moisture can infiltrate into the asphalt mix components via diffusion through the mastic films or via
hydraulic suction or pressure driven flow via the connected macro-pores. Moisture diffusion through the mas-
tic is controlled by the diffusion coefficient Dmst. Depending on the sensitivity of the components to moisture,
damage will occur to the mechanical material properties when moisture diffuses through its components. The
moisture susceptibility of the mastic, the aggregate–mastic interface and the aggregates is covered by the
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Fig. 5. Comparison model prediction with experimental data for a creep-recovery test.
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parameters amst
h , aif

h and astone
h , respectively. The water flow through the macro-pores may cause an erosion of

the mastic films, which is covered by the desorption coefficient Kmst
d . Due to the erosion, the density of the

mastic will reduce and the mechanical properties will change. The relationship between the mechanical prop-
erties of the mastic and its density is controlled by the moisture susceptibility parameter amst

q̂ . These six param-
eters are then expressed into two types of moisture damage functions.

To formulate the damage within the asphalt mix components, due to an increased moisture concentration
h, a Kachnov like damage parameter is defined which can go from 0 (no moisture damage) to 1 (complete
moisture damage):
dj
h ¼ fhðDk; a

j
hÞ j ¼ mst; if ; stone ð15Þ
where the function fh has to satisfy fh = 0.0 for h = 0.0 and fh 6 1.0 for h = 1.0. This relationship must be
determined experimentally for all the asphalt components, i.e. the mastic, the aggregate and the aggregate–
mastic interface (Copeland et al., 2007).

In Fig. 6 a few examples of the experimentally determined d if
h function are given (Kringos et al., 2008a).

From the graphs it becomes clear how diverse the moisture susceptibility of the aggregate–mastic bond can be.
The second physical moisture induced damage parameter is postulated for the mastic component, which is

based on the erosion of the mastic due to a water flow field:
dmst
q̂ ¼ 1� fq̂ðKd; a

mst
q̂ Þ ð16Þ
with
q̂ðx; tÞ ¼ qðx; tÞ
q0

; 0:0 6 q̂ 6 1:0 ð17Þ
where q0 is the undamaged mastic density and q(x,t) is the updated mastic density. The function fq̂ has to sat-
isfy fq̂ ¼ 1:0 for q̂ ¼ 1:0 and fq̂ ¼ 0:0 for q̂ ¼ 0:0, and should only be determined for the mastic.

The two damage processes can be represented by the damage parameter dm in Eq. (6), which follows from
X d ¼ ð1� dhÞð1� d q̂ÞX 0 ¼ ð1� dmÞX 0 ð18Þ
Thus defining the moisture damage parameter dm as
dm ¼ dh þ d q̂ � dhd q̂; 0 6 dm 6 1 ð19Þ
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5. Simulation of combined physical–mechanical moisture damage

5.1. Finite element geometry and loading conditions

In this paper, the developed combined physical–mechanical moisture induced model is demonstrated on
part of a micro-scale representation of the asphaltic pavement to demonstrate the importance of each of these
moisture induced damage processes on the eventual developed damage pattern. In Fig. 7 the geometry and set-
up of the finite element mesh is shown. The mesh consists of two stones, coated with a mastic film and a
macro-pore which is saturated with moisture. The aggregate–mastic interface is also modelled to simulate
the bond response. The macro-pore elements are simulated with a porous media formulation, which allows
for the moisture to flow freely according to the formulations shown in the previous paper.

Even though the developed model is fully three dimensional, for demonstration purposes here only the two-
dimensional response in the micro-scale finite element mesh is discussed.

Since the two aggregates are at the surface of the pavement, Fig. 7, they are in direct contact with the traffic
loading. To simulate the tire–pavement interaction, a loading cycle is applied, which consists of 0.02 s pulses
per tire, with 0.06 s period between the tires and 0.1 s between the next car loading. In the simulation, the load-
ing of the stones, in time, is simulated with a compressive and shear pulse on the front and back side of the
stones, with a time-lag of 0.01 s. In the simulation, traffic is assumed to move from the right to the left. The
maximum applied compressive and shear stress is 0.7 MPa and 0.3 MPa, respectively. A complete loading
cycle takes 0.2 s and is considered to be two wheel passes and one rest period (Fig. 8).

In the following, 13 different cases are simulated in which the diffusion of moisture, the erosion of mastic,
the mechanical damage and the moisture susceptibility parameters are varied in a systematic way. These cases
demonstrate that the consideration of physical moisture induced damage, together with mechanically gener-
ated damage, will lead to predictions of damage patterns which may differ considerable had they not been
included. It furthermore shows the importance of determining the various moisture susceptibility parameters.
5.2. Moisture susceptibility parameters

In Table 1 the moisture susceptibility parameters of the various cases are summarized. In Case I–IV the
moisture susceptibility coefficients concerning moisture diffusion are systematically varied for both the mastic
and the aggregate–mastic interface. In these cases, additional damage to the mastic due to erosion or added
mechanical damage due to the pumping action are not included.

In Case V–VIII the diffusion is not included, and the focus is entirely placed on the effect of the mechanical
and physical damage due to the pumping action. Finally, in Case IX–XII both diffusion and pumping action
Fig. 7. Finite element mesh for the micro-scale analyses.
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Table 1
Parametric simulation scheme

Case name Moisture conditioning Moisture susceptibility parameters

Mastic Aggregate–mastic bond

Case 0: Dry – – –
Case I: Diff 42 days diffusion Dmst = 3 � 10�3 mm2/h aif

h ¼ 0:7
amst

h ¼ 0:5
Case II: Diff 42 days diffusion Dmst = 1.5 � 10�2 mm2/h aif

h ¼ 0:7
amst

h ¼ 0:5
Case III: Diff 42 days diffusion Dmst = 1.5 � 10�2 mm�2/h aif

h ¼ 1:2
amst

h ¼ 0:0
Case IV: Diff 42 days diffusion Dmst = 1.5 � 10�2 mm�2/h aif

h ¼ 0:0
amst

h ¼ 1:2
Case V: Dry PA PA (pumping action) Kd = 0.0 mm3/g, aq̂ ¼ 0:0 –

No diffusion
No erosion

Case VI: Advec PA and erosion Kd = 1.0 mm3/g, aq̂ ¼ 2:0 –
No diffusion

Case VII: Advec PA and erosion Kd = 1.0 mm3/g, aq̂ ¼ 5:0 –
No diffusion

Case VIII: Advec PA and erosion Kd = 5.0 mm3/g, aq̂ ¼ 5:0 –
No diffusion

Case IX: All PA, erosion and 42 days diffusion Kd = 5.0 mm3/g, aif
h ¼ 0:7

aq̂ ¼ 5:0, amst
h ¼ 0:5

Dmst = 1.5 � 10�2 mm2/h
Case X: All PA, erosion and 42 days diffusion Kd = 1.0 mm3/g, aif

h ¼ 0:7
aq̂ ¼ 5:0, amst

h ¼ 0:5
Dmst = 1.5 � 10�2 mm2/h

Case XII: All PA, erosion and 42 days diffusion Kd = 1.0 mm3/g, aif
h ¼ 1:2

aq̂ ¼ 5:0, amst
h ¼ 0:0

Dmst = 1.5 � 10�2 mm2/h
Case XI: All PA, erosion and 42 days diffusion Kd = 5.0 mm3/g, aif

h ¼ 0:0
aq̂ ¼ 5:0, amst

h ¼ 1:2
Dmst = 1.5 � 10�2 mm2/h
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Table 2
Simulation parameters

Material Visco-elastic component Elasto-plastic component

Mastic E = 176 MPa, m = 0.3 E = 176 MPa, m = 0.3
gd = 110 MPa s, gm = 1000 MPa s cy0

¼ 0:12 MPa, cy1 ¼ 0:35 MPa
/ = 0.25 rad, d = 90

Aggregate–mastic bond E = 100 MPa, v = 0.3 E = 176 MPa, m = 0.3
gd = 70 MPa s, gm = 1000 MPa s cy0

¼ 0:09 MPa, cy1 ¼ 0:35 MPa
/ = 0.15 rad, d = 90
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are included together. The original (undamaged) elasto-visco-plastic material properties of the stone, mastic
and mastic–stone interface are kept equal in all cases and are summarized in Table 2. For the yield surface
a standard Drucker–Prager formulation is used with a isotropic hardening which is controlled by d:
cy ¼ cy0
þ ow

on
¼ cy1 þ ðcy0

� cy1Þe
�dnp ð20Þ
5.3. Analysis results

In Fig. 9 the complex shear stress field to which the mix is exposed to under the imposed loading cycles is
shown. Over time, the imposed loading cycle is kept constant, however under the continued mechanical load-
ing and moisture attack, the material properties are degrading differently at different locations and the stress
and strain fields will be distributing differently, leading to various damage patterns.

For instance, the macro-pore between the two stones is simulated to be fully saturated with moisture. Due
to the loading cycle, a water pressure is developing in the pore, which is exerting an added load on the areas
connecting the macro-pore (Fig. 10). This cyclic pore pressure will induce added stresses and strains and there-
fore results in additional permanent deformations at certain locations, in addition to the mechanical loading
which is directly applied on the top of the mesh. However, in addition to added mechanical damage, the build-
ing-up and reducing of pore pressure is also causing a pressure gradient in the water, which is locally causing
Fig. 9. Stress-xy development within the materials for Case II.



Fig. 10. Water pressure in the macro-pore.

Fig. 11. Moisture diffusion simulation Case II, Dagg = 0.01 mm2/h and Dmastic = 0.015 mm2/h.
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fast water flow. As discussed earlier, depending on the desorption coefficient, the mastic film, which is in direct
contact to the water in the macro-pore, will be subjected to an erosion effect, i.e. a diminishing mass density.
Depending on the moisture susceptibility parameter, the erosion will locally cause a weakening of the material
properties leading to additional plastic deformations.

Similarly, the moisture from the macro-pore will start diffusing slowly into the asphalt components, thereby
locally weakening the material properties, Fig. 11. Since the moisture diffusion is a slower process than the
mechanical loading cycles and the pumping action, in the analyses the mesh was preconditioned to 1000 h
of moisture diffusion.

To characterize the developing damage patterns for the various simulation cases, a number of locations are
selected for which the developing stresses and strains are outputted. In Fig. 7 an overview is given of these
monitoring locations. An extensive comparison of the damage development in all monitoring locations for
all 13 simulation cases is given in Kringos (2007). In the following only a few comparisons are highlighted
to show the impact of the various moisture susceptibility parameters.

In Fig. 12 the stress–strain response of node A and D are plotted for Case 0 (dry), and diffusion Case II and
Case III. What is first of all very noticeable from the comparison between the responses at these two locations
is the entirely different, with the same loading conditions. This emphasizes the complexity of stress-states
which different locations in the asphalt pavement will endure and also shows the importance of a generic con-
stitutive model to capture this response. Secondly, in comparing the response of the two locations to the dif-
ferent moisture susceptibility cases, it becomes clear the at node A the Case II shows the greatest impact on the
response and in node D it is Case III which has the biggest effect. In fact, this would mean that if the mix
would consist of the moisture susceptibility parameters of Case II, the mix would most likely endure a cohesive
mixture failure, whereas in Case III it would most like fail in an adhesive mode.
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Fig. 14. Comparison of damage development for the various cases after 3000 loading cycles.
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In Fig. 13 a comparison is made between the response of node A during the pumping action cases Case V,
Case VII and Case VIII. The top graph shows the equivalent plastic strain development np, as described in the
above, and the bottom graph shows the cyclic stress–strain response. As can be seen from Table 1 the differ-
ence between Case V and VI is and increased moisture susceptibility parameter aq̂, with a constant desorption
coefficient Kd. The difference between Case VI and VII is an increased desorption coefficient with a constant
moisture susceptibility parameter. What becomes very clear from the comparison is that between Case V and
VI, a slight increase in plastic deformation will occur in Node A and a small deterioration in the stress–strain
response. However, in Case VIII the accumulation of plastic deformation rises quickly and the cyclic stress–
strain response deteriorates dramatically. This shows that starting from an asphalt mix with the same mechan-
ical material properties, the moisture susceptibility parameters could have a dramatic effect on the actual pave-
ment performance and cause unexpected premature failure.

Finally, comparing the resulting permanent deformations after 3000 loading cycles in Fig. 14, for Case
0 (dry), Case III (diffusion) and Case XII (diffusion and pumping action), it can be seen that in Case III
an adhesive failure in the aggregate–mastic interface would occur and in Case XII most likely a cohesive
failure.

The performed computational analyses show the complexity of the stress–strain response at different loca-
tions in an asphaltic mix and indicate how physical and mechanical moisture susceptibility parameters influ-
ence the localized failure which may develop. It is therefore of paramount importance to measure the moisture
susceptibility parameters to be able to predict if, when and where moisture would contribute to a premature
weakening of the asphaltic pavement.

6. Conclusions and recommendations

The aim of this paper was to demonstrate the importance of various moisture susceptibility parameters of
the asphalt mix components, on the overall response. To do so, several mechanical and physical damage
processes were discussed and possible formulations of their damage functions were shown. Furthermore,
by means of the newly developed finite element tool RoAM a demonstration was given of the effect of both
physical and mechanical moisture damage inducing processes on a micro-scale representation of an asphal-
tic mix.

On the basis of this research, it is recommended that, in addition to the standard moisture susceptibility
experiments which are currently performed, one starts determining the physical and physio-mechanical
parameters discussed in this paper. A great benefit of such an approach would be that, instead of rejecting
asphalt mixes because they fail an empirical test, one starts understanding which material property should
be improved upon. The long-term benefit of this will be that, it becomes possible to ‘engineer’ the asphalt
mixes, based on fundamental knowledge, rather than empirical speculations.

In addition to moisture, asphalt pavements are exposed to many other influences which may lead to damage
(i.e. settlements, cracks, ageing etc.). It is therefore important in moisture damage susceptibility studies, either
purely experimentally orientated ones or theoretically based ones, to always take into account the time frame
over which moisture damage may be generated in comparison to other failures. If, for a particular mix, it is
concluded that other damage failures are more likely to occur before moisture induced damage becomes an
issue, focus should be placed on improving the dominant material parameters which control these, and less
effort should be spend to improve the moisture susceptibility characteristics of the mix. An estimate of the time
frame over which moisture damage may occur can be made with the presented tools.

Finally, it can be concluded from the computational analyses that the identified moisture susceptibility
parameters can be of paramount importance to the resulting failure pattern. Determination of the dominant
moisture susceptibility material parameters which where identified in this research, can lead to better failure
predictions and improved asphalt mixtures.
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