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Abstract—The Bernstein and B-spline forms are generalized to multivariate polynomials. These
forms are combined with a type of Taylor form for multivariate functions to generate realizable forms
for multivariate functions.
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1. INTRODUCTION

Interval approximation theory is strongly focussed on the problem of computing good inclusions
to the range of a function over a finite interval. A great deal of work has been done in the area,
mainly inspired by the development of centered forms as defined by Moore {1]. Centered forms
for multivariate polynomials were defined in {2], and later in [3], it was shown that the number
of possible multivariate centered forms was very large. A survey of the results in the area up to
the time of publication is given in [4].

These outer approximations to the range of a function have application in the solution of
equations, in optimization and in a variety of other areas.

In this paper, some of the previously obtained results given in [5] are generalized and extended
to higher order approximations for multivariate polynomials and functions. In Sections 2 and 3,
the Bernstein and the B-spline forms of multivariate polynomials are discussed. In Section 4, we
define a multivariate Taylor form constructed using the ideas of Cornelius-Lohner [6]. Finally, in
Section 5 the results of the earlier sections are combined to obtain realizable approximations of
higher order for multivariate functions.

2. THE MULTIVARIATE BERNSTEIN FORM

The fundamental idea of using Bernstein polynomials for computing the range of a polynomial
over an interval was presented in [7]. Later, the idea was expanded upon in [8-10]. In this section,
the idea is further extended to the multivariate case.

Let p(x1,...,%s) be a polynomial in s real variables with the maximum degree ny + - -- + ng,
that is,
ni Ny
p($1,...,ms)=Z...Zailmisxlll...x‘z;, (1)
11=0 i,=0
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102 Q. LIN AND J. G. ROKNE
where (z1,...,25) € [a1,b1] x -+ X [as,b;]. We also assume that [a1,b1] = -+ [as, b5] = [0,1] in
this section without loss of generality since any finite interval can be mapped to [0, 1] by a linear

transformation.
We introduce the Bernstein basis functions

(:r) ( ):1:1(1—:1:)'c 3 z €[0,1]

and it is easily shown that [7]
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From equation (1), it now follows that

(2) o .. = (2)

ny Ng k1
p(zla-“»xs)=Z"‘Zailu-is Z k 1 1) k i
i1=0  §,=0 jimis ( 1) Je=is ( 3)
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13=0 j1==23 15=0js=1s

= meim imlnfng)a' : Ci) "'@B{“‘ (@1) B (z)  (2)

21...%s 3
J1=0 i1=0 js=0  i,=0 kl ]f:s '
il s
k1 ks min(jlynl) min(js,ns) (Z;) (Zs>
k 8
= Z . Z Z Z a”il...is kl ...__7Cs__ lel (x]_)"'BIZ ($S)
1=0  j.=0 i1=0 1s=0 ( i ) <3>
(31 s

k1 ks
=" > b, BY (z1)- BF (a,),

J1=0 Je=0

where b;,...;, is defined to be

bjl'“js = Z i1
=l
1 1s

with the assumption that k1 > ny,..., ks > ns.
We can now prove the following theorem.

min(j1,p1)  min(Gemns) (Zl> (2’)
S a8 .

THEOREM 1. For bj,..;,, 71 =0,...,k1,...,Js =0,..., ks, we have that

(B (Ll
a2 () =0 (245
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min(j1,n1) min(js,ns) (zi) (‘ZS> n Ty jl 11 ] 1
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$1=min(j1,n1)+1 12=0 is=0

min(j1,m1) min(js—1,ms—-1) g 1 i j is
T S 3 “(E) (k_>
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11=0 iy-1=0 is=min(js,n.)+1
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=0l —+---+=1.
(kl + + ks)

This means that the quantities b;,. j, 71 =0,...,k1,...,Js = 0,..., ks can be used to construct
a Bernstein form for multivariate polynomials for approximating the range p([0,1],...,[0,1]) of
the polynomial (1). For this we define

BEk([0,1],....,[0,1]) = [mm by, mex bjl...js} . 3)
Ji']s J1Js

THEOREM 2. For (3), we have the following results:
(1) #((0.1],...,[0,1)) € Bg*~*((0,1],...,(0,1}),

@ w (B ((0,1],...,[0,1]) - w(B([0,1],....[0,1]) = O (ki T ki) |
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PROOF.
(1) From (2), it follows that

k —
min bj,...;, < E E bjy-j, By ki (21) - B (zs) =p(T1,...,25) < max bj,...j,
Jids j1=0 ja=0 JiJs
o=

(2) Let p([0,1},...,[0,1]) = [p*,7*]. Then from Theorem 1, it follows that there exists

(32/k1,...,79/ks) €]0,1] x - -- x [0, 1] such that

-0 0
.71 .73 1 1
max b; A L) =0(—=4--+—).
dioege VT p(kl ks) <k1+ +ks>

From this, it follows that

J1ds

. 1 1
max bj,..;, — P =O(E+---+—k—8—).

In a similar manner, we obtain

Jr s

1 1
P — min bj,..5, —O(E+---+k—s).
Thus

w (Bf*([0,1),...,[0,1])) — w (B([0,1],...,[0,1]))
= (ma" bir-d. F) - (jﬁf.‘-i-?, biv-3y ‘2*) =0 (kil

3. THE MULTIVARIATE B-SPLINE FORM
The basis functions for the B-splines are [11]

myoy r—a m+1
N (z) = Qm (kb—a — ]), z € [a,b)],

where Q,, is the mt® §-spline function

m(z) = mf( 1)fm'(m:1) (x+mT“—r)m.

It is easy to verify that [11]

k-1
(1) NMz)=0, Y NMz)=1, z€[ab],
j=-m
(2) = Z wﬁi)N;"(x), z € [a,b], i=0,1,...,n,

j=—m

where

@ _ Symy(j+1,...,5+m)
=

#(7)
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with Syme(7 +1,...,7 + m) = w](-o) = 1. For 4 > 1, we have that Sym;(j + 1,...,5 + m)
represents the i*" elementary symmetric polynomial of j +1,...,7 + m, i.e.,
Sym;(j+1,...,j+m) = Z Vi, Vg (4)

where vq,...,v; are i distinct integers arbitrarily chosen from the array {j +1,...,7 +m} and
where the number of terms in the sum (4) is (7).
Hence equation (1) can be written as

k1—1 ks—1
plona) = 35 S o, 3 AN S AN
i1=0  i,=0 f1=—my Ja=mms
ki—1 ks—1 n1
=X X (Z 3 il )N’"w 0N (e)
Ji=—-my js=—ms \i1=0 15=0
kl-—-l ks_l
Z PPN Z djl"'jijrf'l (:El) .o ‘NJT:’S (.’Es)’
Ji==m Ja=—ms

where d;,...;, to be is defined as

djyongy = Z Z% agmy ),

11=0 1,=0

THEOREM 3. Fordj,..;,, j1=—m1,...,ky —1,...,5s = —mg,..., ks — 1, we have

1 1
(djess — D (s ) = O (k— - ﬁ)

where ) )
. mp + 1 . me +1
7l'jl=k—l<]1+ 2 )7""7rjs:k_<]3+ 82 >
s
PROOF
|dj1"'js —p('/rjl, SN ,ﬂ'js)l
SR (ix) '
=130 D w30 3 i, ) )
i1=0 ’I;s=0 11—0 1,3—0
1 s . . .
<D D lae | mf i) = () ()
21=0 ig=0
71 Ny .
< Z "' Z @iy iy | - ﬁl) (m)" ] ](ZZ) (my,)"
31=0 1;3:0
30 S b = () [ = ()
i1=0 19=0

1 1
=o(—+---+—>.
k? k3

We now assume that in this section
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without loss of generality which means that we can construct the B-spline form as an including
approximation to the range p([a1,b1],...,[as,bs]) of the polynomial given in equation (1) as
follows:

SSl“'ks ([al’ bl] PICECEEIEY [asa b_g]) = jll?u djl.--js,]??'i djl],] ‘ (6)

In a similar manner as in the proof of Theorem 2, we can prove the following theorem.

THEOREM 4. For the estimate given by equation (6), we have

(1) ﬁ([a‘hbl] L) [as’bs]) - Sﬁl.“ks ([ahbl] PRI [asabS]) y

(2) w(SEke ([ag,b1],. .., s, bs))) —w (B (la1,b1], .. -, [as,b5])) = O (ki% +o 4 —1—) .

4. A MULTIVARIATE TAYLOR FORM

In this section, we consider a multivariate Taylor form along the lines of the form developed
in [6]. We assume that the real function f(z1,...,z,), f @ [a1,b1] X --- X [as,b] — R® is
n+1 times differentiable on the s-dimensional interval [a1,b1] X - - - X [as, bs] and that (z1,...,zs) €
[@1,b1] X - -+ X [ag,bs]. The Taylor expansion of f is then

f(zla'-wxs):p(xly“*axs)+T(£1""’§3)7

where

n

@@L, T) = D i, (01, c) (71— c1) e (T — )™, (7)
i1t +4,=0
(cl,...,cs) c [al,bl] X o X [as,bs],
1 ftinttis) (7 .. 2,)
iyl dg! Bxfll Bmé
P €)= 3 @i, (€18 (@1 - 01) - (@ — )",
d14- i =ntl
(61,...,53) c [al,bl] X e X [asabs] .

b

Qgy.odg (21, ey zs) =

For X3 x +-- x X5 C{a1,b1] X - -+ X [as, bs], the Taylor form can be expressed as
F(Xy,...,Xs)=7(X1,..., Xs) +7(X1,.... X,), (8)
where

(i) 7(Xy,...,Xs) is the range of p over X; x --- x X, and

() r(Xy...X)= Y. i, (X1, X) (X —e)? o (Xa—e) . (9)
14 Fi,=nt1

We have the following theorem for the form defined by (8).
THEOREM 5. Assume that the Taylor form is defined by (8). Then
(i) F(X1...,Xs) SF(Xy,...,Xs),
() w(F(X,...,Xs)) —w(F (X1, X)) =0 (w* ((Xl,...,Xs)"“)) ,

where w*(X;,. .., X,) = max{w(X1),...,w(X,)}.
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PrOOF. The proof of (i) follows from the definition.
For (ii), let

F, Xy = [f (znm) o £ (10008

(X1, Xs) = {p (%1"“"3{8) ,P(Zjlv---,ﬂs)] ,

where (zr1,...,25) and (y1,...,¥,) are the minimum points of f and p, respectively, on X x - - x
* * * *
X, and where (.;:1, e ,Es) and (1*/1, . ,gjs) are the maximum points of f and p, respectively, on
X1 x - x Xg5. We also define r(X1,..., X;) = [r,7].
Thus

w(F (X1, X)) —w (F (X1, ., X))

:p(f}l,...,g’;s>+F—p(y1,..‘,ys —[—f(%l,...,;:s> +f(£1,...,:cs>
- [p(éla"'vz}s

< [ (i) 471 ()] [ () =0 (0 ) 1]
)T . p (v,

=92 .w [ Z Qiy i (Xl""’Xs)(Xl'Cl)il"'(Xs“Cs)iS:|

i1+ ta=n+1
-0 (w* (Xl,...,Xs)"“) :

which proves the theorem.

5. A TAYLOR APPROXIMATION OF HIGHER ORDER

Although the approximation formula in the previous section has order n + 1, it is difficult to
realize in practice. The reason for this is that it requires the computation of the range of an
n*h degree polynomial, a difficult problem in its own right. For this reason, we combine the
result in the previous section with the results of Sections 2 and 3 such that the combined method
is a very effective approximation method.

The problem is to find an estimate for the s-dimensional function f(z1,...,zs) over the interval
X1 x - x X,

The concrete steps in this process are as follows:

1. First find the Taylor polynomial of (7) of f. Then select a linear transformation T such
that X1 x---xX; — [0,1]x---x[0,1] or X1 x---x X, — [a1,b1] X - - X]as, bs] satisfying (5).
The transformation 7" takes p(zi,...,Zs) into p*(z1,...,Ts).

2. There is now a choice of either finding the Bernstein form BZ&""“” of p*(X1,...,Xs) where

1 n+1
ki,... ks> | ———————
b s—[w*(xl,...,xs)]

following Section 2, or the B-spline form Sz',fl"'k’ of p*(Xy,...,Xs), where

(n+1)/2
1
i }

ks 2 |\
[w* (Xl,...,Xs)
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following Section 3. Here we will note that the choice of k,...,ks is independent of
'LU*(Xl, cen ,Xs).
3. Now find

Fg(X1,...,Xs)=BS"™™ +r(X1,...,X,) or (10
FS(XI)“"XS) :_Ss‘l'“ks +T(X17~"7X3)7

where 7 is defined as in (9). Equation (10) is then our approximation formula of higher
order.

The following theorem relates to the above procedure.

THEOREM 6. Let the approximation form (10) hold. Then

i) f(X1,...,Xs)CFp(X1,...,Xs),
7(X17"'v )gFS(Xla Xs)

(i) w(FB(Xl,..., s)) — w(_ X1,---, )_ (w*(X1,...,Xs)n+1)’
w(Fs (X1, Xa)) —w (F (X1, Xs)) = O (0" (X, .o, X))

PROOF. The proof of (i) is obvious. For (ii), let us consider Fg(Xj,...,X;). From Theorem 2,
we have

w (Bﬁ}'"ks) _w(f(Xh...,Xs)) =0 (kll 4ot }c};) =0 (w* (Xl,---,Xs)n+1)

and by Theorem 5, we have
w(F (X1, X)) —w(F(Xy,..., X)) =0 (w (Xl,...,Xs)"“)
and hence
w(FB(Xl,...,X))-w(f(xl,... X))
(B’“ ke (X, X))—w(f(Xl,...,Xs))
—w (B,’;.l""‘s) +w(r (X, X)) —w(F(X,..., X))
w (B,’;l""“*) —w(@(X1,. ., Xs))
Fw@(Xn, . X)) +w(r (X, Xa)) —w (F(X1,..., Xa))
=[ (B"l k-‘)—w(ﬁ(Xl,...,Xs))]+[w(F(Xl,...,Xs))—w(T(Xl,...,Xs))]
o( *(Xl,...,Xs)"“).

The proof is identical for Fp(X1,...,X;).

We should note that if (w*(Xi,...,Xs)"*!) is very small, then ki,...,k, will become very
large since Bﬁ&"'k’ or S:.‘"'k" is only linearly or quadratically convergent. This means that the
computation of BS}""“ or SS&""" should in general be implemented on a computer due to the
extensive computations required.
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