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SUMMARY

Embryonic development relies on the capacity of
progenitor cells to appropriately respond to inductive
cues, a cellular property known as developmental
competence. Here, we report that epigenetic priming
of enhancers signifies developmental competence
during endodermal lineagediversification. Chromatin
mapping during pancreatic and hepatic differentia-
tion of human embryonic stem cells revealed the en
masse acquisition of a poised chromatin state at en-
hancers specific to endoderm-derived cell lineages
in gut tube intermediates. Experimentally, the acqui-
sition of this poised enhancer state predicts the
ability of endodermal intermediates to respond to
inductive signals. Furthermore, these enhancers are
first recognized by the pioneer transcription factors
FOXA1 and FOXA2 when competence is acquired,
while subsequent recruitment of lineage-induc-
tive transcription factors, such as PDX1, leads to
enhancer and target gene activation. Together, our
results identify the acquisition of a poised chromatin
state at enhancers as amechanism bywhich progen-
itor cells acquire developmental competence.

INTRODUCTION

Embryonic development is a forward-moving process during

which pluripotent cells become increasingly specialized as

they develop toward a terminally differentiated state. The step-

wise progression toward specific cell lineages occurs as a result

of a series of inductive events. The ability of lineage intermedi-

ates to appropriately interpret inductive signals from their envi-
386 Cell Stem Cell 16, 386–399, April 2, 2015 ª2015 Elsevier Inc.
ronment is referred to as developmental competence. A classic

example of this is the induction of the neuronal lineage by meso-

dermal cells at the time of gastrulation. Signals from the meso-

derm act on the ectoderm, causing it to form neural tissue (Linker

and Stern, 2004). However, only ectoderm of a certain develop-

mental age is capable of appropriately responding to the

inductive signal (Storey et al., 1992). Thus, developmental

competence is a cell-intrinsic property of the responder tissue.

Furthermore, competence is not inherent to the pluripotent state

but actively acquired during development. What mechanisms

operate to render cells competent to respond to inductive cues

with precise timing is currently unknown.

While transcription factors (TFs) are important contributors to

cellular competence, they are not sufficient to explain the highly

cell-type-specific responses to inductive cues during develop-

ment. TFs typically occupy only a small fraction of their

consensus binding motifs in the genome (Carr and Biggin,

1999; Iyer et al., 2001; Yang et al., 2006), suggesting that deter-

minants beyond DNA sequence must dictate where and when

TFs bind potential targets. Emerging evidence suggests that

chromatin structure represents an inherent and important deter-

minant of accessibility of DNA to TFs (Martino et al., 2009; Shog-

ren-Knaak et al., 2006). Of particular interest is the chromatin

state at enhancers, which plays a prominent role in spatiotem-

poral gene regulation during development (Creyghton et al.,

2010; Heintzman et al., 2009; Koch et al., 2007; Rada-Iglesias

et al., 2011; Visel et al., 2009). A central feature of enhancers is

their ability to function as integrated TF binding platforms, where

environmental signaling cues are interpreted in a context-depen-

dent manner (Buecker andWysocka, 2012; Jin et al., 2011). How

enhancers acquire the ability to translate signals from the extra-

cellular environment into cell-type-specific transcriptional re-

sponses during development is poorly understood.

In this study, we examined the possibility that the epigenetic

state of enhancers could determine developmental competence

in the context of endodermal and pancreatic development. We
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explored this question by generating comprehensive maps of

enhancer-related chromatin modifications over a time course

of human embryonic stem cell (hESC) differentiation through

multiple developmental intermediates into pancreatic and hepat-

ic cells. Through integrative analysis of these maps and further

experimentation, we reveal previously insufficiently appreciated

links between enhancer chromatin, TF recruitment, and develop-

mental competence. First, we show that developmental compe-

tence is encoded at the level of enhancers and is established en

masse in embryonic intermediates prior to lineage induction via

acquisition of poised chromatin at enhancers specific to descen-

dant lineages. Second, we find that TF complexes assemble at

lineage-specific enhancers in a stepwise fashion. TFs involved

in chromatin priming are recruited early when lineage intermedi-

ates acquire competence followed by the recruitment of lineage-

inductive TFs to mediate activation. Together, these findings

establish a functional link between the gain of a poised enhancer

chromatin state and the temporal acquisition of competence

during developmental progression.

RESULTS

Global Identification of Enhancers during Pancreatic
Differentiation of hESCs
During early embryogenesis, the pancreas, liver, and lung

develop from the endodermal gut tube (GT) (Wang and Sander,

2012). How and when organ-specific transcriptional programs

are initiated during this developmental progression remains

poorly understood. Because enhancers are important regulators

of cell-type-specific gene expression (Heintzman et al., 2009;

Koch et al., 2007; Rada-Iglesias et al., 2011; Visel et al., 2009),

we reasoned thatmapping enhancers during endodermal lineage

progression could provide mechanistic insight into these ques-

tions. Thus, we comprehensively mapped putative enhancers

during the stepwise progression of hESCs toward the pancreatic

fate, using a system that accurately models early developmental

processes, includingGT formation and pancreatic lineage induc-

tion (Figure 1A). Specifically, we analyzed enhancer-associated

histone modifications genome-wide at five defined stages of

differentiation: hESCs, definitive endoderm (DE), primitive GT,

posterior foregut (FG), and pancreatic endoderm (PE). These

cell populations were each produced with >90% purity (Xie

et al., 2013). We identified a total of 119,795 enhancers across

these five stages of pancreatic differentiation (Figure 1B). The

majority of marked enhancers at each stage are marked by

H3K4me1 only, with only a small fraction also marked by

H3K27ac (Figure 1C; Figures S1A and S1C; Table S1).

It has been suggested that H3K27ac can distinguish active

from poised enhancers and that the poised state could facilitate

enhancer activation (Creyghton et al., 2010; Rada-Iglesias et al.,

2011). To obtain a direct readout of enhancer activity, we per-

formed global nuclear run-on sequencing (GRO-seq) of nascent

transcripts. We observed a significant enrichment of transcrip-

tionally engaged RNA polymerases indicative of enhancer RNA

(eRNA) production at active enhancers (defined by H3K4me1

and H3K27ac deposition) compared to poised enhancers

(defined by only H3K4me1 deposition) (Figures 1D, S1B, and

S1D). Combined with previous studies linking eRNA production

to enhancer activity (Hah et al., 2013; Kim et al., 2010; Wang
et al., 2011), our results suggest that enrichment of H3K4me1

alone likely constitutes an inactive enhancer state. We also

examined the transcriptional activity of putative target genes

by quantifying their GRO-seq and RNA-sequencing (RNA-seq)

counts. Consistent with higher eRNA production at active en-

hancers, target promoters of active enhancers exhibited higher

GRO-seq and RNA-seq counts than promoters linked to poised

enhancers (Figures 1E, 1F, S1B, and S1D). These results define

two functionally distinct classes of putative developmental en-

hancers based on chromatin features.

Identification of Enhancers that Drive Pancreatic
Lineage Induction
Having globally predicted both poised and active enhancers

across all five stages, we next sought to isolate the specific

sets of enhancers that regulate developmental transitions and,

in particular, pancreas induction. To do this, we clustered en-

hancers based on their predicted activity across all differentia-

tion stages. This revealed three major categories: (I) active in a

stage-restricted manner, (II) poised yet never active, and (III)

constitutively active (Figure 2A). As expected, when tested in

enhancer-reporter assays, category I enhancers exhibited

stage-specific activity according to their H3K27ac status (Fig-

ures 2B, 2C, and S2A–S2C). Illustrating their importance in

developmental gene regulation, category I enhancers were pre-

dicted to regulate developmental processes specific to the em-

bryonic stage of their activity (Figures 2D and S2D). Of particular

interest were enhancers that acquired H3K27ac during pancre-

atic lineage induction (FG/PE- and PE-specific clusters) (Fig-

ure 2A). These enhancers associated with genes involved in

pancreas and endocrine systems development, which include

the master regulators of pancreas development PDX1, SOX9,

PTF1A, and NKX6.1 (Shih et al., 2013) (Figures 2A, 2B, and

2D). It is likely that these enhancers have roles in regulating the

induction of pancreatic gene expression programs when the

pancreas develops from the GT.

Pancreatic Enhancers Acquire a Poised State in GT
Intermediates prior to Activation
To investigate chromatin dynamics at enhancers associatedwith

pancreatic lineage induction, we next examined H3K4me1 and

H3K27ac intensities at pancreas-specific enhancers. In both

the FG/PE- and PE-specific clusters, H3K4me1 levels accumu-

lated prior to H3K27ac (Figure 2E), suggesting that pancreatic

enhancers are poised prior to activation. It is interesting that

pancreas-specific enhancers (FG/PE and PE clusters) exhibited

relatively little H3K4me1 enrichment in hESCs (Figure 2E), indi-

cating that the poised state is actively acquired during develop-

ment. By examining the average fold change in H3K4me1 levels

at each transition, we observed the largest fold increase in

H3K4me1 at pancreatic enhancers during the DE-to-GT transi-

tion (Figure 2F), when these enhancers are still inactive as judged

by H3K27ac levels and enhancer-reporter assays (Figures 2C,

2E, S2B, and S2C). Thus, enhancers associated with pancreatic

lineage programs acquire a poised state during GT formation in-

dependent of pancreas-inductive signaling cues. These findings

suggest that epigenetic bookmarking of pancreatic enhancers

can pre-programGT intermediates to activate pancreas-specific

genes when exposed to pro-pancreatic signaling cues.
Cell Stem Cell 16, 386–399, April 2, 2015 ª2015 Elsevier Inc. 387



Figure 1. Global Identification of Poised and Active Enhancers during Pancreatic Differentiation of hESCs

(A) hESC (hES) differentiation strategy.

(B) Total number of candidate enhancers identified during pancreatic differentiation categorized by H3K27ac and H3K4me1 deposition.

(C) Density of ChIP-seq reads for H3K4me1 and H3K27ac relative to midpoint at putative poised and active enhancers.

(D) Box plots of GRO-seq counts at poised (H3K4me1 only) and active (H3K4me1 and H3K27ac) enhancers.

(E) Box plots of GRO-seq counts at linked genes of poised and active enhancers. Avg., average.

(F) Box plots of mRNA expression, measured in fragments per kilobase of exon per million fragments mapped (FPKM), at linked genes of poised and active

enhancers. *p < 2.2e-16, Wilcoxon rank-sum test.

See also Figure S1 and Table S1.
A Poised Enhancer Landscape for Multiple Endodermal
Lineages Is Established in GT Intermediates
One surprising result of the enhancer cluster analysis was that

the majority (66%) of predicted enhancers during pancreatic

lineage progression belong to category II (Figure 2A), meaning

that they acquire a poised state yet never become active. Cate-

gory II enhancers comprise four clusters: poised in hESCs (P1),

poised at the DE stage (P2), poised with intermediate

H3K4me1 levels at the GT, FG, and PE stages (P3), and poised

with high H3K4me1 levels at the GT, FG, and PE stages (P4) (Fig-
388 Cell Stem Cell 16, 386–399, April 2, 2015 ª2015 Elsevier Inc.
ure 2A; Figure 3A). Intriguingly, H3K4me1 levels in clusters P3

and P4 exhibit a dramatic gain during the DE-to-GT transition

(Figure 3A), as seen for pancreas-specific enhancers (Figures

2E and 2F).

This raises the question of why P3 and P4 enhancers acquire a

poised state (H3K4me1) during GT formation. Given that the GT

gives rise to multiple organs, including pancreas, lung, and liver,

we hypothesized that these poised enhancers could become

active either later during terminal differentiation into mature

pancreatic cells or in alternate gut-tube-derived lineages. In



Figure 2. Identification and Characteriza-

tion of Enhancers Important for Pancreatic

Lineage Induction

(A) K-means clustering of putative enhancers dur-

ing pancreatic differentiation based on H3K4me1

and H3K27ac signal intensity. Individual genes

associated with enhancer clusters are listed on the

right. hES, hESCs.

(B) ChIP-seq H3K4me1, H3K27ac, and GRO-

seq profiles of representative FG/PE-specific en-

hancers near PDX1.

(C) In vitro GFP reporter assay for FG/PE-specific

enhancer shown in (B, right side). GFP images of

cell aggregates during pancreatic differentiation

are shown. Scale bar, 100 mm.

(D) Enriched Gene Ontology terms for pancreatic

enhancers.

(E) Average (Avg.) H3K4me1 and H3K27ac ChIP-

seq signal intensity for pancreatic (FG/PE- and PE-

specific clusters) enhancers during pancreatic

differentiation.

(F) Average fold change in H3K4me1 signal in-

tensity during each stage transition for pancreatic

(FG/PE- and PE-specific clusters) enhancers.

See also Figure S2.
support of this hypothesis, enhancers from clusters P3 and P4

associated with genes involved in the development and function

of pancreatic islets, lung, and liver (Figure 3B). Furthermore,

poised enhancers in clusters P3 and P4 were enriched for bind-

ing motifs of TFs known to regulate the development of endo-

dermal organs (Figure 3C), including FOXA, GATA, HNF4A,

and HNF1 (Boj et al., 2010; Gao et al., 2008; Lango Allen et al.,

2012; Lee et al., 2005; Li et al., 2000; Watt et al., 2007).

If these enhancers are indeed activated during terminal

pancreatic differentiation or in alternate endodermal organs,

one would expect enhancers in clusters P3 and P4 to selec-

tively acquire H3K27ac in cells of gut-tube-derived organs. To

test this in an unbiased fashion, we analyzed the H3K27ac sta-

tus of enhancers from clusters P3 and P4 in differentiated tis-

sues and cells originating from all three germ layers (Figure 3D).

First, we identified distal tissue-specific H3K27ac peaks by

querying data from the Roadmap Epigenomics Project as well
Cell Stem Cell 16, 386
as the Encyclopedia of DNA Elements

(ENCODE) Consortium (Figure 3E). As

expected, genes linked to tissue-specific

H3K27ac peaks associated with biolog-

ical processes characteristic of the

respective tissue (Table S2). Next, we

determined the extent to which these

tissue-specific active enhancers were

represented in each of the poised

enhancer clusters. Enhancers in clusters

P1 and P2, which are exclusively poised

at the hESC or DE stage, showed no

consistent overrepresentation in tissues

from a specific germ layer (Figures S3A

and S3B). By contrast, enhancers from

clusters P3 and P4, which acquire a

poised state at the GT stage, were sig-
nificantly enriched among active enhancers in endoderm-

derived tissues, including islet, liver, lung, pancreas, and small

bowel (Figures 3F and 3G). Furthermore, endodermal active

enhancers were only enriched in poised clusters P3 and

P4 when compared to clusters P1 and P2 (Figures 3H–3J

and S3C–S3N). Altogether, these results demonstrate that a

poised chromatin landscape for enhancers linked to genes of

multiple gut-tube-derived lineages is gained en masse during

the DE-to-GT transition. This suggests that instructive infor-

mation for gene expression programs of multiple descendant

lineages is actively acquired and becomes encoded into

enhancer chromatin at this time.

Acquisition of a Poised State at Lineage-Specific
Enhancers Is Indicative of Developmental Competence
Developmental competence refers to a cell’s ability to respond

to inductive signals during development (Waddington, 1940).
–399, April 2, 2015 ª2015 Elsevier Inc. 389



Figure 3. A Poised Enhancer Landscape for Multiple Endodermal Lineages Is Established in GT Lineage Intermediates

(A) Average (Avg.) H3K4me1 ChIP-seq signal intensity during pancreatic differentiation for enhancers in poised clusters P1, P2, P3, and P4 (see Figure 2A). hES,

hESCs.

(B) Enriched Gene Ontology terms for enhancers in poised clusters P3 and P4.

(C) Enriched TF binding motifs with associated p values for enhancers in poised clusters P3 and P4.

(D) Experimental strategy to determine the activity of poised enhancers in tissues and cell types derived from mesoderm, ectoderm, and endoderm.

(legend continued on next page)

390 Cell Stem Cell 16, 386–399, April 2, 2015 ª2015 Elsevier Inc.



We hypothesized that ‘‘poising’’ lineage-specific enhancers in

GT intermediates could be a mechanism by which cells become

competent to adopt endodermal organ fates in response to

organ-inductive signals. To test this idea, we exposed DE-

and GT-stage cells briefly to pancreas-, lung-, or liver-inductive

cues and determined whether early lineage markers are induced

(Figure 4A). Because pancreas, lung, and liver enhancers

become poised in GT intermediates, we predicted that GT-stage

cells, but not DE-stage cells, will readily respond to appropriate

organ-inductive cues. First, to test pancreatic competence, we

exposed DE and GT cells to pancreas-inductive factors (retinoic

acid [RA], cyclopamine [Cyc], and noggin [Nog]) for 2 days. We

found that expression of early pancreatic lineage markers,

including PDX1, PROX1, and SOX9, was readily induced from

GT cells (Figures 4B and S4A). In contrast, this was not the

case for DE cells (Figures 4B and S4A). Second, to test lung

competence, we cultured DE and GT cells for 3 days in the pres-

ence of lung-inductive factors (CHIR99021 [CHIR], fibroblast

growth factor [FGF], keratinocyte growth factor [KGF], bone

morphogenetic protein [BMP], and RA) (Huang et al., 2014).

Analogous to our findings for pancreas, only GT-stage cells re-

sponded by activating expression of the lung markers SOX2

and NKX2.1 (Figure 4C). Finally, a similar experiment testing

hepatic competence showed that GT-stage cells, but not DE-

stage cells, quickly responded by expressing hepatic markers

such as AAT, Transferrin, and AFP when exposed to the liver-

inductive factors BMP and FGF (Wang and Sander, 2012) for

3 days (Figures 4D and S4B). The result that lung and liver could

be induced from GT-stage cells was unexpected because the

differentiation protocol has been specifically developed for pro-

duction of pancreatic cells. Together, these findings establish a

clear temporal connection between the acquisition of a poised

enhancer state at organ-specific enhancers and the gain of

developmental competence for the respective lineage.

Given the rapid induction of hepatic genes fromGT-stage cells

after exposure to BMP and FGF, we postulated that liver-induc-

tive cues convert poised enhancers into an active state. To

test this contention, we mapped active enhancers specific to

GT-derived hepatic cells (Table S3). Consistent with the cells’

hepatic identity, enhancers activated upon hepatic induction

were proximal to key hepatic regulators (i.e., C/EBP-a), associ-

ated with genes for liver-specific biological processes and

were enriched for recognition motifs of known hepatic TFs (Fig-

ures 4E, S4C, and S4D). Strikingly, 55%of active enhancers spe-

cific to GT-derived hepatic cells belonged to poised clusters P3

and P4, which gain H3K4me1 in GT intermediates (Figure 4F). A

similar enrichment was not seen for poised clusters P1 and P2,

which gain H3K4me1 at earlier stages (Figure 4G). These results

demonstrate that the majority of enhancers that are activated in

response to liver-inductive cues acquire a poised state at the

transition from endoderm to GT.
(E) Heatmap showing H3K27ac ChIP-seq signal intensity for H3K27ac peaks spe

black, ectoderm-derived cells are depicted in blue, and endoderm-derived cells

(F and G) Enrichment of tissue- or cell-type-specific H3K27ac peaks in poised en

square test).

(H–J) Enrichment of pancreas-specific (H), lung-specific (I), and liver-specific (J) H

square test.

See Figure S3 and Table S2.
Identification of TFs that Regulate Enhancers during
Competence Establishment and Lineage Induction
Because enhancers contain clusters of TF binding sites (Buecker

and Wysocka, 2012), we reasoned that important transcriptional

regulators of developmental competence and lineage induction

could be identified by analyzing lineage-specific enhancers.

Therefore, to identify potential regulators of pancreatic compe-

tence and lineage induction, we performed MOTIF enrichment

analysis for pancreatic enhancers (FG/PE and PE clusters).

This analysis revealed enrichment for FOXA, GATA, PDX1,

HNF4A, HNF1, and RFX motifs (Figure 5A), which bind TFs

with documented functions in pancreas development (Boj

et al., 2010; Gao et al., 2008; Jonsson et al., 1994; Lango Allen

et al., 2012; Smith et al., 2010).

To begin to define the specific roles of candidate TFs at

pancreas-specific enhancers, we examined mRNA levels of

TFs corresponding to the enriched binding motifs. Our analysis

revealed two general patterns: (1) TF expression coincides with

pancreatic gene induction at the FG stage, and (2) TF expression

is initiated in GT intermediates or prior (Figure S5A). As expected,

the regulator of early pancreatic development PDX1 (Ahlgren

et al., 1996; Jonsson et al., 1994) belonged to the group of TFs

that was first expressed at the point of pancreas induction (Fig-

ure 5B). It is interesting that expression of the FOXA family of TFs

was initiated prior to pancreas induction (Figure 5B). FOXAs are

known to function as pioneer TFs, which can actively open chro-

matin and facilitate binding of other TFs (Zaret and Carroll, 2011).

Based on their temporal expression pattern, we speculated that

FOXAs might have a role in establishing competence at poised

enhancers, whereas PDX1might be involved in activating poised

enhancers. To test these predictions, we first examined occu-

pancy of pancreatic enhancers by FOXAs and PDX1 using chro-

matin immunoprecipitation sequencing (ChIP-seq) (Tables S4,

S5, and S6). We found that 34.8% (1,943/5,581; compared to

an expected 2.8% by random chance) of pancreatic enhancers

were indeed occupied by FOXA1 or FOXA2 at the GT stage prior

to enhancer activation (Figure 5C). After pancreatic induction,

44.7% (2,497/5,581; compared to an expected 3.6% by random

chance) of pancreatic enhancers showed binding of PDX1 (Fig-

ure 5D). Among the enhancers that were sequentially occupied

by FOXAs and PDX1 was an enhancer for the early pancreatic

regulator PTF1A (Figure 5E). Mutations in this enhancer have

been linked to familial pancreatic agenesis (Weedon et al., 2014).

Next, to investigate whether FOXAs have a regulatory role at

poised enhancers, we delivered short hairpin RNAs (shRNAs)

targeting FOXA1 to hESCs and differentiated these cells toward

the pancreatic lineage. shRNA-mediated FOXA1 knockdown

caused an �2-fold reduction in FOXA1 transcript levels at the

GT stage (Figure S5B). When FOXA1-depleted GT intermediates

were further differentiated toward pancreas, we observed a

reduction in mRNA levels for early pancreatic markers, including
cific to each listed tissue or cell type. Mesoderm-derived cells are depicted in

are depicted in red.

hancer clusters P3 (F) (*p < 2.7e-8, chi-square test) and P4 (G) (*p < 0.03, chi-

3K27ac peaks in poised enhancer clusters P1, P2, P3, and P4. *p < 0.02, chi-

Cell Stem Cell 16, 386–399, April 2, 2015 ª2015 Elsevier Inc. 391



Figure 4. The Acquisition of a Poised Enhancer State Coincides with Gain of Developmental Competence

(A) Experimental strategy to test the competence of endodermal intermediates to activate pancreatic (P), lung (L), or hepatic (H) genes in response to their

respective organ inductive signals.

(legend continued on next page)
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PDX1, SOX9, NKX6.1, and PTF1A (Figure S5B), showing that

FOXA1 is necessary for the proper expression of early pancreatic

genes. Given that the temporal pattern of FOXA recruitment to

pancreatic enhancers mirrors H3K4me1 levels (Figures 2E and

5C), we tested whether FOXA1 is required for H3K4me1 deposi-

tion at pancreatic enhancers. Examination of H3K4me1 levels by

ChIP-qPCR analysis at multiple FOXA1-bound pancreatic en-

hancers did not reveal a noticeable difference in H3K4me1

enrichment between FOXA1 knockdown and control cells at

the GT stage (Figure 5F). These results suggest that FOXA1 is

not directly involved in methylating histone 3 at lysine 4 but,

instead, might recognize a poised enhancer state and help facil-

itate subsequent activation. This result is consistent with prior

findings in different cell lines (Lupien et al., 2008).

We next investigated whether PDX1 is necessary for the acti-

vation of pancreatic enhancers by examining the effect of PDX1

inhibition on expression of pancreatic genes and histone acety-

lation at enhancers. Consistent with the role of PDX1 in mice and

humans (Jonsson et al., 1994; Stoffers et al., 1997), PDX1 knock-

down cells failed to initiate the expression of important early

pancreatic genes upon directed pancreatic differentiation (Fig-

ures S5C and S5D). ChIP-seq analysis of H3K27ac in PDX1

knockdown cells after pancreas induction revealed a significant

decrease in H3K27ac intensity at PDX1-bound pancreatic en-

hancers (Figure 5G). For example, PDX1-bound enhancers

near the genes encoding the pancreatic TFs SOX9 and NKX6.1

exhibited a drastic reduction in H3K27ac signal (Figure 5H).

Thus, PDX1 occupies pancreatic enhancers and is required for

their activation. Together, our findings suggest a model whereby

pancreatic enhancers assemble sequentially. In the primitive GT,

pancreatic enhancers acquire a poised state and become occu-

pied by FOXA TFs. Exposure to pancreas-inductive signaling

cues subsequently leads to PDX1 induction, its recruitment

to pre-marked pancreatic enhancers, and histone acetylation

(Figure 5I).

To examine whether this model of stepwise enhancer assem-

bly applies more generally to endodermal lineages, we analyzed

motifs of hepatic enhancers tomakepredictions aboutwhich TFs

could poise and which could activate hepatic enhancers during

liver differentiation. We reasoned that, by comparing motifs at

hepatic enhancers that emerge from poised enhancers at the

GT stage tomotifs at de novo active hepatic enhancers, we could

identify TFs with potential roles in ‘‘poising’’ or ‘‘activating’’ en-

hancers. This analysis revealed a specific enrichment for FOXA

motifs at those hepatic enhancers that are poised in GT interme-

diates (clusters P3 and P4) (Figure S5E). 54.2% of active hepatic

enhancers (981/1810; compared to an expected 3.0% by

random chance) that are poised in GT were indeed occupied by
(B–D) qRT-PCR analysis and immunofluorescence staining for the early pancreas

Nog for 2 days (B); the early lungmarkersSOX2andNKX2.1 inDEandGTcells trea

alpha 1-antitrypsin (AAT), transferrin, and alpha-fetoprotein (AFP) in DE and GT ce

(E) H3K27ac and H3K4me1 ChIP-seq profiles of enhancers in poised clusters P3

(F) Percentage of hepatic enhancers (specific H3K27ac peaks in GT cells treated w

(clusters P3 + P4 in Figure 2A).

(G) Enrichment of hepatic enhancers (GT / H-cell-specific H3K27ac peaks) in p

square test. RA, retinoic acid; Cyc, cyclopamine; Nog, noggin; CHIR, CHIR9902

morphogenetic protein; hES, human embryonic stem cells; DE, definitive endod

See also Figure S4 and Table S3.
either FOXA1 or FOXA2 prior to hepatic induction (Figures S5F

and S5G). Thus, FOXAs associate with a poised enhancer land-

scape for multiple endodermal organ lineages prior to lineage in-

duction. The requirement of FOXAs for pancreas (FigureS5B) and

liver (Lee et al., 2005) development suggests that this early asso-

ciation of FOXAs with lineage-specific enhancers helps prepare

poised enhancers for future activation. Similar to PDX1 in

pancreas, enhancer activation in liver likely requires additional

TFs. Comparison of TF recognition motifs at enhancers in poised

clusters P3 and P4 that become active in GT-derived hepatic

cells to motifs at enhancers in clusters P3 and P4 not active in

hepatic cells revealed overrepresentation of binding motifs for

HNF4A, HNF1, and TEAD (Figure S5H), suggesting that these

TFs could be involved in the activation of hepatic enhancers.

Enhancers for Islet Cell Functional Genes Are Poised
prior to Terminal Differentiation
An important characteristic of hESC-derived PE is its compe-

tency to differentiate into functional endocrine cells after subcu-

taneous engraftment into mice (Kroon et al., 2008; Xie et al.,

2013). Based on our observation that a poised enhancer state

indicates developmental competence during endodermal organ

lineage induction, we postulated that a similar priming of

enhancer chromatin could render pancreatic progenitor cells

competent to activate endocrine functional genes in response

to extrinsic signals. To test this, we first identified active en-

hancers in human cadaveric islets (Figures S6A and S6B; Table

S7) and examined the extent to which these active islet

enhancers are poised in PE prior to terminal differentiation. Strik-

ingly, 25.5% (3,427/13,422) of all active islet enhancers are

already poised in PE (Figure 6A). This is remarkable, considering

that the differentiation of pancreatic progenitor cells into func-

tional islet cells requires multiple developmental steps and

considerable time. Furthermore, the select group of poised en-

hancers is relevant for the regulation of genes associated with

vital islet-specific cellular properties, such as hormone biosyn-

thesis and insulin secretion (Figure 6B). One such example

is the type-2-diabetes-associated gene SLC30A8 (van Hoek

et al., 2008), for which we identified six associated enhancers

that are poised in PE and active in islets (Figure 6C). This analysis

shows that enhancers for important genes involved in the regu-

lation of endocrine cell function are pre-marked in pancreatic

progenitor cells. Thus, instructive information for gene expres-

sion programs of islet function appears to be programmed into

enhancer chromatin prior to terminal differentiation.

To examine whether TFs are also sequentially recruited to islet

enhancers as observed during pancreatic and hepatic lineage

induction, we analyzed binding motifs at enhancers that are
markers PDX1, PROX1, and SOX9 in DE andGT cells treated with RA, Cyc, and

tedwithCHIR, FGF, KGF,BMP, andRA for 3 days (C); and the early livermarkers

lls treated with BMP and FGF for 3 days (D). Data are shown as average ± SEM.

and P4 near the hepatic gene C/EBP-a. hES, hESCs.

ith BMP and FGF for 3 days; GT/H cells) that are poised in GT intermediates

oised enhancer clusters P1, P2, P3, and P4 (see Figure 2A). *p < 2.2e-16, chi-

1; FGF, fibroblast growth factor; KGF, keratinocyte growth factor; BMP, bone

erm; GT, primitive gut tube; FG, posterior foregut; PE, pancreatic endoderm.
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poised in PE and active in islets. Specifically, to identify TFs with

potential roles at poised enhancers, we compared motifs at

active islet enhancers, which are poised at the PE stage, to mo-

tifs at active islet enhancers, which are not poised at the PE

stage. This analysis revealed enrichment for FOXA motifs

at poised islet enhancers (Figure 6D). 39.3% (1,348/3,427;

compared to an expected 2.5% by random chance) of these en-

hancers were occupied by either FOXA1 or FOXA2 in PE prior to

endocrine differentiation (Figures 6C and 6E), showing that

FOXAs indeed associate with islet enhancers prior to their acti-

vation. When we compared the motifs at poised enhancers

that become active in islets to motifs at poised PE enhancers

that do not become active in islets, we found enrichment for

RFX and FOXO1 motifs (Figure 6F), indicating that these TFs

could be important for activating islet enhancers during endo-

crine cell differentiation. In summary, these findings suggest a

potential role for FOXA factors at poised islet enhancers in early

embryonic intermediates and for FOXO1 and RFX family TFs in

the subsequent activation of islet enhancers during terminal

differentiation. These predictions bear a striking resemblance

to our analysis identifying TFs regulating the stepwise activation

of enhancers during pancreatic and hepatic lineage induction

from the GT. Altogether, these observations support a model

whereby FOXAs at poised enhancers play a critical role in estab-

lishing competence throughout development, including terminal

differentiation into functional cell types.

DISCUSSION

Acquisition of Developmental Competence through De
Novo Poising of Lineage-Specific Enhancers
An unanswered question in developmental biology is, which

cell-intrinsic mechanisms enable developmental intermediates

to specifically activate cell identity genes in response to extrinsic

signaling cues? Here, we demonstrate that this cell-intrinsic

property, referred to as developmental competence, is function-

ally linked to a poised chromatin state at cell-type-specific en-

hancers. Our findings suggest that bookmarking cell identity

genes at the level of enhancers endows cells with the ability to

interpret environmental differentiation cues correctly. Thus, the

annotation of the poised enhancer repertoire during develop-

mental progression can provide prescient information about

future cellular states.
Figure 5. FOXA TFs and PDX1 Are Sequentially Recruited to Pancreati

(A) Enriched TF binding motifs with associated p values for pancreatic enhancer

(B) Heatmap showing mRNA expression levels, measured in FPKM, of FOXA fam

(C) Percentage of pancreatic enhancers versus random genomic regions bound b

test.

(D) Percentage of pancreatic enhancers versus random genomic regions bound

(E) H3K27ac, H3K4me1, FOXA1, and PDX1 ChIP-seq profiles at a candidate enh

(F) H3K4me1 enrichment by ChIP-qPCR at FOXA1-bound pancreatic enhancers

entiated to GT.

(G) Box plots of H3K27ac ChIP-seq counts at all enhancers active in PE, FG/PE

knockdown (shPDX1) cells differentiated to PE. *p < 2.2e-16, Wilcoxon rank-sum

(H) H3K27ac ChIP-seq profiles at enhancers near SOX9 and NKX6.1 in Scram an

same enhancers in PE.

(I) Model for the stepwise activation of pancreatic enhancers. Pioneer TFs, suc

specific TFs, such as PDX1, subsequently regulate the transition from a poised t

See also Figure S5 and Tables S4, S5, and S6.
A key characteristic of developmental competence is that it is

not a passive state but is actively acquired during differentiation.

For example, endodermal cells activate pancreatic genes in

response to co-culture with notochord. However, notochord is

only capable of acting on endoderm after the endoderm has

received prior instruction from mesoderm/ectoderm (Wells and

Melton, 2000). Analogous to these findings in primary embryonic

tissues, we observed that the competence to activate pancreas,

lung, and liver genes in response to extrinsic signaling cues is

actively acquired at the transition from DE to GT during the

in vitro differentiation of hESCs. Because the de novo poising of

lineage-specific enhancers coincides with the acquisition of

developmental competence for pancreas, lung, and liver induc-

tion, our findings strongly suggest a functional link. We similarly

find that enhancers associated with genes controlling endocrine

cell function are poised in pancreatic progenitor cells, suggesting

that poising cell-type-specific enhancers is relevant at

multiple developmental steps, including terminal differentiation.

Certainly, other transcriptional priming mechanisms, such as a

bivalent chromatin state at the level of promoters (Bernstein

et al., 2006; Mikkelsen et al., 2007; Xie et al., 2013), may also

be biologically important for a cell’s developmental potential.

However, in contrast to the poised enhancer state, which is ac-

quired during development with precise timing, promoters of or-

gan-specific genes often exhibit a bivalent state already in plurip-

otent stemcells. Thus, bivalent domains alone cannot explain the

acquisition of developmental competence during lineage pro-

gression. Our findings help explain why developmental interme-

diates respond to signaling cues with high precision in time.

Stepwise Enhancer Assembly during Lineage
Progression
Our data show that the stepwise developmental transition at line-

age-specific enhancers from unmarked chromatin to poised

chromatin and then to histone H3K27 acetylation is associated

with the sequential assembly of distinct classes of TFs at these

enhancers. Specifically, our findings suggest that pioneer

TFs—in particular, FOXAs—play a role at poised enhancers,

while lineage-specifying TFs promote the transition from a

poised to an active enhancer state. Whereas our work experi-

mentally demonstrates a role for PDX1 in activating poised

pancreatic enhancers, motifs overrepresented at hepatic and

islet enhancers indicate similar functions for HNF4A and RFX
c Enhancers

s (FG/PE- and PE-specific clusters).

ily TFs and PDX1 during pancreatic differentiation. hES, hESCs.

y FOXA1 or FOXA2 at the DE, GT, FG, and PE stages. *p < 2.2e-16, chi-square

by PDX1 in PE. *p < 2.2e-16, chi-square test.

ancer near PTF1A during pancreatic differentiation.

in scrambled control (Scram) and FOXA1 knockdown (shFOXA1) cells differ-

-specific, and PE-specific enhancers in scrambled control (Scram) and PDX1

test.

d shPDX1 cells differentiated to PE as well as the PDX1 ChIP-seq profile at the

h as FOXAs, associate with poised enhancers in GT intermediates. Lineage-

o an active enhancer state.
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Figure 6. Enhancers Linked to Important

Islet Cell Genes Are Poised in Pancreatic

Progenitor Cells

(A) Overlap of poised enhancers in PE and active

enhancers in cadaveric human islets. 3,402 out of

32,760 poised enhancers in PE become active in

islets. 3,427 out of 13,422 active enhancers in is-

lets are poised in PE.

(B) Enriched Gene Ontology terms for enhancers

that are poised in PE and become active in islets.

(C) H3K4me1, H3K27ac, FOXA1, and FOXA2

ChIP-seq profiles in PE and islets at enhancers

near SLC30A8.

(D) Enriched TF binding motifs with associated

p values for the 26% of active islet enhancers that

are poised in PE versus the remaining 74% of

active islet enhancers.

(E) Percentage of enhancers, which are poised in

PE and active in islets, versus random genomic

regions bound by FOXA1 or FOXA2 in PE. *p <

2.2e-16, chi-square test.

(F) Enriched TF binding motifs with associated p

values for the 10% of poised enhancers in PE that

become active in islets versus the remaining 90%

of poised enhancers in PE.

See also Figure S6 and Tables S5, S6, and S7.
factors during hepatic and islet cell differentiation, respectively.

Such a notion is consistent with reported phenotypes of Hnf4a

and Rfx6 knockout mice (Li et al., 2000; Smith et al., 2010). In

contrast to PDX1 knockdown, which prevented H3K27ac depo-

sition at pancreatic enhancers, FOXA1 knockdown did not affect

H3K4me1 levels. As reported in cell lines (Lupien et al., 2008), it

appears that, although necessary for target gene activation,

FOXA1 activity is not required for H3K4 methylation in the

context of endoderm development. Given the known property

of FOXAs to displace nucleosomes (Li et al., 2012), a likely mech-

anism bywhich FOXAs regulate enhancer activity is by establish-

ing a transcriptionally permissive enhancer chromatin state.

This raises the question as to which, if any, TFs are respon-

sible for the deposition of H3K4me1 at lineage-specific en-
396 Cell Stem Cell 16, 386–399, April 2, 2015 ª2015 Elsevier Inc.
hancers. Although our data suggest that

FOXA1 is not required, it is possible

that other FOXA TFs compensate for

FOXA1 andmediate H3K4me1 deposition

in FOXA1-deficient cells. Furthermore,

other TFs not studied here could likewise

play this role. Also unclear is the func-

tional role of H3K4me1 in priming en-

hancers for future activation. While our

data suggest that H3K4me1 deposition

alone is not sufficient for future gene

activation in a FOXA1-depleted state,

it remains to be investigated whether

enhancer activation requires H3K4

methylation and how TFs and epigenetic

modifications cooperatively shape a tran-

scriptionally permissive enhancer land-

scape prior to gene activation. Recent

studies in the context of adipogenesis
suggest that H3K4me1 deposition is indeed necessary for

enhancer activation (Lee et al., 2013).

Implications for Cellular Reprogramming and Stem Cell
Differentiation
The transcriptional priming of lineage-specific enhancers in early

lineage intermediates prior to gene activation helps explain the

highly context-dependent activity of lineage-specific TFs in

cellular programming. Our findings suggest that effective cellular

reprogramming of somatic cells requires a combination of both

pioneer and lineage-specific TFs. Recent studies show that the

reprogramming of fibroblasts into liver, neurons, or pluripotent

cells indeed requires the inclusion of pioneer factors (Huang

et al., 2011; Soufi et al., 2012; Wapinski et al., 2013). Similarly,



pioneer and lineage-specific TFs cooperatively regulate macro-

phage and B-cell gene transcription at the levels of enhancers

(Heinz et al., 2010, 2013). We speculate that this regulatory logic

is pervasive throughout development and relevant for reprog-

ramming lineages from all germ layers.

As stem cell differentiation protocols to derive various terminal

differentiated cell types continue to be developed, scaled, and

optimized, assessing the acquisition of competence may be an

important consideration. For example, the design of large-scale

screens to identify molecules or factors that promote a specific

differentiation step may be ineffective if the responder cell pop-

ulation has not yet acquired the transcriptional competence to

appropriately respond. In addition, one emerging strategy for

cell replacement therapy is the transplantation of stem-cell-der-

ived lineage-specific progenitor cells. Inquiring whether these

progenitors have acquired the competency or poised chromatin

to form the desired therapeutic cell type may be beneficial in the

assessment of suitability for transplantation.

EXPERIMENTAL PROCEDURES

hESC Culture

CyT49 hESCsweremaintained and differentiated as previously described with

minor modifications (Kroon et al., 2008; Schulz et al., 2012). hESC research

was approved by the University of California, San Diego, Institutional Review

Board and Embryonic Stem Cell Research Oversight Committee. For further

details, see the Supplemental Experimental Procedures.

ChIP-Seq and Data Analysis

ChIP-seq was performed as previously described with minor modifications

(Hawkins et al., 2010). All the sequencing experiments were performed using

Illumina Hi-Seq 2000 instruments. Each read was aligned to the human

genome build hg18 with Bowtie (Langmead et al., 2009). We used the first

36 base pairs (bp) for the alignment and only kept reads with up to two mis-

matches. Duplicated reads from the same library were removed. Datasets

from highly correlated biological replicates were pooled for subsequent anal-

ysis. MACS (Zhang et al., 2008) was used for peak calling. Peaks were further

filtered as described previously (Shen et al., 2012). For further details, see the

Supplemental Experimental Procedures.

Enhancer Predictions

Enhancers were predicted as described previously, using H3K4me1,

H3K4me3, and H3K27ac (Rajagopal et al., 2013). We first divided the human

genome into 100-bp bins and counted the number of reads that fell within

each bin. Then, the tag counts in each bin were normalized against the total

number of reads and input as described previously (Shen et al., 2012). The

normalized signals for each mark were merged as one input file for the

enhancer prediction pipeline. To compute the false discovery rate (FDR), we

first shuffled the rows and columns of the input data. Second, we ran the

enhancer prediction pipeline on this simulated data. The FDR was computed

as the ratio of the number of predicted enhancers from simulated data over

the real data. We required that predicted enhancers have an FDR of <2%

and are at least 3 kb away from a known transcriptional start site.
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accession number GSE54471.
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