Interval Approximation of Higher Order to the Ranges of Functions

Qun Lin
Department of Statistics, Xiamen University
Xiamen, P.R. China
J. G. Rokne
Department of Computer Science, The University of Calgary
Calgary, Alberta, Canada
(Received March 1995; accepted May 1995)

Abstract

The Bernstein and B-spline forms are generalized to multivariate polynomials. These forms are combined with a type of Taylor form for multivariate functions to generate realizable forms for multivariate functions.

Keywords-Range computations, Bernstein form, B-splines, Interval analysis.

1. INTRODUCTION

Interval approximation theory is strongly focussed on the problem of computing good inclusions to the range of a function over a finite interval. A great deal of work has been done in the area, mainly inspired by the development of centered forms as defined by Moore [1]. Centered forms for multivariate polynomials were defined in [2], and later in [3], it was shown that the number of possible multivariate centered forms was very large. A survey of the results in the area up to the time of publication is given in [4].

These outer approximations to the range of a function have application in the solution of equations, in optimization and in a variety of other areas.

In this paper, some of the previously obtained results given in [5] are generalized and extended to higher order approximations for multivariate polynomials and functions. In Sections 2 and 3, the Bernstein and the B-spline forms of multivariate polynomials are discussed. In Section 4, we define a multivariate Taylor form constructed using the ideas of Cornelius-Lohner [6]. Finally, in Section 5 the results of the earlier sections are combined to obtain realizable approximations of higher order for multivariate functions.

2. THE MULTIVARIATE BERNSTEIN FORM

The fundamental idea of using Bernstein polynomials for computing the range of a polynomial over an interval was presented in [7]. Later, the idea was expanded upon in [8-10]. In this section, the idea is further extended to the multivariate case.

Let $p\left(x_{1}, \ldots, x_{s}\right)$ be a polynomial in s real variables with the maximum degree $n_{1}+\cdots+n_{s}$, that is,

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{s}\right)=\sum_{i_{1}=0}^{n_{1}} \cdots \sum_{i_{s}=0}^{n_{s}} a_{i_{1} \ldots i_{s}} x_{1}^{i_{1}} \cdots x_{s}^{i_{s}} \tag{1}
\end{equation*}
$$

where $\left(x_{1}, \ldots, x_{s}\right) \in\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{s}, b_{s}\right]$. We also assume that $\left[a_{1}, b_{1}\right]=\cdots\left[a_{s}, b_{s}\right]=[0,1]$ in this section without loss of generality since any finite interval can be mapped to $[0,1]$ by a linear transformation.

We introduce the Bernstein basis functions

$$
B_{j}^{k}(x)=\binom{k}{j} x^{j}(1-x)^{k-j}, \quad x \in[0,1]
$$

and it is easily shown that [7]

$$
\begin{align*}
B_{j}^{k}(x) & \geq 0, \quad \sum_{j=0}^{k} B_{j}^{k}(x) \equiv 1, & & x \in[0,1] \tag{1}\\
x^{i} & =\sum_{j=i}^{k} \frac{\binom{j}{i}}{\binom{k}{i}} B_{j}^{k}(x), & & x \in[0,1], \quad i=0,1, \ldots, n \leq k . \tag{2}
\end{align*}
$$

From equation (1), it now follows that

$$
\begin{align*}
p\left(x_{1}, \ldots, x_{s}\right) & =\sum_{i_{1}=0}^{n_{1}} \cdots \sum_{i_{s}=0}^{n_{s}} a_{i_{1} \ldots i_{s}} \sum_{j_{1}=i_{1}}^{k_{1}} \frac{\binom{j_{1}}{i_{1}}}{\binom{k_{1}}{i_{1}}} B_{j_{1}}^{k_{1}}\left(x_{1}\right) \cdots \sum_{j_{s}=i_{s}}^{k_{s}} \frac{\binom{j_{s}}{i_{s}}}{\binom{k_{s}}{i_{s}}} B_{j_{s}}^{k_{s}}\left(x_{s}\right) \\
& =\sum_{i_{1}=0}^{n_{1}} \sum_{j_{1}=i_{1}}^{k_{1}} \cdots \sum_{i_{s}=0}^{n_{s}} \sum_{j_{s}=i_{s}}^{k_{s}} a_{i_{1} \ldots i_{s}} \frac{\binom{j_{1}}{i_{1}}}{\binom{k_{1}}{i_{1}}} \cdots \frac{\binom{j_{s}}{i_{s}}}{\binom{k_{s}}{i_{s}}} B_{j_{1}}^{k_{1}}\left(x_{1}\right) \cdots B_{j_{s}}^{k_{s}}\left(x_{s}\right) \\
& =\sum_{j_{1}=0}^{k_{1}} \sum_{i_{1}=0}^{\min \left(j_{1}, n_{1}\right)} \cdots \sum_{j_{s}=0}^{k_{s}} \frac{\min \left(j_{s}, n_{s}\right)}{\sum_{i_{s}=0} a_{i_{1} \ldots i_{s}} \frac{\binom{j_{1}}{i_{1}}}{\binom{k_{1}}{i_{1}}} \cdots \frac{\binom{j_{s}}{i_{s}}}{\binom{k_{s}}{i_{s}}} B_{j_{1}}^{k_{1}}\left(x_{1}\right) \cdots B_{j_{s}}^{k_{s}}\left(x_{s}\right)} \tag{2}\\
& =\sum_{j_{1}=0}^{k_{1}} \cdots \sum_{j_{s}=0}^{k_{s}}\left(\sum_{i_{1}=0}^{\min \left(j_{1}, n_{1}\right)} \cdots \sum_{i_{s}=0}^{\min \left(j_{s}, n_{s}\right)} a_{i_{1} \ldots i_{s}} \frac{\binom{j_{1}}{i_{1}}}{\binom{k_{1}}{i_{1}}} \cdots \frac{\binom{j_{s}}{i_{s}}}{\binom{k_{s}}{i_{s}}}\right) B_{j_{1}}^{k_{1}}\left(x_{1}\right) \cdots B_{j_{s}}^{k_{s}}\left(x_{s}\right) \\
& =\sum_{j_{1}=0}^{k_{1}} \ldots \sum_{j_{s}=0}^{k_{s}} b_{j_{1} \ldots j_{s}} B_{j_{1}}^{k_{1}}\left(x_{1}\right) \cdots B_{j_{s}}^{k_{s}}\left(x_{s}\right)
\end{align*}
$$

where $b_{j_{1} \ldots j_{s}}$ is defined to be

$$
b_{j_{1} \ldots j_{s}}=\sum_{i_{1}=0}^{\min \left(j_{1}, n_{1}\right)} \cdots \sum_{i_{s}=0}^{\min \left(j_{s}, n_{s}\right)} a_{i_{1} \ldots i_{s}} \frac{\binom{j_{1}}{i_{1}}}{\binom{k_{1}}{i_{1}}} \cdots \frac{\binom{j_{s}}{i_{s}}}{\binom{k_{s}}{i_{s}}}
$$

with the assumption that $k_{1} \geq n_{1}, \ldots, k_{s} \geq n_{s}$.
We can now prove the following theorem.
Theorem 1. For $b_{j_{1} \ldots j_{s}}, j_{1}=0, \ldots, k_{1}, \ldots, j_{s}=0, \ldots, k_{s}$, we have that

$$
\left|b_{j_{1} \ldots j_{s}}-p\left(\frac{j_{1}}{k_{1}}, \ldots, \frac{j_{s}}{k_{s}}\right)\right|=O\left(\frac{1}{k_{1}}+\cdots+\frac{1}{k_{s}}\right)
$$

Proof.

$$
\begin{aligned}
& \left|b_{j_{1} \ldots j_{s}}-p\left(\frac{j_{1}}{k_{1}}, \ldots, \frac{j_{s}}{k_{s}}\right)\right| \\
& =\left|\sum_{i_{1}=0}^{\min \left(j_{1}, n_{1}\right)} \cdots \sum_{i_{s}=0}^{\min \left(j_{s}, n_{s}\right)} a_{i_{1} \ldots i_{s}} \frac{\binom{j_{1}}{i_{1}}}{\binom{k_{1}}{i_{1}}} \cdots \frac{\binom{j_{s}}{i_{s}}}{\binom{k_{s}}{i_{s}}}-\sum_{i_{1}=0}^{n_{1}} \cdots \sum_{i_{s}=0}^{n_{s}} a_{i_{1} \ldots i_{s}}\left(\frac{j_{1}}{k_{1}}\right)^{i_{1}} \cdots\left(\frac{j_{s}}{k_{s}}\right)^{i_{s}}\right| \\
& \leq \sum_{i_{1}=0}^{\min \left(j_{1}, n_{1}\right)} \cdots \sum_{i_{s}=0}^{\min \left(j_{s}, n_{s}\right)}\left|a_{i_{1} \ldots i_{s}}\right| \cdot\left|\left(\frac{j_{1}}{k_{1}}\right)^{i_{1}} \cdots\left(\frac{j_{s}}{k_{s}}\right)^{i_{s}}-\frac{\binom{j_{1}}{i_{1}}}{\binom{k_{1}}{i_{1}}} \cdots \frac{\binom{j_{s}}{i_{s}}}{\binom{k_{s}}{i_{s}}}\right| \\
& +\left|\sum_{i_{1}=\min \left(j_{1}, n_{1}\right)+1}^{n_{1}} \sum_{i_{2}=0}^{n_{2}} \cdots \sum_{i_{s}=0}^{n_{s}} a_{i_{1} \ldots i_{s}}\left(\frac{j_{1}}{k_{1}}\right)^{i_{1}} \cdots\left(\frac{j_{s}}{k_{s}}\right)^{i_{s}}\right| \\
& +\cdots+\left|\sum_{i_{1}=0}^{\min \left(j_{1}, n_{1}\right)} \cdots \sum_{i_{s}=1}^{\min \left(j_{s-1}, n_{s-1}\right)} \sum_{i_{s}=\min \left(j_{s}, n_{s}\right)+1}^{n_{s}} a_{i_{1} \ldots i_{s}}\left(\frac{j_{1}}{k_{1}}\right)^{i_{1}} \cdots\left(\frac{j_{s}}{k_{s}}\right)^{i_{s}}\right| \\
& \leq \sum_{i_{1}=0}^{\min \left(j_{1}, n_{1}\right)} \cdots \sum_{i_{s}=0}^{\min \left(j_{s}, n_{s}\right)}\left|a_{i_{1} \ldots i_{s}}\right| \cdot\left|\left(\frac{j_{1}}{k_{1}}\right)^{i_{1}} \cdots\left(\frac{j_{s}}{k_{s}}\right)^{i_{s}}-\frac{\binom{j_{1}}{i_{1}}}{\binom{k_{1}}{i_{1}}}\left(\frac{j_{2}}{k_{2}}\right)^{i_{2}} \cdots\left(\frac{j_{s}}{k_{s}}\right)^{i_{s}}\right| \\
& +\cdots+\sum_{i_{1}=0}^{\min \left(j_{1}, n_{1}\right)} \cdots \sum_{i_{s}=0}^{\min \left(j_{s}, n_{s}\right)}\left|a_{i_{1} \ldots i_{s}}\right| \\
& \times\left|\frac{\binom{j_{1}}{i_{1}}}{\binom{k_{1}}{i_{1}}} \cdots \frac{\binom{j_{s-1}}{i_{s-1}}}{\binom{k_{s-1}}{i_{s-1}}}\left(\frac{j_{s}}{k_{s}}\right)^{i_{s}}-\frac{\binom{j_{1}}{i_{1}}}{\binom{k_{1}}{i_{1}}} \cdots \frac{\binom{j_{s}}{i_{s}}}{\binom{k_{s}}{i_{s}}}\right|+O\left(\frac{1}{k_{1}^{2}}+\cdots+\frac{1}{k_{s}^{2}}\right) \\
& =\sum_{i_{1}=0}^{\min \left(j_{1}, n_{1}\right)} \cdots \sum_{i_{s}=0}^{\min \left(j_{s}, n_{s}\right)}\left|a_{i_{1} \ldots i_{s}}\right| \cdot\left|\left(\frac{j_{1}}{i_{1}}\right)^{i_{1}}-\frac{\binom{j_{1}}{i_{1}}}{\binom{k_{1}}{i_{1}}}\right| \\
& +\cdots+\sum_{i_{1}=0}^{\min \left(j_{1}, n_{1}\right)} \cdots \sum_{i_{s}=0}^{\min \left(j_{s}, n_{s}\right)}\left|a_{i_{1} \ldots i_{s}}\right| \cdot\left|\left(\frac{j_{s}}{i_{s}}\right)^{i_{s}}-\frac{\binom{j_{s}}{i_{s}}}{\binom{k_{s}}{i_{s}}}\right|+O\left(\frac{1}{k_{1}^{2}}+\cdots+\frac{1}{k_{s}^{2}}\right) \\
& =O\left(\frac{1}{k_{1}}+\cdots+\frac{1}{k_{s}}\right) .
\end{aligned}
$$

This means that the quantities $b_{j_{1} \ldots j_{s}} j_{1}=0, \ldots, k_{1}, \ldots, j_{s}=0, \ldots, k_{s}$ can be used to construct a Bernstein form for multivariate polynomials for approximating the range $\bar{p}([0,1], \ldots,[0,1])$ of the polynomial (1). For this we define

$$
\begin{equation*}
B_{p}^{k_{1} \cdots k_{s}}([0,1], \ldots,[0,1])=\left[\min _{j_{1} \cdots j_{s}} b_{j_{1} \cdots j_{s}}, \max _{j_{1} \cdots j_{s}} b_{j_{1} \cdots j_{s}}\right] \tag{3}
\end{equation*}
$$

Theorem 2. For (3), we have the following results:
(1) $\bar{p}([0,1], \ldots,[0,1]) \subseteq B_{p}^{k_{1} \cdots k_{s}}([0,1], \ldots,[0,1])$,
(2) $w\left(B_{p}^{k_{1} \cdots k_{s}}([0,1], \ldots,[0,1])\right)-w(\bar{p}([0,1], \ldots,[0,1]))=O\left(\frac{1}{k_{1}}+\cdots+\frac{1}{k_{s}}\right)$.

Proof.
(1) From (2), it follows that

$$
\min _{j_{1} \cdots j_{s}} b_{j_{1} \cdots j_{s}} \leq \sum_{j_{1}=0}^{k_{1}} \cdots \sum_{j_{s}=0}^{k_{s}} b_{j_{1} \cdots j_{s}} B_{j_{1}}^{k_{1}}\left(x_{1}\right) \cdots B_{j_{s}}^{k_{s}}\left(x_{s}\right)=p\left(x_{1}, \ldots, x_{s}\right) \leq \max _{j_{1} \cdots j_{s}} b_{j_{1} \cdots j_{s}}
$$

(2) Let $\bar{p}([0,1], \ldots,[0,1])=\left[\underline{p}^{*}, \bar{p}^{*}\right]$. Then from Theorem 1, it follows that there exists $\left(j_{1}^{0} / k_{1}, \ldots, j_{s}^{0} / k_{s}\right) \in[0,1] \times \cdots \times[0,1]$ such that

$$
\max _{j_{1} \cdots j_{s}} b_{j_{1} \cdots j_{s}}-p\left(\frac{j_{1}^{0}}{k_{1}}, \ldots, \frac{j_{s}^{0}}{k_{s}}\right)=O\left(\frac{1}{k_{1}}+\cdots+\frac{1}{k_{s}}\right) .
$$

From this, it follows that

$$
\max _{j_{1} \cdots j_{s}} b_{j_{1} \cdots j_{s}}-\bar{p}^{*}=O\left(\frac{1}{k_{1}}+\cdots+\frac{1}{k_{s}}\right) .
$$

In a similar manner, we obtain

$$
\underline{p}^{*}-\min _{j_{1} \cdots j_{s}} b_{j_{1} \cdots j_{s}}=O\left(\frac{1}{k_{1}}+\cdots+\frac{1}{k_{s}}\right) .
$$

Thus

$$
\begin{aligned}
& w\left(B_{p}^{k_{1} \cdots k_{s}}([0,1], \ldots,[0,1])\right)-w(\bar{p}([0,1], \ldots,[0,1])) \\
& \quad=\left(\max _{j_{1} \cdots j_{s}} b_{j_{1} \cdots j_{s}}-\bar{p}^{*}\right)-\left(\min _{j_{1} \cdots j_{s}} b_{j_{1} \cdots j_{s}}-\underline{p}^{*}\right)=O\left(\frac{1}{k_{1}}+\cdots+\frac{1}{k_{s}}\right) .
\end{aligned}
$$

3. THE MULTIVARIATE B-SPLINE FORM

The basis functions for the B-splines are [11]

$$
N_{j}^{m}(x)=\Omega_{m}\left(k \frac{x-a}{b-a}-\frac{m+1}{2}-j\right), \quad x \in[a, b],
$$

where Ω_{m} is the $m^{\text {th }} \delta$-spline function

$$
\Omega_{m}(x)=\sum_{r=0}^{m+1}(-1)^{r} \frac{1}{m!}\binom{m+1}{r}\left(x+\frac{m+1}{2}-r\right)_{+}^{m}
$$

It is easy to verify that [11]
(1) $\quad N_{j}^{m}(x) \geq 0, \quad \sum_{j=-m}^{k-1} N_{j}^{m}(x) \equiv 1, \quad x \in[a, b]$,
(2) $\quad x^{i}=\sum_{j=-m}^{k-1} \pi_{j}^{(i)} N_{j}^{m}(x), \quad x \in[a, b], \quad i=0,1, \ldots, n$,
where

$$
\pi_{j}^{(i)}=\frac{\operatorname{Sym}_{i}(j+1, \ldots, j+m)}{k^{i}\binom{m}{i}}
$$

with $\operatorname{Sym}_{0}(j+1, \ldots, j+m)=1, \pi_{j}^{(0)}=1$. For $i \geq 1$, we have that $\operatorname{Sym}_{i}(j+1, \ldots, j+m)$ represents the $i^{\text {th }}$ elementary symmetric polynomial of $j+1, \ldots, j+m$, i.e.,

$$
\begin{equation*}
\operatorname{Sym}_{i}(j+1, \ldots, j+m)=\sum_{\nu_{1}, \ldots, \nu_{i}} \nu_{1}, \nu_{2} \cdots, \nu_{i} \tag{4}
\end{equation*}
$$

where ν_{1}, \ldots, ν_{i} are i distinct integers arbitrarily chosen from the array $\{j+1, \ldots, j+m\}$ and where the number of terms in the sum (4) is $\binom{m}{i}$.

Hence equation (1) can be written as

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{s}\right) & =\sum_{i_{1}=0}^{n_{1}} \cdots \sum_{i_{s}=0}^{n_{s}} a_{i_{1} \cdots i_{s}} \sum_{j_{1}=-m_{1}}^{k_{1}-1} \pi_{j_{1}}^{\left(i_{1}\right)} N_{j_{1}}^{m_{1}}\left(x_{1}\right) \cdots \sum_{j_{s}=-m_{s}}^{k_{s}-1} \pi_{j_{s}}^{\left(i_{s}\right)} N_{j_{s}}^{m_{s}}\left(x_{s}\right) \\
& =\sum_{j_{1}=-m_{1}}^{k_{1}-1} \cdots \sum_{j_{s}=-m_{s}}^{k_{s}-1}\left(\sum_{i_{1}=0}^{n_{1}} \cdots \sum_{i_{s}=0}^{n_{s}} a_{i_{1} \cdots i_{s}} \pi_{j_{1}}^{\left(i_{1}\right)} \cdots \pi_{j_{s}}^{\left(i_{s}\right)}\right) N_{j_{1}}^{m_{1}}\left(x_{1}\right) \cdots N_{j_{s}}^{m_{s}}\left(x_{s}\right) \\
& =\sum_{j_{1}=-m_{1}}^{k_{1}-1} \cdots \sum_{j_{s}=-m_{s}}^{k_{s}-1} d_{j_{1} \cdots j_{s}} N_{j_{1}}^{m_{1}}\left(x_{1}\right) \cdots N_{j_{s}}^{m_{s}}\left(x_{s}\right),
\end{aligned}
$$

where $d_{j_{1} \ldots j_{s}}$ to be is defined as

$$
d_{j_{1} \cdots j_{s}}=\sum_{i_{1}=0}^{n_{1}} \cdots \sum_{i_{s}=0}^{n_{s}} a_{i_{1} \cdots i_{s}} \pi_{j_{1}}^{\left(i_{1}\right)} \cdots \pi_{j_{s}}^{\left(i_{s}\right)}
$$

Theorem 3. For $d_{j_{1} \ldots j_{s}}, j_{1}=-m_{1}, \ldots, k_{1}-1, \ldots, j_{s}=-m_{s}, \ldots, k_{s}-1$, we have

$$
\left|d_{j_{1} \cdots j_{s}}-p\left(\pi_{j_{1}}, \ldots, \pi_{j_{s}}\right)\right|=O\left(\frac{1}{k_{1}^{2}}+\cdots+\frac{1}{k_{s}^{2}}\right),
$$

where

$$
\pi_{j_{1}}=\frac{1}{k_{1}}\left(j_{1}+\frac{m_{1}+1}{2}\right), \ldots, \pi_{j_{s}}=\frac{1}{k_{s}}\left(j_{s}+\frac{m_{s}+1}{2}\right) .
$$

Proof.

$$
\begin{aligned}
\mid d_{j_{1} \cdots j_{s}}- & p\left(\pi_{j_{1}}, \ldots, \pi_{j_{s}}\right) \mid \\
= & \left|\sum_{i_{1}=0}^{n_{1}} \cdots \sum_{i_{s}=0}^{n_{s}} a_{i_{1} \cdots i_{s}} \pi_{j_{1}}^{\left(i_{1}\right)} \cdots \pi_{j_{s}}^{\left(i_{s}\right)}-\sum_{i_{1}=0}^{n_{1}} \cdots \sum_{i_{s}=0}^{n_{s}} a_{i_{1} \cdots i_{s}}\left(\pi_{j_{1}}\right)^{i_{1}} \cdots\left(\pi_{j_{s}}\right)^{i_{s}}\right| \\
\leq & \sum_{i_{1}=0}^{n_{1}} \cdots \sum_{i_{s}=0}^{n_{s}}\left|a_{i_{1} \cdots i_{s}}\right| \cdot\left|\pi_{j_{1}}^{\left(i_{1}\right)} \cdots \pi_{j_{s}}^{\left(i_{s}\right)}-\left(\pi_{j_{1}}\right)^{i_{s}} \cdots\left(\pi_{j_{s}}\right)^{i_{s}}\right| \\
\leq & \sum_{i_{1}=0}^{n_{1}} \cdots \sum_{i_{s}=0}^{n_{s}}\left|a_{i_{1} \cdots i_{s}}\right| \cdot\left|\pi_{j_{1}}^{\left(i_{1}\right)}-\left(\pi_{j_{1}}\right)^{2_{1}}\right| \cdot\left|\pi_{j_{2}}^{\left(i_{2}\right)} \cdots\left(\pi_{j_{s}}\right)^{i_{s}}\right| \\
& +\cdots+\sum_{i_{1}=0}^{n_{1}} \cdots \sum_{i_{s}=0}^{n_{s}}\left|a_{i_{1} \cdots i_{s}}\right| \cdot\left|\pi_{j_{1}}^{\left(i_{1}\right)}-\left(\pi_{j_{s-1}}\right)^{i_{s}-1}\right| \cdot\left|\pi_{j_{s}}^{\left(i_{s}\right)}-\left(\pi_{j_{s}}\right)^{i_{s}}\right| \\
= & O\left(\frac{1}{k_{1}^{2}}+\cdots+\frac{1}{k_{s}^{2}}\right) .
\end{aligned}
$$

We now assume that in this section

$$
\begin{equation*}
\left[-\frac{m_{1}-1}{2 k_{1}}, 1+\frac{m_{1}-1}{2 k_{1}}\right] \subseteq\left[a_{1}, b_{1}\right], \ldots,\left[-\frac{m_{s}-1}{2 k_{s}}, 1+\frac{m_{s}-1}{2 k_{s}}\right] \subseteq\left[a_{s}, b_{s}\right] \tag{5}
\end{equation*}
$$

without loss of generality which means that we can construct the B -spline form as an including approximation to the range $\bar{p}\left(\left[a_{1}, b_{1}\right], \ldots,\left[a_{s}, b_{s}\right]\right)$ of the polynomial given in equation (1) as follows:

$$
\begin{equation*}
S_{p}^{k_{1} \cdots k_{s}}\left(\left[a_{1}, b_{1}\right], \ldots,\left[a_{s}, b_{s}\right]\right)=\left[\min _{j_{1} \cdots j_{s}} d_{j_{1} \cdots j_{s}}, \max _{j_{1} \cdots j_{s}} d_{j_{1} \cdots j_{s}}\right] . \tag{6}
\end{equation*}
$$

In a similar manner as in the proof of Theorem 2, we can prove the following theorem.
Theorem 4. For the estimate given by equation (6), we have
(1) $\bar{p}\left(\left[a_{1}, b_{1}\right], \ldots,\left[a_{s}, b_{s}\right]\right) \subseteq S_{p}^{k_{1} \cdots k_{s}}\left(\left[a_{1}, b_{1}\right], \ldots,\left[a_{s}, b_{s}\right]\right)$,
(2) $w\left(S_{p}^{k_{1} \cdots k_{s}}\left(\left[a_{1}, b_{1}\right], \ldots,\left[a_{s}, b_{s}\right]\right)\right)-w\left(\bar{p}\left(\left[a_{1}, b_{1}\right], \ldots,\left[a_{s}, b_{s}\right]\right)\right)=O\left(\frac{1}{k_{1}^{2}}+\cdots+\frac{1}{k_{s}^{2}}\right)$.

4. A MULTIVARIATE TAYLOR FORM

In this section, we consider a multivariate Taylor form along the lines of the form developed in [6]. We assume that the real function $f\left(x_{1}, \ldots, x_{s}\right), f:\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{s}, b_{s}\right] \longrightarrow R^{s}$ is $n+1$ times differentiable on the s-dimensional interval $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{s}, b_{s}\right]$ and that $\left(x_{1}, \ldots, x_{s}\right) \in$ $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{s}, b_{s}\right]$. The Taylor expansion of f is then

$$
f\left(x_{1}, \ldots, x_{s}\right)=p\left(x_{1}, \ldots, x_{s}\right)+r\left(\xi_{1}, \ldots, \xi_{s}\right),
$$

where

$$
\begin{align*}
p\left(x_{1}, \ldots, x_{s}\right)= & \sum^{n} a_{i_{1}+\cdots+i_{s}=0}^{n}\left(c_{1}, \ldots, c_{s}\right)\left(x_{1}-c_{1}\right)^{i_{1}} \cdots\left(x_{s}-c_{s}\right)^{i_{s}}, \tag{7}\\
& \left(c_{1}, \ldots, c_{s}\right) \in\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{s}, b_{s}\right], \\
a_{i_{1} \cdots i_{s}}\left(z_{1}, \ldots, z_{s}\right)= & \frac{1}{i_{1}!\cdots i_{s}!} \frac{\partial f^{\left(i_{1}+\cdots+i_{s}\right)}\left(z_{1}, \ldots, z_{s}\right)}{\partial x_{1}^{i_{1} \cdots \partial x_{s}^{i_{s}}},} \\
r\left(\xi_{1}, \ldots, \xi_{s}\right)= & \sum_{i_{1}+\cdots+i_{s}=n+1} a_{i_{1} \cdots i_{s}}\left(\xi_{1}, \ldots, \xi_{s}\right)\left(x_{1}-c_{1}\right)^{i_{1}} \cdots\left(x_{s}-c_{s}\right)^{i_{s}}, \\
& \left(\xi_{1}, \ldots, \xi_{s}\right) \in\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{s}, b_{s}\right] .
\end{align*}
$$

For $X_{1} \times \cdots \times X_{s} \subseteq\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{s}, b_{s}\right]$, the Taylor form can be expressed as

$$
\begin{equation*}
F\left(X_{1}, \ldots, X_{s}\right)=\bar{p}\left(X_{1}, \ldots, X_{s}\right)+r\left(X_{1}, \ldots, X_{s}\right), \tag{8}
\end{equation*}
$$

where
(i) $\bar{p}\left(X_{1}, \ldots, X_{s}\right)$ is the range of p over $X_{1} \times \cdots \times X_{s}$ and
(ii) $r\left(X_{1}, \ldots, X_{s}\right)=\sum_{i_{1}+\cdots+i_{s}=n+1} a_{i_{1} \cdots i_{s}}\left(X_{1}, \ldots, X_{s}\right)\left(X_{1}-c_{1}\right)^{i_{1}} \cdots\left(X_{s}-c_{s}\right)^{i_{s}}$.

We have the following theorem for the form defined by (8).
Theorem 5. Assume that the Taylor form is defined by (8). Then
(i) $\bar{f}\left(X_{1}, \ldots, X_{s}\right) \subseteq F\left(X_{1}, \ldots, X_{s}\right)$,
(ii) $w\left(F\left(X_{1}, \ldots, X_{s}\right)\right)-w\left(\bar{f}\left(X_{1}, \ldots, X_{s}\right)\right)=O\left(w^{*}\left(\left(X_{1}, \ldots, X_{s}\right)^{n+1}\right)\right)$,
where $w^{*}\left(X_{1}, \ldots, X_{s}\right)=\max \left\{w\left(X_{1}\right), \ldots, w\left(X_{s}\right)\right\}$.

Proof. The proof of (i) follows from the definition.
For (ii), let

$$
\begin{aligned}
& \bar{f}\left(X_{1}, \ldots, X_{s}\right)=\left[f\left(\underset{*}{x_{1}, \ldots, x_{*}}\right), f\left(\stackrel{*}{x}_{1}, \ldots, \stackrel{*}{x}_{s}\right)\right], \\
& \bar{p}\left(X_{1}, \ldots, X_{s}\right)=\left[p\left(\underset{*}{y_{1}, \ldots, y_{s}}\right), p\left(\stackrel{*}{y_{1}}, \ldots, \stackrel{*}{y}_{s}\right)\right],
\end{aligned}
$$

where $\left(x_{*}, \ldots, x_{s}\right)$ and $\left(\underset{*}{y_{1}}, \ldots, y_{*}\right)$ are the minimum points of f and p, respectively, on $X_{1} \times \cdots \times$ X_{s} and where $\left(\stackrel{*}{x}_{1}, \ldots, \stackrel{*}{x}_{s}\right)$ and $\left(\stackrel{*}{y}_{1}, \ldots, \stackrel{*}{y}_{s}\right)$ are the maximum points of f and p, respectively, on $X_{1} \times \cdots \times X_{s}$. We also define $r\left(X_{1}, \ldots, X_{s}\right)=[\underline{r}, \bar{r}]$.

Thus

$$
\begin{aligned}
& w\left(F\left(X_{1}, \ldots, X_{s}\right)\right)-w\left(\bar{f}\left(X_{1}, \ldots, X_{s}\right)\right) \\
& =p\left(\stackrel{*}{y_{1}}, \ldots, \stackrel{*}{y_{s}}\right)+\bar{r}-p\left(\underset{*}{y_{1}}, \ldots,{\underset{*}{y}}_{y_{s}}\right)-\underline{r}-f\left(\stackrel{*}{x}_{x_{1}}, \ldots, \stackrel{*}{x}_{s}\right)+f\left(\underset{*}{x_{1}}, \ldots,{\underset{*}{*}}^{*}\right) \\
& =\left[p\left(\stackrel{*}{y}_{1}, \ldots, \stackrel{*}{y}_{s}\right)+\bar{r}-f\left(\stackrel{*}{x}_{1}, \ldots, \stackrel{*}{x}_{s}\right)\right]+\left[f\left(\underset{*}{x_{1}, \ldots, x_{*}}\right)-p\left(\underset{*}{y_{1}}, \ldots,{\underset{*}{*}}_{s}\right)-\underline{r}\right] \\
& \leq\left[p\left(\stackrel{*}{y}_{1}, \ldots, \stackrel{*}{y}_{s}\right)+\bar{r}-f\left(\stackrel{*}{y}_{1}, \ldots, \stackrel{*}{y}_{s}\right)\right]+\left[f \left(\underset{*}{\left.\left.y_{1}, \ldots,{\underset{*}{x}}^{y_{s}}\right)-p\left(\underset{*}{y_{1}} \underset{*}{y_{1}}, \underset{*}{y_{s}}\right)-\underline{r}\right]}\right.\right. \\
& \leq\left[p\left(\stackrel{*}{y}_{1}, \ldots, \stackrel{*}{y}_{s}\right)+\bar{r}-\left(p\left(\stackrel{*}{y_{1}}, \ldots, \stackrel{*}{y_{s}}\right)+\underline{r}\right)\right]+\left[\left(p\left(\underset{*}{y_{1}}, \ldots, \underset{*}{y_{s}}\right)+\bar{r}\right)-p\left(\underset{*}{\left.\left.y_{1}, \ldots,{\underset{*}{y}}^{y_{s}}\right)-\underline{r}\right]}\right.\right. \\
& =2(\bar{r}-\underline{r})=2 w\left(r\left(X_{1}, \ldots, X_{s}\right)\right) \\
& =2 \cdot w\left[\sum_{i_{1}+\cdots i_{s}=n+1} a_{i_{1} \cdots i_{s}}\left(X_{1}, \ldots, X_{s}\right)\left(X_{1}-c_{1}\right)^{i_{1}} \cdots\left(X_{s}-c_{s}\right)^{i_{s}}\right] \\
& =O\left(w^{*}\left(X_{1}, \ldots, X_{s}\right)^{n+1}\right) \text {, }
\end{aligned}
$$

which proves the theorem.

5. A TAYLOR APPROXIMATION OF HIGHER ORDER

Although the approximation formula in the previous section has order $n+1$, it is difficult to realize in practice. The reason for this is that it requires the computation of the range of an $n^{\text {th }}$ degree polynomial, a difficult problem in its own right. For this reason, we combine the resuit in the previous section with the results of Sections 2 and 3 such that the combined method is a very effective approximation method.

The problem is to find an estimate for the s-dimensional function $f\left(x_{1}, \ldots, x_{s}\right)$ over the interval $X_{1} \times \cdots \times X_{s}$.

The concrete steps in this process are as follows:

1. First find the Taylor polynomial of (7) of f. Then select a linear transformation T such that $X_{1} \times \cdots \times X_{s} \rightarrow[0,1] \times \cdots \times[0,1]$ or $X_{1} \times \cdots \times X_{s} \rightarrow\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{s}, b_{s}\right]$ satisfying (5). The transformation T takes $p\left(x_{1}, \ldots, x_{s}\right)$ into $p^{*}\left(x_{1}, \ldots, x_{s}\right)$.
2. There is now a choice of either finding the Bernstein form $B_{p^{*}}^{k_{1} \cdots k_{s}}$ of $p^{*}\left(X_{1}, \ldots, X_{s}\right)$ where

$$
k_{1}, \ldots, k_{s} \geq\left[\frac{1}{w^{*}\left(X_{1}, \ldots, X_{s}\right)}\right]^{n+1}
$$

following Section 2, or the B-spline form $S_{p^{*}}^{k_{1} \cdots k_{s}}$ of $p^{*}\left(X_{1}, \ldots, X_{s}\right)$, where

$$
k_{1}, \ldots, k_{s} \geq\left[\frac{1}{w^{*}\left(X_{1}, \ldots, X_{s}\right)}\right]^{(n+1) / 2}
$$

following Section 3. Here we will note that the choice of k_{1}, \ldots, k_{s} is independent of $w^{*}\left(X_{1}, \ldots, X_{s}\right)$.
3. Now find

$$
\begin{align*}
& F_{B}\left(X_{1}, \ldots, X_{s}\right)=B_{p^{*}}^{k_{1} \cdots k_{s}}+r\left(X_{1}, \ldots, X_{s}\right) \quad \text { or } \tag{10}\\
& F_{S}\left(X_{1}, \ldots, X_{s}\right)=S_{p^{*}}^{k_{1} \cdots k_{s}}+r\left(X_{1}, \ldots, X_{s}\right),
\end{align*}
$$

where r is defined as in (9). Equation (10) is then our approximation formula of higher order.
The following theorem relates to the above procedure.
Theorem 6. Let the approximation form (10) hold. Then
(i) $\bar{f}\left(X_{1}, \ldots, X_{s}\right) \subseteq F_{B}\left(X_{1}, \ldots, X_{s}\right)$,

$$
\bar{f}\left(X_{1}, \ldots, X_{s}\right) \subseteq F_{S}\left(X_{1}, \ldots, X_{s}\right)
$$

(ii) $w\left(F_{B}\left(X_{1}, \ldots, X_{s}\right)\right)-w\left(\bar{f}\left(X_{1}, \ldots, X_{s}\right)\right)=O\left(w^{*}\left(X_{1}, \ldots, X_{s}\right)^{n+1}\right)$,

$$
w\left(F_{S}\left(X_{1}, \ldots, X_{s}\right)\right)-w\left(\bar{f}\left(X_{1}, \ldots, X_{s}\right)\right)=O\left(w^{*}\left(X_{1}, \ldots, X_{s}\right)^{n+1}\right)
$$

Proof. The proof of (i) is obvious. For (ii), let us consider $F_{B}\left(X_{1}, \ldots, X_{s}\right)$. From Theorem 2, we have

$$
w\left(B_{p^{*}}^{k_{1} \cdots k_{s}}\right)-w\left(\bar{p}\left(X_{1}, \ldots, X_{s}\right)\right)=O\left(\frac{1}{k_{1}}+\cdots+\frac{1}{k_{s}}\right)=O\left(w^{*}\left(X_{1}, \ldots, X_{s}\right)^{n+1}\right)
$$

and by Theorem 5, we have

$$
w\left(F\left(X_{1}, \ldots, X_{s}\right)\right)-w\left(\bar{f}\left(X_{1}, \ldots, X_{s}\right)\right)=O\left(w^{*}\left(X_{1}, \ldots, X_{s}\right)^{n+1}\right)
$$

and hence

$$
\begin{aligned}
& w\left(F_{B}\left(X_{1}, \ldots, X_{s}\right)\right)-w\left(\bar{f}\left(X_{1}, \ldots, X_{s}\right)\right) \\
& \leq w\left(B_{p^{*}}^{k_{1} \cdots k_{s}}+r\left(X_{1}, \ldots, X_{s}\right)\right)-w\left(\bar{f}\left(X_{1}, \ldots, X_{s}\right)\right) \\
&= w\left(B_{p^{*}}^{k_{1} \cdots k_{s}}\right)+w\left(r\left(X_{1}, \ldots, X_{s}\right)\right)-w\left(\bar{f}\left(X_{1}, \ldots, X_{s}\right)\right) \\
&= w\left(B_{p^{*}}^{k_{1} \cdots k_{s}}\right)-w\left(\bar{p}\left(X_{1}, \ldots, X_{s}\right)\right) \\
&+w\left(\bar{p}\left(X_{1}, \ldots, X_{s}\right)\right)+w\left(r\left(X_{1}, \ldots, X_{s}\right)\right)-w\left(\bar{f}\left(X_{1}, \ldots, X_{s}\right)\right) \\
&= {\left[w\left(B_{p^{*}}^{k_{1} \cdots k_{s}}\right)-w\left(\bar{p}\left(X_{1}, \ldots, X_{s}\right)\right)\right]+\left[w\left(F\left(X_{1}, \ldots, X_{s}\right)\right)-w\left(\bar{f}\left(X_{1}, \ldots, X_{s}\right)\right)\right] } \\
&= O\left(w^{*}\left(X_{1}, \ldots, X_{s}\right)^{n+1}\right) .
\end{aligned}
$$

The proof is identical for $F_{B}\left(X_{1}, \ldots, X_{s}\right)$.
We should note that if $\left(w^{*}\left(X_{1}, \ldots, X_{s}\right)^{n+1}\right)$ is very small, then k_{1}, \ldots, k_{s} will become very large since $B_{p^{*}}^{k_{1} \cdots k_{s}}$ or $S_{p^{*}}^{k_{1} \cdots k_{s}}$ is only linearly or quadratically convergent. This means that the computation of $B_{p^{*}}^{k_{1} \cdots k_{s}}$ or $S_{p^{*}}^{k_{1} \cdots k_{s}}$ should in general be implemented on a computer due to the extensive computations required.

REFERENCES

1. R.E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, NJ, (1966).
2. H. Ratschek and G. Schröder, Centered forms for functions in several variables, Journal of Mathematical Analysis and Applications 82, 543-552 (1981).
3. J. Rokne and P. Bao, The number of centered forms for a polynomial, BIT 28, 852-866 (1988).
4. H. Ratschek and J. Rokne, Computer Methods for the Range of Functions, Ellis Horwood, Chichester, (1984).
5. L. Qun and J. Rokne, Methods for bounding the range of polynomials, J. Comp. Appl. Math. 57 (1995) (to appear).
6. H. Cornelius and R. Lohner, Computing the range of values of real functions with accuracy higher than second order, Computing 33, 331-347 (1984).
7. G. Cargo and O. Shiska, The Bernstein form of a polynomial, Journal of Research of NBS 70B, 79-81 (1966).
8. T. Rivlin, Bounds on a polynomial, Journal of Research of NBS 74B, 47-54 (1970).
9. J. Rokne, Bounds for an interval polynomial, Computing 18, 225-240 (1977).
10. J.M. Lane and R.F. Riesenfeld, Bounds on a polynomial, BIT 21, 112-117 (1981).
11. C. de Boor, On calculating with splines, Journal of Approximation Theary 6, 50-62 (1972).
