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Stochastic Simulation of Signal Transduction: Impact of the Cellular
Architecture on Diffusion
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ABSTRACT The transduction of signals depends on the translocation of signaling molecules to specific targets. Undirected
diffusion processes play a key role in the bridging of spaces between different cellular compartments. The diffusion of the mole-
cules is, in turn, governed by the intracellular architecture. Molecular crowding and the cytoskeleton decrease macroscopic diffu-
sion. This article shows the use of a stochastic simulation method to study the effects of the cytoskeleton structure on the mobility
of macromolecules. Brownian dynamics and single particle tracking were used to simulate the diffusion process of individual
molecules through a model cytoskeleton. The resulting average effective diffusion is in line with data obtained in the in vitro
and in vivo experiments. It shows that the cytoskeleton structure strongly influences the diffusion of macromolecules. The simu-
lation method used also allows the inclusion of reactions in order to model complete signaling pathways in their spatio-temporal
dynamics, taking into account the effects of the cellular architecture.
INTRODUCTION

The cellular response to external signals depends on the signal

transduction from the plasma membrane to the respective

targets of the signal. The biochemical pathway for the

signal transduction process is known for many signals, e.g.,

epidermal growth factor (1). While biochemical reactions

affect the number of the molecules carrying the signal, trans-

port processes are needed to deliver these molecules to their

targets on various locations in the cell, mostly the nucleus

where they trigger the expression of certain genes. Some

signaling cascades involve the active transportation of signal-

ing molecules along the cytoskeleton by motor proteins (2).

However, in many cases the translocation of the signaling

molecules depends on undirected diffusion in the cell (3).

To model signal transduction realistically, the stochastic-

ity caused by low particle numbers should be incorporated

(4–6). In addition, the spatial aspects must be taken into

account (7–11). These include the microscopic and heteroge-

neous cellular architecture as well as molecular crowding

(12,13). Besides the existence of spatial restrictions, the

mobility of signaling molecules can further decrease as

a result of unspecific and transient binding to the cytoskel-

eton (14). Computer simulations enable a separate and

combined analysis of the different effects in silico. This

article focuses solely on the spatial aspects and investigates

the influence of molecule size as well as differences in the

architecture of the cytoskeleton network on the diffusion of

inert tracer molecules. By adjusting cytoskeleton parameters

so that the diffusion results fit to measured data, one may also

derive additional information about the (cytoskeleton) struc-

tures in cells.
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Blum et al. (15) were the first to calculate the effect of the

cytoskeleton on diffusion. However, an analytical solution

for the diffusion in a cytoskeleton structure was only

possible in a regular lattice structure. Monte Carlo simula-

tions on the particle level facilitate geometries that are

more realistic. A particle-based model to analyze diffusion

due to forbidden spaces in the cell was first used by

Ölveczky and Verkman (16) and later in the software envi-

ronment of Smoldyn, but only using plates or cubes as fixed

obstacles (17). MCell, another simulation environment,

allows complex compartment geometries but does not

include a cytoskeleton (18). Pogson et al. (19) included

binding to actin structures but did not explore the effect

on diffusion. The stochastic simulation framework presented

here tackles the diffusion problem based on a realistic model

for the cytoskeleton (see Fig. 1). In this framework, binding

to the cytoskeleton and reactions can be included as well to

build a realistic signal transduction simulation (20). In addi-

tion, all structures and molecules of the simulation can be

visualized to provide a three-dimensional impression of

the intracellular processes (21).

The diffusion of molecules in the cell is experimentally

determined using fluorescence recovery after photobleaching

or fluorescence correlation spectroscopy (FCS) methods

(22–25). Overall, a size-dependent hindrance of diffusion

was observed. In addition, the measurements not only re-

vealed the reduced diffusion but also subdiffusion. In this

case, the diffusion coefficient changes over time due to

spatial heterogeneity. Subdiffusion depends on the level of

crowding (26,27). Diffusion, and to a greater extent, subdif-

fusion, can limit biochemical reaction rates (28) and thus,

affect the dynamics of signal transduction (29).

The hindrance in diffusion depends on various parameters

such as cytoskeleton volume fraction, filament alignment,

or particle size. Empirical formulas can describe some
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dependencies (30–32), but are unable to relate the phenom-

enon to physical explanations. On the other hand, the complex

physical interactions and architecture lead to complex mathe-

matical models that often need simplifications in critical

points (33,34). This article aims to connect relevant parame-

ters of the cytoskeleton architecture to the hindrance in diffu-

sion. The approach is based on the convincing fact that a test

molecule cannot move through an obstacle.

The difficulty for a rigorous analysis of the process of

hindered diffusion in the cellular environment begins with

the appropriate representation of the manifold obstacles.

The cytoplasm is not a homogeneous solution but highly

crowded with proteins. Up to 30% of the cellular volume

is occupied by macromolecules (12). Some of these mole-

cules are arranged in the cytoskeleton structures: Microtu-

bules (diameter z 25 nm), intermediate filaments (10 nm),

and actin filaments (7 nm) form a complex network (35).

Considering the diffusion of macromolecules, this network

leads to a sieving effect. Larger molecules are hindered in

their diffusion to a greater extent, and eventually a caging

effect restricts the movement of large objects (e.g., vesicles)

to pores of the cytoskeleton or subcompartments in the cell.

The cytoskeleton can be disassembled using specific chemi-

cal agents to measure the effects of the different fiber types

separately. Luby-Phelps (23) found that intermediate fila-

ments had the strongest effect on diffusion. Potma et al.

(36) estimated that the effect of the actin filament network

in Dictyostelium cells accounted for 53% of the hindrance

FIGURE 1 Model cytoskeleton with 5% volume fraction, and a fiber

diameter of 25 nm (microtubules). The tracer molecules (white) are 10 nm

in diameter.
in diffusion. Dauty and Verkman (37) reported that actin

led to a size-dependent hindrance of DNA diffusion. These

findings suggest that the cytoskeleton is the primary physical

barrier that hinders the diffusion of macromolecules.

The cytoskeleton, in a first approach, can be seen as a rigid

network comparable to porous media. Averaging over the

microscopic structure leads to macroscopic properties from

which the hindrance on diffusion can be calculated by volume

averaging (38). Going more into details, this hindrance not

only depends on the properties of the obstacles, e.g., the

pore size, but also on the size and conformation of the

diffusing macromolecule (39). While rigid bodies cannot

adjust their shape, chainlike polymers such as DNA or RNA

can wriggle and squeeze themselves through small pores of

the network (40).

The volume fraction of the microtrabecular lattice, a defini-

tion that extends the cytoskeleton by all kinds of proteins

bound to it (41), was measured in PTK cells analyzing

high voltage electron micrograph images and reported to

be between 15 and 21% (42). This is much larger than the

volume fraction of the cytoskeleton building blocks, which

accounts only for ~3% (23). Hou et al. (43) estimate a neces-

sary volume fraction of an actin cytoskeleton of 11% in order

to match diffusion data in artificial F-actin solutions with

in vivo data. It can be assumed that proteins that are tran-

siently or permanently bound to the cytoskeleton are the

reason for this increased apparent skeleton volume. The

correlation of protein interactions on the scale of the entire

proteome reveals a connection between signaling and cyto-

skeleton proteins (44). This correlation might be due to the

organization of signaling proteins in scaffolds attached to

the membrane or the cytoskeleton to improve the signaling

cascade by enzyme channeling (29). Furthermore, active

transport with motor proteins along the cytoskeleton could

improve first passage times compared to free diffusion

(45), especially for large objects like vesicles but also

RNA or proteins (2). The important effects of motorized

transport and channeling through scaffolds are not included

in this study, but will be analyzed in detail in the future.

In addition to the fixed structure of the cytoskeleton, the

cytoplasm is crowded with unbound macromolecules. These

crowding objects reduce the volume available for all other

molecules, and therefore influence protein folding, reactions,

and diffusion (46,47). Their mobility and immense number

increases the computational effort. Currently different groups

are developing methods toward realistic modeling of the

complex interactions introduced by macromolecular crowd-

ing, e.g., Sun and Weinstein (48) and Ridgway et al. (49).

Simulation method and hindered diffusion

Diffusion is the macroscopic outcome of the stochastic

Brownian motion of individual molecules. For normal diffu-

sion, the mean value of the squared individual distances

increases linearly with time t,
Biophysical Journal 96(12) 5122–5129
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�
ð~xðtÞ �~xðt0ÞÞ2

�
¼ 2dDðt � t0Þ; (1)

where d is the dimension of~xðtÞ.
Brownian motion of molecules translates to a Wiener

process in the mathematical description, and can be simu-

lated as a random walk. In this simulation, a discrete time

with fixed time step Dt and continuous space was used.

The desired number of particles is placed on initial positions.

The positions were subsequently updated in every time step

with a random step D~x depending on the diffusion coefficient

D according to
~xðt þ DtÞ ¼ ~x þ D~x

D~x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2DDtÞ

p
� ~x:

(2)

The stochastic force behind Brownian motion is translated

into the Gaussian random vector ~x with mean ~0 and

hxi; xji ¼ dij (50). The central limit theorem allows the use

of other distributions of random numbers; the repeated appli-

cation of the random step leads to a fast convolution into

a normal distribution. Simpler distributions can thus be

used, but the advantages (computationally simpler and thus

faster) have to be critically weighed against the disadvan-

tages (reduced accuracy at short times).

For every test molecule, the target position of each random

walk step was compared with the cytoskeleton locations, and

sterically prohibited positions were rejected. In principle,

there are three different models of how to handle a collision:

Method 1. The detailed ballistic reflection, at the exact

point where the trajectory intersects with the cytoskel-

eton, can be calculated.

Method 2. If the new position is prohibited, a different

random step will be calculated instead, until a valid

new position is found.

Method 3. The easiest method is to stay at the previous,

valid position and to wait for the next timestep.

Comparisons of these three methods show that they give the

same results for the effective diffusion (data not shown). A

molecule in the first and second model will definitely move

in the timestep, while molecules of the last model might

stay at the old position. Nevertheless, the random nature of

the movement often cancels out the previous step; after

several steps, the displacement in all models will again be

similar. Only in extreme cases, i.e., high levels of crowding

or large molecules (3 > 0.8), are the methods expected to

give slightly different results. In such cases, the diffusion in

the second model is faster compared to the last model where

molecules can hardly move. With respect to the computa-

tional effort, the easiest method still can be used when

modeling signal transduction under realistic conditions

because the signaling molecules are usually not that large.

In this study the second method was used, but restricted to,

at maximum, 10 repetitions to find a valid new position.

The cytoskeleton itself was modeled as a set of randomly

arranged, overlapping cylinders, whose number, length, and
Biophysical Journal 96(12) 5122–5129
diameter could be adjusted (see Fig. 1). This cytoskeleton

model was quite similar to the cytoskeleton structures

observed by Medalia et al. (51) with electron tomography.

The parameters used in our simulations are listed in the Sup-

porting Material. The cytoskeleton volume was calculated

using a Monte Carlo method: test points were placed at

random positions, and the fraction of trials inside the cytoskel-

eton equaled the cytoskeleton volume fraction. The excluded

volume fraction 3 was calculated accordingly using test

spheres with the respective radius. The free volume fraction

f was accordingly (f ¼ 1 – 3). To avoid boundary effects,

the test volume for the hindered diffusion measurements

was a cube inside the cytoskeleton model structure. This cubic

test volume was repeated in all directions to allow unlimited

movement of the tracer molecules (periodic boundary condi-

tions). Dt was maximized according to Eq. 2, with respect to

the condition max(Dx)< rcytoskeletonþ rtracer, so that the tracer

particles could not jump through the obstacles (note: the

method used does not validate the path itself, it only validated

the final position of a step). It is also worth noting that in

method 3, where no repeated steps to find a valid position

were allowed, max(Dx) should be smaller than the mean

free path to prevent the particles from mostly jumping into

obstacles and subsequently to stop moving. A uniform distri-

bution is used for the random walk step since it has no tails and

therefore allows larger steps than a normal distribution.

The effective diffusion was calculated according to Eq. 1:

Deff=D0 ¼
�
xðtÞ2

�
2dD0t

:

In this framework, it is not even necessary to know the exact

D0. According to Eq. 2,~xðtÞ also depends on D0. The result-

ing Deff/D0 solely states the relative slowdown.

In the case of transient anomalous diffusion, the linear rela-

tionship of Eq. 1 does not hold; hx(t)2i increases nonlinear,

proportional to ta, but a converges to 1 (see Fig. 2). The value

for Deff/D0 was evaluated after convergence to normal

diffusion, which was reached in all simulations. Simulations

were stopped as soon as the fastest particle had traveled

more than three times through the periodic test volume (i.e.,

maxðk~xiðtÞ �~xið0ÞkÞ > 3L, where L was at least 0.5 mm).

Pretests proved that this was sufficiently long to average out

the spatial inhomogeneities and to reach the normal diffusion

regime. Simulations were alternatively stopped when Deff(t)/
D0 fell below 1 � 10�6, which indicated that all particles

were trapped. It was not possible to define a stopping criter-

ion based on the slope of hx(t)2i due to the noisy temporal

development. The quantity hx(t)2i and therefore Deff/D0

revealed stochastic noise in relation to the number of

tracers. To eliminate the noise in the results of this article,

we used the average of five independent runs with 20,000

particles each.

Molecular crowding by other macromolecules which

themselves are moving and diffusing was not included in
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this simulation. To our knowledge, there is no experimental

data available expressing only the cytoskeleton in its in vivo

structure without molecular crowding. To compare the simu-

lation data with measured in vivo tracer diffusion (including

both cytoskeleton and crowding), the effect of crowding had

to be added to these data. This was achieved by multiplying

the relative effective diffusion coefficients:

Dcell
eff

D0

¼
 

Dskeleton
eff

D0

!
�
 

Dcrowding
eff

D0

!
: (3)

This holds as long as the effect of the cytoskeleton on the

crowding molecules only marginally impacts the crowding

molecules’ effect on the tracer molecules (i.e., the two effects

can be decoupled). Experimental results show that this multi-

plication is possible for the combination of separate cytoskel-

eton and molecular crowding effects (43).

Since the unbound crowding molecules are not located in

a fixed structure, we assume an average and spatially homoge-

neous effect on the diffusion of the tracer particles—like an

increased effective viscosity of the cytosol hcytosol compared

to water with h0. According to the Stokes-Einstein relation,

the effective diffusion is reduced to Deff/D0 ¼ h0/hcytosol.

Hou et al. (43) found a nearly radius-independent effective

diffusion through Ficoll-crowded solutions with Deff/D0 ¼
0.37 for the highest crowding values. This value corresponds

to a viscosity of ~2.7 cP, which is comparable with the cyto-

solic viscosity (23).

The empiric formula Deff
crowding/D0¼ exp(–0.035� 1240.64�

rtracer
0.16) to include molecular crowding was also used as

comparison. The parameters are estimated to match experi-

mental data from Swiss 3T3 fibroblasts and a model setup by

Luby-Phelps and Weisiger (52).

FIGURE 2 A nonlinear time dependence of hx(t)2i leads to a time-depen-

dent D/D0(t).
RESULTS

Simulation versus theory

It is known from the theory of porous media that the relative

effective diffusion Deff/D0 is related to the free volume fraction

f. Maxwell’s approach for conduction through heterogeneous

media (53) can also be applied to hindered diffusion (54):

Deff

D0

¼ f

1 þ 1=2ð1� fÞ: (4)

Weissberg (54) calculated a more detailed upper limit for the

value of Deff/D0 in the case of overlapping spheres:

Deff

D0

<
f

1� 1=2lnðfÞ: (5)

This diffusion in the fluid phase (with volume fraction f) has

to be modified to account for the diffusion in the total volume

of the porous media. The so-called volume averaging trans-

forms Deff/D0 to f� Deff/D0 (38) and allows the comparison

of simulations on the level of the porous system with the

theoretical values.

Simulations of a cytoskeleton setup by spheres in a simple

cubic lattice were in good accordance with Maxwell’s (Eq. 4)

and Weissberg’s (Eq. 5) theoretical predictions, especially

with regard to small occupied volume fractions. The devia-

tions obtained were similar to those obtained in other Monte

Carlo simulations (55) (see Fig. 3). For all cytoskeleton

models tested here, the effective diffusion decreased far

FIGURE 3 Comparison of theoretical predictions with simulated data

(spheres in a simple cubic lattice, a simple cytoskeleton structure (15),

and a model cytoskeleton of random cylinders in various architectures and

different tracer radii). Note that the simulation results are multiplied by

the free volume fraction to be comparable with the theoretical results

(volume averaging).
Biophysical Journal 96(12) 5122–5129
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more than for ordered spheres. Nevertheless the difference

between simulation and theory was smaller than that observed

in simulations performed by Trinh et al. (55) for random

media. This shows that the hindrance in diffusion depends

on the setup and shape of the obstacles. The random architec-

ture also led to a percolation threshold at low free volume frac-

tions. Beyond this value, the tracer molecules were caged in

the cytoskeleton structure.

For comparison, we include the result obtained by Blum

et al. (15), which is based on a regular grid cytoskeleton

and square geometry. This result could be reproduced with

our simulation method when we apply the same cytoskeleton

structure (data not shown). In this model, different results

were obtained for large tracers because the square network

was not able to trap particles; Deff/D0 is always nonzero. It

is also possible to construct symmetric networks that always

will trap large particles. In contrast, a random structure

exhibits spatial inhomogeneity: some parts allow diffusion,

while others already form a cage around the tracer molecules.

Ogston et al. (30) derived an exponential dependency of

Deff/D0 on the tracer radius in a solution of polymer chains.

However, the present simulations (see Figs. 4 and 5) and

data obtained by Blum et al. (15) as well as experiments in

agarose gels (56) showed a curvature that cannot be explained

by a single exponential function. We therefore suggest that the

formula does not represent the complete interaction between

the entangled network of crowding objects and the tracer

particles.

Simulation versus experiment

To compare the simulation with the measured in vivo data, the

volume fraction of the model cytoskeleton was adjusted to

15% and then to 20% to match the intracellular conditions

reported by Gershon et al. (42). The model cytoskeleton

was constructed of randomly arranged cylinders representing

microtubules, 25 nm in diameter and 500 nm in length. Mole-

cular crowding was included according to Eq. 3. The simula-

tion result Deff
skeleton/D0 was multiplied with the constant

Deff
crowding/D0 ¼ 0.37 (43) and for comparison with the expo-

nential Deff
crowding/D0 ¼ exp(–0.035 � 1240.64 � rtracer

0.16 ) (52).

Fig. 4 shows that, independent of the method used to include

molecular crowding, the model cytoskeleton occupying 20%

of the volume is most congruent with the experimental data

obtained by Luby-Phelps and Weisiger (52).

Parameter study: volume fraction, fiber radius,
and fiber length

In the simulation, it was possible to separately adjust the

volume fraction occupied by the cytoskeleton fibers as

well as their size and number. An increase of the volume

fraction led to a reduced diffusion (Fig. 5 a). Smaller fiber

diameter and hence a smaller single filament volume fraction

required a higher number of filaments to reproduce the same

cytoskeleton volume fraction. This led to a reduction in the
Biophysical Journal 96(12) 5122–5129
mesh size of the filament network and thus decreased the

diffusion of larger molecules (Fig. 5 b).

To obtain a particular fiber volume fraction, the necessary

number of fibers Nfiber increases proportional to rfiber
–2. For

each fiber and a given tracer particle, the excluded volume

grows proportional to (rfiber þ rtracer)
2. For large tracer parti-

cles this term is dominated by rtracer; thus, for the complete

cytoskeleton structure and for large tracers the increase of

the excluded volume strongly depends on rfiber
–2. The same

consideration is true for variations of the fiber length, except

that the fiber volume linearly depends on the length. Accord-

ingly, the effect of fiber length variation is less pronounced

than that of fiber radius variation (see Fig. 5, b and c).

It is possible to mix different fiber types in the simulation.

The appropriate proportion of large fibers (e.g., microtubule)

to small fibers (e.g., actin filaments) might furthermore

improve the congruence between simulation results and theory.

Convergence of subdiffusion into diffusion

Measurements of diffusion in the cytoplasm using FCS

reveal subdiffusion of molecules. Accordingly Eq. 1 would

FIGURE 4 Comparison of simulated and experimental data from Luby-

Phelps and Weisiger (52): (a and b) Cytoskeleton volume fraction ¼ 15%

and 20%, respectively. The simulation data were multiplied by literature

values, to take into account molecular crowding ((i): Deff/D0 ¼ 0.37 (43),

and (ii): Deff
crowding/D0 ¼ exp(–0.035 � 1240.64 � rtracer

0.16) (52).
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give a time-dependent instead of a constant value in the

spatial/temporal dimensions covered by FCS (57). Computer

simulations of molecules in a crowded environment confirmed

this outcome (26,58): hx(t)2i increases nonlinearly, proportion-

ally to ta with a < 1. This anomalous diffusion turns into

normal diffusion after a certain timescale (crossover time),

which itself depends on the level of crowding (27,59,60).

Figs. 2 and 6, respectively, illustrate hx2(t)i and the way in

which subdiffusion converged into diffusion, depending on

FIGURE 5 Variation of the cytoskeleton parameters: (a) rf ¼ 12.5 nm;

Lf¼ 500 nm; volume fraction¼ 5, 10, 15, 20, and 25%. (b) Volume fraction¼
15%; Lf ¼ 500 nm; rf ¼ 7.5, 12.5, and 17.5 nm. (c) Volume fraction ¼ 15%;

rf ¼ 12.5 nm; and Lf ¼ 50, 100, 200, and 500 nm.
the tracer particle radius. The crossover from anomalous to

normal diffusion depended on the excluded volume and its

distribution in space. Large tracer particles were caged in

the network. This limits hx2(t)i to a maximum value, depend-

ing on the size of the subvolume which restricts the move-

ment. In this case, Deff/D0 / 0, and the crossover time

diverges to infinity. Eventually, a stationary value of Deff/D0

was reached in all simulations. The quantity hx2(t)i for this

crossover can be as high as 1 mm2. This crossover distance

is smaller than normal cell size, but the nonlinearity of diffu-

sion on short time- and length scales might affect signaling

especially when coupled with nonlinear reaction schemes.

DISCUSSION

The excellent congruence between theoretical expectations

and the results of our simulations using spheres in a cubic

lattice indicates that it was also possible to obtain reliable

simulation results for the chosen cytoskeleton model.

Although the exact in vivo cytoskeleton structure was not

known, the simulation with a cytoskeleton volume fraction

of 20%, which is in the range reported by Gershon et al.

(42), was nevertheless in good agreement with experimental

data. To reach this agreement, the hindrance of diffusion due

FIGURE 6 Temporal development of hx2(t)i for tracer particles with an

assumed D0 ¼ 1 mm2/s in a model cytoskeleton with volume fraction ¼
15%; rf ¼ 12.5 nm. The tracer radius increased in 10-nm steps from 0 to

60 nm. In the log-log representation, the transient anomalous development

eventually led to equal slopes, but shifted curves in the normal diffusion

regime. Tracers with a radius R 50 nm were caged and eventually showed

a constant hx2(t)i.
Biophysical Journal 96(12) 5122–5129
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to molecular crowding within the cell had to be taken into

account. Further simulations and experimental measure-

ments are needed to be able to define the effect of molecular

crowding on diffusion and to predict Deff
crowding/D0, especially

in combination with the cytoskeleton structure.

The excellent congruence of experimental data with our

simulation using large filament radii and volume fractions

can be partly explained by filament bundling. The fibers of

the cytoskeleton tend to align with each other, forming

bundles (61), which can themselves be treated as larger fila-

ment elements. Such a bundle includes other molecules and

the space between the single filaments is not accessible

to tracer particles. Furthermore, molecules (transiently)

bound to the cytoskeleton increase the radius and volume

of cytoskeletal structures. Bundling, in turn, is helpful for

computer simulations, because larger objects together with

a reduced object number reduce the computational effort.

In vivo, the cytoskeleton is a dynamic structure. However,

for the timescales under consideration in our simulations

(i.e., seconds), the cytoskeleton can be regarded as static.

Accordingly, the simulations used assumed rigid fibers,

which hold only for distances shorter than the persistence

length of the fibers. At longer distances, the cytoskeleton

fibers would be flexible. Large particles might thus be able

to stretch the network structure, and squeeze through meshes

that originally were too small. The persistence length of

microtubules is 5200 mm, and for actin filaments it is

17.7 mm (62). With the persistence lengths of the cytoskel-

eton filaments, rigid fibers can be safely assumed for tracer

particles that are smaller than 0.1 mm. The simulation algo-

rithm did not include molecular dynamics. Water molecules

and their interactions were not modeled. All processes

relating to a hydration layer must therefore be included in

a fixed hydrodynamic radius.

Using reasonable ranges for the parameters of cytoskel-

eton volume fraction and molecular crowding effects, our

simulation produced results that are congruent with theoret-

ical and experimental expectations. It provides a good tool

for the further investigation of the impact of cytoplasmic

properties on transport processes. Such an investigation

should include a rigorous analysis of transient binding to

cytoskeleton structures as well as the utilization of motor

proteins for directed transport along cytoskeleton tracks.

The next step will be to combine the separate analysis of

hindered diffusion and the stochasticity of (diffusion limited)

reactions as outlined in Lapin et al. (20). This is a major step

toward realistic simulations of signaling on the cellular level

that include all relevant interactions.

SUPPORTING MATERIAL

Ten figures and their accompanying tables are available at http://www.

biophysj.org/biophysj/supplemental/S0006-3495(09)00778-4.

We thank Bruce Locke for introducing us to the method of volume aver-

aging.
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