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Proteasome Inhibition and Allogeneic Hematopoietic
Stem Cell Transplantation: A Review

John Koreth,1 Edwin P. Alyea,1 William J. Murphy,2 Lisbeth A. Welniak2
The proteasome and its associated ubiquitin protein modification system have proved to be an important
therapeutic target in the treatment of multiple myeloma and other cancers. In addition to direct antitumor
effects, proteasome inhibition also exerts strong effects on nonneoplastic immune cells. This indicates that
proteasome inhibition, through the use of agents like bortezomib, could be used therapeutically to modulate
immune responses. In this review we explore the emerging data, both preclinical and clinical, highlighting the
importance of proteasome targeting of immunologic responses, primarily in the context of allogeneic hema-
topoietic stem cell transplantation (HSCT), both for the control of transplant-related toxicities like acute and
chronic graft-versus-host disease (aGVHD, cGHVHD), and for improved malignant disease control after
allogeneic HSCT.
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INTRODUCTION

Over the last decade, the rationale for allogeneic he-
matopoietic stem cell transplantation (HSCT) has
evolved from primarily a means to rescue patients after
myeloablative (MA) high-dose conditioning chemo/ra-
diotherapy with an immune-hematopoietic graft from
a disease-free donor, to a means of providing adoptive
cellular immunotherapy to induce curative graft-versus
tumor (GVT) responses. The number of allogeneic
transplants performed annually continues to rise, in
part because of the increasing frequency of preparative
regimens using reduced-intensity conditioning (RIC)
in older/sicker patients. However, despite its ability to
provide meaningful long-term disease-free and overall
survival (DFS, OS) for patients, allogeneic HSCT re-
mains a procedure with considerable treatment-related
morbidity and mortality (TRM), and malignant disease
relapse is not uncommon. Graft-versus-host disease
(GVHD) remains the most frequent complication of
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allogeneic HSCT, with clinically significant (grade II-
IV) acute GVHD (aGVHD) occurring in �35% of
matched related donor (MUD) transplants, and up to
50% of unrelated or alternative donor transplants,
whereas chronic GVHD (cGVHD) can affect up to
60% of recipients who survive beyond 100 days after
matched donor allogeneic HSCT [1].

aGVHD was originally defined as disease
appearing within the first 100 days posttransplant,
with cGVHD being more delayed. It is now clear
that they can overlap temporally after transplant, espe-
cially since the introduction of RIC regimens [2].
aGVHD and cGVHD are now categorized by their
clinical presentations and not by the time of onset
[3]. aGVHD typically targets the skin, intestine, and
liver (the lung can also be targeted), whereas cGVHD
has more protean manifestations, which can target skin
and mucosa, lung, liver, hematopoietic, musculoskele-
tal/serous tissues, and exocrine glands. To a degree, it
resembles collagen vascular diseases [4] and has some
autoimmune characteristics including autoantibody
formation.

Despite differences in clinical presentation and
management, aGVHD and cGVHD are primarily
believed to arise from donor alloreactive T cell
responses, which also underlie curative GVT re-
sponses. The pathophysiology of cGVHD is less un-
derstood than aGVHD. In part, this is because of the
lack of good animal models that represent cGVHD’s
full pathologic spectrum. Recently, however, a new
model has been described that approximates the clini-
cal manifestations of human cGVHD [5]. Indeed, lim-
itations in preclinical studies may account, in part, for
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the finding that improvements in allogeneic HSCT
preparative regimens and prophylaxis of aGVHD
have not had a significant impact on the incidence of
cGVHD [1]. Front-line treatment for both aGVHD
and cGVHD consists of steroid administration, de-
spite its limited efficacy and significant cumulative tox-
icity. Novel strategies are needed to better control
GVHD without having a significant impact on the as-
sociated GVT response.
Pathophysiology of GVHD and GVT

Mouse models have been instrumental in under-
standing the role of cytokines and the T cell subsets
in aGVHD and GVT responses. These models have
demonstrated how the immune subsets develop postal-
logeneic HSCT and produce mediators that play a crit-
ical part in these 2 processes. Both donor CD41 and
CD81 effector T cells can utilize perforin to mediate
lethal GVHD [6]. The perforin and TRAIL cytotoxic
pathways, but not tumor necrosis factor (TNF)-a, are
associated with CD81 T cell-mediated GVT [7-9]. It
should be noted, however, that murine models of
GVT are predominately CD81 T cell mediated,
which may skew the interpretation of findings. In ap-
propriate mouse major histocompability complex
(MHC) II1 tumor models, CD41 T cells can also
mediate GVT [10-12].

Historically, aGVHD has been considered a pri-
marily T helper 1 (Th1)/T cell 1 (Tc1) type process,
based on the predominance of cytotoxic T cell-medi-
ated pathology and increased production of Th1-
type cytokines including interferon (IFN)-g, whereas
cytokines that polarize donor T cells to Th2 (e.g.,
granulocyte-colony stimulating factor [G-CSF], inter-
leukin [IL]-4, IL-18) can reduce aGVHD [13-16].
However, this may be an oversimplification, because
the developmental blockade of Th1 or Th2 pheno-
types through the use of cells lacking critical transcrip-
tion factors [17], or ablation of either IL-2 producing
(Th1-type) or IL-4 producing (Th2-type) donor T
cells following the onset of clinical symptoms of
GVHD [18], demonstrated that both Th1 and Th2
type donor T cells can induce aGVHD. In addition,
in aGVHD, the production of the Th1/Tc1 type cyto-
kine, IFN-g, by both CD41 and CD81 donor T cells
limits the severity of the disease in recipient mice after
MA conditioning [19-21]. However, the cytokine is
needed for the retention of GVT activity in a murine
leukemia model [19]. The pro-inflammatory cytokine
TNF-a has been shown to be an effector of both
aGVHD and cGVHD based on the ability of TNF
blockers to ameliorate disease in clinical trials
[22,23]. In murine models, the absence or blockade
of TNF-a in CD41 T cell-mediated murine aGVHD
can ameliorate disease and result in a reduction in
GVT to a greater degree than in CD81 T cell-mediated
disease [9,24] even though both CD41 and CD81 T
cells can produce the cytokine. The rationale for this
observation is unclear. Recently, a third T cell subset,
Th17, defined by IL-17 production and antagonized
by IFN-g, has been recognized. However, the role of
IL-17 and/or Th17 cells in aGVHD has been contro-
versial [25-27]. In contrast, cGVHD has been consid-
ered by some a Th2/Tc2-type disease based on its
autoimmune-like features, the presence of autoanti-
bodies [28], and the predominance of Th2-type cyto-
kines in mouse models [29]. Recently, the
contribution of Th17 cells to cGVHD has also been
demonstrated [25]. Other cellular mediators include
the CD41CD251Foxp31 T regulatory cell subset,
which has been shown to suppress both aGVHD and
cGVHD [30-33]; and B cells, which have been impli-
cated in cGVHD. The contribution of B cells to the
pathophysiology of the disease has gained significant
interest with the observation that rituximab therapy
resulted in durable improvement in a proportion of pa-
tients with refractory cGVHD [34-36]. More recently,
prophylactic use of rituximab has shown promise [37].
In the context of B cell dysfunction, elevated levels of B
cell activating factor (BAFF) of the TNF family has
been seen to correlate strongly with development
cGVHD [38,39]. BAFF is a cytokine that promotes
survival and activation of B cells. BAFF levels have
been shown to be elevated immediately following au-
tologous and allogeneic HSCT [38,39], but wane
with B cell recovery and reduction in other biomarkers
of inflammation in patients that do not go on to de-
velop cGVHD [38]. Our knowledge of the pathobiol-
ogy of aGVHD and cGVHD continues to develop.
Proteasome Inhibition in Cancer

The proteasome is a large protein complex con-
taining an adenosine 50-triphosphate-dependent pro-
tease that plays a critical function in the degradation
of ubiquitinated proteins [40-43]. It also plays a key
regulatory function in many vital cellular processes
by degrading proteins involved in cell cycle [44-46],
responses to oxidative stress, major histocompatibility
comples (MHC) class I- restricted antigen processing
[47], and regulation of gene expression (including
NF-kB through the stabilization of ubiquinated IkB
[48]). Inhibition of the proteasome can result in arrest
of cell cycling and can trigger intrinsic apoptotic path-
ways [48-52]. Bortezomib (Velcade�, formerly PS-
341) is a dipeptidyl boronic acid that binds to, and
blocks the activity of the catalytic site of the 26S
proteasome [53]. Bortezomib was the first proteasome
inhibitor to enter clinical trials, and was subsequently
granted approval for use in treatment of patients
with multiple myeloma (MM) [42,54,55]. It is now
also approved for the treatment of relapsed mantle
cell lymphoma [56]. Novel proteasome inhibitors such



1504 Biol Blood Marrow Transplant 15:1502-1512, 2009J. Koreth et al.
as NPI-0052 and carfilzomib are currently in clinical
trials [57-63].

The first recognition that bortezomib had antitu-
mor activity was based on direct cytotoxic effects on
the tumor cell. Bortezomib, and proteasome inhibition
in general, can block the degradation of a number of
cell cycle-regulated proteins. Consequently, treatment
of cells with bortezomib results in the accumulation of
cells in the G2-M phase of the cell cycle [64-66].
Arrested cells are eventually killed by apoptotic path-
ways as demonstrated by caspase activation and DNA
fragmentation [65,66]. In addition to blocking the deg-
radation of cell cycle regulatory proteins, blockade of
NF-kB activation, through stabilization of its inhibi-
tor, IkB, is another important target for proteasome
inhibition-induced cell death. Stimulation of quiescent
cells through a number of various stimuli including
cytokines, viruses, antigens, or oxidants leads ulti-
mately to ubiquitation and subsequent protolytic deg-
radation of IkB [48,52,67]. Loss of cytoplasmic IkB
results in translocation of NF-kB to the nucleus where
it promotes transcription of a number of target genes
affecting the inflammatory response, including many
cytokines and cell adhesion molecules [52]. NF-kB is
also essential for cell viability in a number of cell types
through the induction of gene transcription for inhib-
itors of apoptosis [68-73]. Thus, failure to remove IkB
through proteasome-mediated clearance results in the
sustained inhibition of NF-kB-mediated transcription
in bortezomib-treated cells.

In addition to direct tumor cytotoxicity, bortezo-
mib can sensitize tumor cells to chemotherapy-
induced apoptosis through a variety of mechanisms.
Bortezomib has been shown to enhance cellular
cytotoxicity with histone deacetylase (HDAC) inhibi-
tors through a reactive oxygen species (ROS)-
dependent mechanism [74,75] with cisplatin through
upregulation of pro-apoptotic proteins [76], with
topoisomerase-I inhibitors in an NF-kB-independent
mechanism [77], and with doxorubicin and melphalan
(Mel) by lowering the apoptotic threshold to these
agents [78]. Bortzomib has also been reported to sen-
sitize cells to DNA-damaging agents [79]. In addition,
proteasome inhibitors have been shown, in some
instances, to overcome chemoresistance, such as
cisplatin via induction of endoplasmic reticulum stress
[80] and adhesion-mediated drug resistance to agents
such as doxorubicin [78], vincristine, and dexametha-
sone [81].
Proteasome Inhibition and Immune Responses

In addition to direct cytotoxic effects on tumor
cells following bortezomib treatment, bortezomib
has been shown to sensitize target cells to immune-
mediated killing through TRAIL/DR5 [73,82-84]
and Fas/FasL pathways [85,86] on natural killer
(NK) and CD81 T effector cells. Although there are
some discrepancies between studies that are most
likely because of differential responses of various
tumor cell lines to bortezomib and/or sensitivity to
killing pathways, in general, they demonstrate that
bortezomib can upregulate expression of the death
receptors Fas and DR5 on tumor cells. This expression
of death receptors, which in combination with the
increased sensitivity to apoptosis, because of downre-
gulation of antiapoptotic molecules can promote
cytotoxic T lymphocyte (CTL) and NK killing of bor-
tezomib-treated tumor cells. In addition, bortezomib
treatment can lead to downregulation of cell surface
expression of MHC I as a result of decreased antigen
processing [47,82]. This treatment can promote tar-
geting of tumor cells to NK cell killing. Finally, tumor
cell death via direct cytotoxic action of bortezomib
may increase the immunogenicity of the dying cells
through the expression of heat-shock protein 90
(Hsp90) on the cell surface [87], which may result in
further expansion of the tumor-specific immune
response.

It is important to note that, although bortezomib
treatment can sensitize tumors to cytotoxic lympho-
cytes, it also can suppress immune function by a variety
of mechanisms. Induction of pro-inflammatory cyto-
kines and chemokines are an essential component for
establishing a productive immune response. Gene reg-
ulation of many of these proteins is dependent on NF-
kB translocation to the nucleus. Blockade of NF-kB
activity through proteasome inhibition can result in
the inability of immature dendritic cells (DCs) to ma-
ture into activated immunostimulatory DCs [88-90],
whereas activated DCs may be less susceptible to the
immunomodulatory effects of bortezomib [89]. In ad-
dition, differentiating monocyte-derived DCs may be
vulnerable to bortezomib-induced apoptosis [91,92].

Sensitivity of lymphohematopoietic tumors to
bortezomib cytotoxity, in some instances, correlates
to sensitivity of the normal cellular counterpart.
Thus, cellular levels of immunoglobulin biosynthesis
have been shown to correlate with sensitivity of both
MM cells [93] and plasma cells [94] to bortezomib cy-
totoxicity. This sensitivity of subsets of nonmalignant
immune cells to proteasome inhibition has implica-
tions in noncancerous pathologic states involving anti-
body production such as lupus [94]. Preclinical data
has also suggested that proteasome inhibition may tar-
get highly activated lymphocytes [94,95], which may
make it attractive as a therapeutic agent for some auto-
immune diseases. In addition, unlike conventional T
cells, naturally occurring CD41CD251 T regulatory
cells are resistant to the proapoptotic effects of borte-
zomib during in vitro stimulation [96]. Other preclin-
ical models of autoimmune diseases have been shown
to be responsive to bortezomib treatment [52,97],
and may be correlated to multiple actions of
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the drug, including reduction in pro-inflammatory
cytokines and/or direct effects on the effector popula-
tions.

Based on our studies (W.J.M.) for the prevention
of GVHD with bortezomib treatment [95,98,99] (dis-
cussed in a subsequent section), we hypothesized that
the proteasome inhibitor bortezomib would have
activity in T cell-mediated autoimmune diseases. We
examined the ability of the drug to prolong the induc-
tion and prevent relapses of experimental autoimmune
encephalomyelitis (EAE) in SJL/J mice immunized
with a neuroantigenic peptide (proteolipid protein,
PLP139-152), a model of relapsing-remitting multiple
sclerosis (MS) in humans. Following immunization
with the peptide, mice were treated with 15 mg borte-
zomib, or with the vehicle. There was no significant
difference in the incidence of neurodegenerative
disease development in bortezomib-treated mice.
However, bortezomib treatment given early in the in-
duction phase of primary EAE delayed the onset and
reduced the severity of clinical signs and treatment
during first remission prevented recurrence of clinical
symptoms of EAE. Additionally, the data indicated
that the disease will reoccur after withdrawal of borte-
zomib therapy (W.J.M., manuscript in preparation).

However, the immunosuppressive activity of bor-
tezomib may also result in potential adverse effects,
especially in cancer patients who may already have de-
creased immune function resulting from the tumor
and/or other therapies. Indeed, even though protea-
some inhibition may sensitize virally infected lympho-
cytes to apoptosis [100], bortezomib can induce lytic
infection in Epstin-Barr virus (EBV1) cells [101]
and, in immune control of latent disease, may be com-
promised, which results in viral reactivation, and in-
creased incidence of varicella zoster (VZV) infections
have been reported in patients treated with bortezomib
[102,103]. However, in situations of adoptive cellular
immunotherapy, the effects on target and effector
cell populations can be separated by pretreatment
with bortezomib followed by cellular immunotherapy
to yield effective outcomes. Such immunotherapy may
consist of dendritic cell vaccination [87], activated NK
cell infusion (NCT00720785), or allogeneic HSCT.
Thus, the timing and duration of bortezomib adminis-
tration may be critical for therapeutically modulating
immune responses.
Bortezomib and Hematopoietic Engraftment

Critical to the success of any agent employed af-
ter transplantation is the potential impact on engraft-
ment and stem cell function. In preclinical models,
there did not appear to be an impact on hematopoi-
etic engraftment following a short, 2-day course of
bortezomib at the time of transplant [95]. Time to
white blood cell and platelet engraftment were not
affected by bortezomib. In addition, donor T cell en-
graftment was also not affected by bortezomib, with
all animals demonstrating .90% T donor cell en-
graftment [95]. The impact of proteasome inhibition
on HSC function has also been studied directly in
mice. Stem cell function was unaffected by treatment
with bortezomib for 4 21-day cycles, as evaluated by
in vitro bone marrow (BM) colony formation. In ad-
dition, in vivo repopulation of peripheral blood stem
cells (PBSCs) in lethally irradiated mice, after trans-
plantation with BM from bortezomib-treated donors,
was equivalent to that of irradiated mice transplanted
with untreated donor BM [104]. These findings indi-
cate that bortezomib treatment does not compromise
HSC function.

In clinical trials using bortezomib in heavily pre-
treated patients with MM, thrombocytopenia was noted
in regimens where the drug was given more frequently
than once per week [105]. When given biweekly, a tran-
sient drop in platelets was noted after the administration
of each dose of bortezomib. However in these trials,
platelet count recovery was prompt, with no increased
risk of bleeding complications and rarely required
dose reduction or delay in administration of bortezomib
[106]. In the autologous transplant context, the effect of
bortezomib alone and in combination with other agents
on the mobilization and engraftment of HSC has been
evaluated in clinical trials involving patients with re-
lapsed/refractory or previously untreated MM. In 7
separate clinical trials incorporating bortezomib with
other agents prior to mobilization, autologous stem
cell harvesting and engraftment was successful [107-
114]. Such therapy was tolerable with toxicities that
were manageable and generally similar across studies.
Taken together, these studies indicate that proteasome
inhibition does not damage the HSC compartment ex-
cept for a potential transient effect on megakaryocyte
precursors.
Bortezomib and Allogeneic HSCT—Preclinical
Models

Based on its potential to sensitize tumor cells to
allogeneic NK and T cell targeting of donor graft cells,
and ability to modulate immune responses, bortezo-
mib is an attractive chemotherapeutic agent to use in
combination with allogeneic HSCT, for its potential
ability to promote GVT, and to control GVHD
responses. We documented that a short course of bor-
tezomib peritransplant reduced the development of
acute lethal GVHD in a fully MHC mismatched
murine model of allogeneic HSCT [95]. Bortezomib
administration to the BM transplant (BMT) recipient
was associated with a decrease in nuclear NF-kB ex-
pression and a decrease in inflammatory cytokine
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expression. These findings suggest that bortezomib
may be acting, at least in part, through inhibition of
NF-kB activation. All mice in the fully MHC mis-
matched study eventually succumbed to complications
of GVHD. In a model intended to induce less severe
GVHD, mice receiving bortezomib had a 100% sur-
vival with no animal developing GVHD, whereas
mice not receiving bortezomib all succumbed to
GVHD prior to day 50 posttransplantation [95].

Although the early addition of bortezomib was
successful in reducing the incidence of GVHD, it
also preserved GVT responses. This is critical, because
many interventions that reduce the incidence of
GVHD also lead to a reduction in the GVT effect.
Bortezomib has been shown to have antitumor effects
both in vitro and in vivo. In the same murine models,
tumor-bearing mice that received allogeneic BMT,
donor splenocytes, and bortezomib had an improved
survival compared with mice receiving transplantation
alone [95].

In a note of caution, however, prolonged admin-
istration of bortezomib resulted in a GVHD-like
lethal toxicity affecting the gastrointestinal tract
(GI) of treated animals [99,115]. This toxicity was as-
sociated with a rise in the inflammatory cytokines,
IL-1b, IL-6, and TNF-a, and with an increase in
the expression of TNFR1 in the intestinal tissues of
affected animals [99]. The observed toxicity may be
because of broader activity of bortezomib beyond in-
hibition of the NF-kB pathway [116]; as a second and
more selective inhibitor, PS-1145, did not result
in toxicity in late or extended treated allogeneic
HSCT recipient mice [115].

The critical requirement for allogeneic T cells in
bortezomib-associated toxicity posttransplant is dem-
onstrated in the lack of toxicity in recipients of alloge-
neic transplantation with a limited dose of T cells
contained within the BM, which is insufficient to in-
duce clinical symptoms of aGVHD. Allogeneic
CD41 T cells were found to be critical for the devel-
opment of toxicity with bortezomib [98]. Thus, deple-
tion of CD41 T cells from the graft or administration
of enriched CD81 T cells could allow for prolonged or
delayed administration of bortezomib without exacer-
bation of GVHD [98]. Importantly, these studies dem-
onstrated that continuous administration of
bortezomib postallogeneic HSCT can enhance
CD81 T cell-mediated GVT, resulting in prolonged
survival of tumor-bearing mice [98]. The allogeneic
CD41 T cell-associated toxicity after bortezomib
administration is dependent on TNF-a expression in
this population of cells [98]. Furthermore, TNF-
a has been shown to be important in CD41 T cell-
mediated GVHD. In acute murine GVHD models,
bortezomib apparently heightens sensitivity of host
GI tissues to TNF-a-dependent CD41 T cell attack
[98].
Proteasome Inhibition and Adoptive
Immunotherapy

As noted earlier, tumor cells can be sensitized to
killing by NK cells [82,83,85] and T cells [85] through
death receptor-mediated pathways, that can be
enhanced by proteasome inhibition. Of all the TNF
receptor superfamily members that utilize death do-
mains and induce apoptosis, it is sensitivity to
TRAIL/TRAIL death receptor (DR)-mediated killing
following bortezomib treatment that has been shown
to be acting in a broad variety of lymphohematopoietic
tumors and carcinomas [73,83,84,117-122]. This ac-
tivity may be mediated, in part, through the upregula-
tion of the TRAIL receptor, DR5 on the tumor cell
surface [73,84], as a consequence of DR5 mRNA stabi-
lization [123], and as an increase in proapoptotic pro-
teins within the cell [73,124,125], although the precise
mechanisms appear to differ between different tumor
types. Recombinant TRAIL and agonist antibodies
to TRAIL receptors DR4 or DR5 have been evaluated
in phase Zweegman et al is [128]. I and II clinical trials
(reviewed in Zweegman et al. [128]).

Another therapeutic approach combines bortezo-
mib with adoptive immunotherapy to achieve antitu-
mor responses that may be greater than can be
achieved than reliance on a single death receptor path-
way. Bortezomib administration postallogeneic HSCT
is predicated in part on the notion that continuous ad-
ministration of the proteasome inhibitor will sensitize
residual tumor cells to killing by donor-derived T cells
and NK cells [83,98]. These cells can kill through
a broad repertoire of cytotoxic molecules (Figure 1).
Adoptive cellular therapy with ex vivo expanded hu-
man autologous NK cells after presensitization of tu-
mor cells with bortezomib [83,86,127] has also been
explored in preclinical models where the combination
of bortezomib sensitization and IL-2 expanded NK
cells has shown efficacy in both in vitro and in vivo
mouse tumor models [82,127]. This strategy is currently
being evaluated in a phase I trial (NCT00720785;
http://clinicaltrials.gov) of escalating doses of adop-
tively infused ex vivo expanded autologous NK cells
in patients with treatment refractory metastatic solid
tumors or hematologic malignancies, which are sensi-
tized to NK cell cytotoxicity using bortezomib. The
combined use of bortezomib and NK infusions are
also under investigation in a clinical trial that will as-
sess myeloid recovery and incidence of aGVHD as
its primary measures. In this phase I/II trial, donor
NK cell infusions and rhIL-2 are administered as
part of a reduced intensity conditioning (RIC) prepar-
ative regimen consisting of bortezomib, cyclophos-
phamide (Cy), fludarabine (Flu), antithymocyte
globulin (ATG), and total body irradiation (TBI) prior
to haploidentical allogeneic HSCT, for patients with
myelogenous leukemia or myelodysplastic syndromes

http://clinicaltrials.gov


Figure 1. Potential mode of action in bortezomib mediated antitumor responses. Bortezomib may have a negative impact on the growth and spread of
cancer cells through multiple mechanisms including direct induction of apoptosis, sensitization to killing by CD81 cytotoxic T cells and NK cells, and
through reduction of inflammation resulting in decreased metastasis.
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(MDS) who have been deemed unsuitable for fully
matched MA transplantation (NCT00303667; http://
clinicaltrials.gov).
Proteasome Inhibition and Clinical aGVHD

Preliminary clinical data indicate that bortezomib
administration after allogeneic HSCT can control
GVHD [128]. In a retrospective analysis involving 9
patients with MM relapsed after allogeneic HSCT,
treatment with bortezomib was effective in MM con-
trol, with 2 very good partial responses (VGPR) and
4 partial responses (PR) [129]. None of the patients
in this small cohort developed GVHD, suggesting
that proteasome inhibition after allogeneic HSCT
did not exacerbate GVHD in humans. Bortezomib
was reasonably well tolerated; grade 3 and 4 toxicities
noted included grade 4 thrombocytopenia, grade 3 fa-
tigue, and grade 3 diarrhea and hypotension. In a larger
retrospective study of 3 European centers, administra-
tion of bortezomib as salvage for relapse or progres-
sion of MM after RIC allogeneic HSCT did not
result in worsening of GVHD symptoms. In addition,
27 of 37 patients had an objective response to bortezo-
mib therapy [130]. In both studies, bortezomib was
reasonably well tolerated in the clinical allogeneic
HSCT context [129,130].

More direct evidence for GVHD control was
reported in a small series of patients with MM relapsed
after nonmyeloablative (NMA) allogeneic HSCT that
was refractory to donor lymphocyte infusion (DLI)
who were subsequently treated with bortezomib.
Eleven patients received biweekly bortezomib dosed
at 1.3 mg/m2 on days 1, 4, 8, and 11 every 21 days (2
patients received bortezomib combined with thalido-
mide) for a median of 6 cycles, and 10 had a clinical
responses [131]. The major reported toxicity was neu-
ropathy grade 2. No GVHD was noted in patients re-
ceiving bortezomib, despite the documented strong
correlation between clinical response to donor lym-
phocyte infusion (DLI) and GVHD [132]. In a more
recent report, a small cohort of patients receiving
DLI and bortezomib was well tolerated. Of the 8 pa-
tients receiving a median of 4 cycles of bortezomib,
no grade III-IV toxicities were observed although 1 pa-
tient developed a Herpes zoster virus (HZV) infection
[133].

Prospective trials evaluating proteasome inhibition
for GVHD control are underway. A trial combining
bortezomib plus tacrolimus and methotrexate (MTX)
for GVHD prophylaxis after RIC HLA-mismatched
unrelated donor allogeneic HSCT recently reported
preliminary data in abstract form (NCT00369226;
http://clinicaltrials.gov). Administration of bortezo-
mib dosed at 1.3 mg/m2 on days 11, 14, and 17, was
found to be safe and efficacious. No neurotoxicity or in-
testinal toxicity was noted, and neutrophil and platelet
engraftment was prompt. Grade II-IV aGVHD oc-
curred in 2 of 17 evaluable patients, for a 180 day cumu-
lative incidence of 14%, with relapse or death as
a competing risk [134]. Additional trials of proteasome
inhibition for GVHD prophylaxis in the MA context
(NCT00670423), and for therapy of steroid-refractory
aGVHD (NCT00408928) are ongoing.

Thus, bortezomib therapy, either early or late after
allogeneic HSCT appears reasonably well tolerated in

http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov
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human studies reported thus far. Similar to observations
in the preclinical mouse models, the timing and
duration of peritransplant bortezomib therapy, and its
interaction with conditioning therapy, likely play an im-
portant role in determining its toxicity and efficacy in
humans. For instance, consistent with the colonic toxic-
ity noted in mice after prolonged bortezomib exposure
posttransplant [99], in an allogeneic HSCT trial of 11
patients with refractory/relapsed acute myelogenous
leukemia (AML) or MM at the M.D. Anderson Cancer
Center receiving allogeneic HSCT after M condition-
ing, the cohort receiving bortezomib (0.7 mg/m2) on
days 11, 15, 19, and 112 was found to have unaccept-
able grade 4 intestinal toxicity (resulting in study clo-
sure), which was not seen in the cohort receiving
bortezomib prestem cell infusion (on days 212, 29,
26, and 23) (S. Giralt, personal communication).
Other ongoing trials at M.D. Anderson Cancer Center,
evaluating bortezomib prestem cell infusion, plus ritux-
imab and BEAM conditioning for lymphoid malig-
nancy allogeneic HSCT, have not encountered such
toxicity (NCT00439556; http://clinicaltrials.gov),
hig-hlighting the importance of bortezomib timing
and concomitant therapies in study outcomes.
Proteasome Inhibition and Clinical cGVHD

In the cGVHD setting, clinical reports of bortezo-
mib’s activity in the disease have preceded any preclin-
ical studies. Published reports have highlighted the
safety of bortezomib and its ability to control active
cGVHD in myeloma patients relapsed after allogeneic
HSCT. One case report describes a patient with med-
ullary and extramedullary myeloma relapse postalloge-
neic HSCT, which was refractory to local X-ray
radiation therapy and 3 doses of DLI [135]. The MM
was treated with 2 cycles of bortezomib at a dose of
1.3 mg/m2 on days 1, 4, 8, and 11 every 21 days, with
disappearance of the extramedullary mass and discon-
tinuation of bortezomib. The patient subsequently
developed mucocutaneous lichen planus and biopsy-
proven hepatic cGVHD, and was restarted on bortezo-
mib monotherapy for 8 more cycles. This resulted in an
excellent clinical response, including normalization of
liver function tests and disappearance of oral cGVHD
lesions. However, grade 2 neuropathy was noted after
extended use and necessitated interruption of bortezo-
mib after 6 cycles. A larger series described the use of
bortezomib in 8 patients with MM relapsed after allo-
geneic HSCT [136]. Four patients had active cGVHD
(2 steroid refractory) at the time of starting bortezomib
therapy, including 3 patients with severe punctuate ker-
atopathy (ocular cGVHD). They received a median 6
cycles of bortezomib (range: 3-12), dosed at 1.3 mg/
m2 on days 1, 4, 8, and 11 every 21 days. Interestingly,
in all 4 patients cGVHD was significantly improved,
and ocular cGVHD remained in remission at a median
of 150 days (range: 120-333 days) after discontinuation
of bortezomib. Improvement in ocular cGVHD is re-
markable, as it is typically very resistant to conventional
therapy, including steroids [3,137]. Grade 3-4 toxicities
involved thrombocytopenia (50%), neuropathy (25%),
leukopenia (12%), and GI toxicity (50%).

Some toxicity was also noted in a study evaluating
biweekly administration of bortezomib to improve
disease-free survival (DFS) in patients without evi-
dence of relapsed or progressive MM after allogeneic
HSCT [138]. Eighteen patients received bortezomib
at a dose of 1.3 mg/m2 on days 1, 4, 8, and 11 every
21 days for 2 to 4 cycles. Nine of the 18 patients re-
ceived concomitant cyclosporine (CsA), and 2 patients
received additional low-dose thalidomide. Grade 3-4
toxicities observed in these patients included thrombo-
cytopenia (50%), leukopenia (17%), and neuropathy
(17%). Significant neuropathy was only observed in
patients receiving concomitant CsA therapy (3 versus
0; P 5 .06). Of note, 2 patients with preexisting
cGVHD experienced mild progression involving the
mouth or skin that did not require any systemic immu-
nosuppressive therapy. In contrast, toxicity was mild in
a larger study of 37 patients who received biweekly
bortezomib for MM relapsed after RIC allogeneic
HSCT, that was typically dosed at 1.3 mg/m2 on
days 1, 4, 8, and 11 every 21 days for a median of 6 cy-
cles (range: 1-15) [130]. Only grade 1-2 toxicities were
observed, which included thrombocytopenia (24%)
and peripheral neuropathy (35%), with a median onset
of 83 days after initiation of therapy. Significant mye-
loma control was noted. Additionally, 2 of the 3 pa-
tients with preexisting extensive cGVHD at the start
of therapy experienced significant improvement. A
prospective clinical trial of bortezomib plus predni-
sone for initial therapy of newly diagnosed cGVHD
is ongoing (NCT00815919; http://clinicaltrials.gov).

Based on our limited understanding of the patho-
physiology of cGVHD and the therapeutic targets of
bortezomib treatment in other preclinical models
such as aGVHD [95,115], EAE, and lupus-like nephri-
tis [94], it can be postulated that proteasome inhibition
may act on established cGVHD. This is because pro-
teasome inhibition eliminates alloreactive plasma cells
and alloreactive T cells. Furthermore, it interferes with
DC function and reduces inflammatory cytokine pro-
duction either by eliminating the cytokine-secreting
cell or by inhibiting its production through the down-
modulation of NF-kB-dependent transcription. Pre-
clinical studies will provide a better understanding of
the mechanism of action, which may lead to optimized
design of therapeutic protocols with this compound.
FUTURE DIRECTIONS

Molecular targeting, using small molecules, has
emerged as an effective means to target neoplastic
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cells. Proteasome inhibition using bortezomib is cur-
rently approved as a front-line treatment for multiple
myeloma and for the treatment of relapsed mantle
cell lymphoma. Moving beyond its currently approved
indications, proteasome inhibitors act on many cellu-
lar pathways to exert effects on neoplastic cells. Inter-
ference with the NF-kB pathway may be critical for
many of the immunomodulatory properties associated
with this class of drugs The use of proteasome inhibi-
tors in the context of allogeneic HSCT is currently un-
der intensive investigation, because of its potential to
provide both direct and indirect antitumor effects after
allogeneic HSCT, as well as exerting anti-inflamma-
tory effects that may further improve GVHD control.
This is an exciting new area of investigation of combin-
ing cellular immune therapies with molecularly tar-
geted novel agents, with a goal to control GVHD
while preserving GVT responses. The outcome of
clinical trials evaluating bortezomib in the context of
allogeneic HSCT and other adoptive immunocellular
therapies is eagerly awaited. However, the potential ef-
fect of these agents on immune reconstitution (or the
immunotherapy), aGVHD and cGVHD, and GVT
responses after allogeneic HSCT is still unresolved,
and appropriate caution needs to be exercised.
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