
Discrete Applied Mathematics 158 (2010) 44–61

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Augmented nodal matrices and normal treesI

Ricardo Riaza ∗, Alfonso J. Encinas
Departamento de Matemática Aplicada a las Tecnologías de la Información, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n
- 28040 Madrid, Spain

a r t i c l e i n f o

Article history:
Received 19 May 2008
Received in revised form 5 January 2009
Accepted 7 August 2009
Available online 25 September 2009

Keywords:
Weighted digraph
Normal tree
Proper tree
Electrical circuit
Nodal analysis
Differential–algebraic equation
Index

a b s t r a c t

Augmented nodal matrices play an important role in the analysis of different features of
electrical circuit models. Their study can be addressed in an abstract setting involving
two- and three-colour weighted digraphs. By means of a detailed characterization of the
structure of proper and normal trees,we provide a unifying framework for the rank analysis
of augmented matrices. This covers in particular Maxwell’s tree-based determinantal
expansions of (non-augmented) nodal matrices, which can be considered as a one-colour
version of our results. Via different colour assignments to circuit devices, we tackle the DC-
solvability problem and the index characterization of certain differential–algebraic models
which arise in the nodal analysis of electrical circuits, extending several known results of
passive circuits to the non-passive context.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In literature on electrical circuits, it is well known that the determinant of a nodal matrix can be written in terms of a
sum of tree weights. This result, which can be traced back to J. C. Maxwell (cf. [3, p. 192] or [12, p. 112]), can be stated for
connected, weighted digraphs and says that the determinant of the nodal matrix AWAT of a connected circuit equals the
sum of weight products over the set of network trees. Here A is a reduced incidence matrix and W is a (diagonal) matrix
of weights, which may correspond e.g. to admittances in linear circuits in the transformed domain or to conductances in a
purely resistive circuit. As it will be detailed later, this is a consequence of the Cauchy–Binet formula.
However, in many real situations, circuit models involve so-called augmented nodal matrices of the form

M =
(
ABWBATB AG

ATG 0

)
, (1)

corresponding to a weighted digraph in which the branches are grouped in three categories, say blue, green and red. The
incidence matrix AB and the weights WB of blue branches enter explicitly the augmented nodal matrix; the incidence
matrix AG of green branches also enters the matrix, in the form depicted in (1); finally, no information about red branches
is explicitly displayed inM even though they certainly play a role in the problem. This type of augmented matrices will be
shown later to be a key element in nodal modeling techniques such as Modified Nodal Analysis (MNA) (used in circuit
simulation programs, e.g. in SPICE or TITAN [17,22,23,47]) or Augmented Nodal Analysis (ANA) [30,44]; they are also
involved in other issues arising in circuit analysis, for instance in the DC-solvability problem.
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From certain applications in circuit theory (which can be understood to result from specific assignments of blue, green
and red branches to different types of circuit devices), it is already known thatM is nonsingular ifWB is a positive definite
(not necessarily diagonal) matrix and the digraph has neither red cutsets nor green loops; see e.g. Theorem 4 in [44].
The positive definiteness property characterizes strictly passive devices in circuit theory. Moreover, under a definiteness
assumption onWB , in the presence of red cutsets and/or green loops it is true that (cf. the proof of Theorem 3 in [41])

kerM = ker

(
ATB
ATG

)
× ker AG (2)

or, equivalently,

corkM = dim ker

(
ATB
ATG

)
+ dim ker AG, (3)

where corkM = p− rkM for a p× pmatrix. The identities displayed in (2) and (3) can be understood as follows: the circuit
topology or, more precisely, the number of independent red cutsets and green loops defines the maximal rank (or minimal
corank) attainable by the augmented nodal matrix (1); then a positive definiteness assumption onWB guarantees that this
maximal rank is actually reached.
Our first goal is to assert these identities without positive definiteness assumptions, thereby driving different known

properties of nodal models of passive circuits to the non-passive setting. Specifically, by removing positive definiteness
assumptions we will connect the nonsingularity (in the absence of red cutsets and green loops) or, in general, the maximal
rank of M with the proper and normal trees introduced by Bashkow [5] and Bryant [9–11]. This applies to problems with
diagonal matricesWB and extends previous research in this direction [16]. Moreover, problemswith non-diagonal matrices
WB , whichmodel the existence of controlled sources and coupling effects in electrical circuits,will be included in the analysis
by means of the novel concepts of a balanced tree and a regular pair of trees.
These issues might seem to be rather technical. However, as it will be shown in Section 5, they play a key role in DC-

solvability analyses and also in the differential–algebraic index characterization ofMNA/ANAmodels of non-passive circuits
(which is the ultimate goal of our study). The characterization of the structure of proper and normal trees, necessary for
subsequent studies, defines a result of independent interest which is addressed in Section 2. Notice that the discussion in
Section 2 does not involve the weights or the branch reference directions but only the nature of the different branches; for
this reason, in the spirit ofMinty, Chua and others [14,35,49]we state themain results of Section 2 in terms of three-coloured
graphs. Certain two-colour variants of our results will also arise in the analysis, whereas the one-colour version amounts to
the above-mentioned Maxwell’s node-admittance property. These properties will pave the way for the characterization of
augmentedmatrices carried out in Sections 3 and 4 for problemswith diagonal and non-diagonalmatricesWB , respectively.
Finally, the circuit applications referred to above are discussed in Section 5.

2. Normal trees of two- and three-colour graphs

In this Section we present a characterization of the set of normal (and proper) trees of three-colour graphs. Background
on graph and digraph theory is given in Section 2.1, whereas Section 2.2 addresses the structure of normal trees.We state the
results in terms of three-colour graphs just for simplicity in subsequent applications, where different colour assignments to
circuit devices are needed in different problems. Many of the ideas discussed in Section 2.2 directly stem from the original
work of Bryant, focused on the state formulation problem for linear circuits; see particularly [10].

2.1. Elementary notions from digraph theory

Werefer the reader to [1,2,4,6,12,15,19] for extensive introductions to graph theory. In this subsectionwe compile several
results which will be useful later. The proof of these properties can be found in the above-mentioned references.
Loops, cutsets. Recall that the reduced incidence matrix A ∈ R(n−1)×m of a connected digraph with n nodes and m branches
is defined as (aij)with

aij =

{1 if branch j leaves node i
−1 if branch j enters node i
0 if branch j is not incident with node i.

IfK is a subset of the set of branches of a connected digraphG, wewill denote by AK (resp. AG−K ) the submatrix of A defined
by the columns which correspond to branches inK (resp. not inK). By aK-loop we mean a loop formed only by branches
belonging toK .

Lemma 1. LetK be a subset of branches of a connected digraph G. Then dim ker AK equals the number of independentK-loops.
In particular, AK has full column rank if and only if K does not contain loops.
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Here, the notion of independence relies on the representation of a given oriented loop as the vector u of Rm defined
componentwise by

uj =

{1 if branch j is in the loop with the same orientation
−1 if branch j is in the loop with the opposite orientation
0 if branch j is not in the loop.

The subset K of branches of a digraph is said to be a cutset if the deletion of K increases the number of connected
components, and additionally it is minimal with respect to this property (that is, the removal of any proper subset of K
does not increase the number of connected components). For a connected digraph, a cutset is a minimal disconnecting set.
Again, by aK-cutset wemean a cutset defined exclusively by branches belonging toK . An oriented cutset can be identified
with a vector of Rm in the manner explained above for loops.

Lemma 2. Let K be a subset of branches of a connected digraph G. Then dim ker ATG−K equals the number of independent K-
cutsets. In particular,K does not contain cutsets if and only if AG−K has a full row rank.

Via the identity dim ker ATG−K = (n − 1) − rk A
T
G−K , the property stated in Lemma 2 can be understood to express the

fact that the removal of k independent cutsets in a connected digraph defines a subgraphwith k+1 connected components.

Trees. In a connected digraph, a tree is an acyclic spanning subgraph. That is, a subset T of branches of a connected digraph,
together with their terminal nodes, defines a tree if it does not include any loops and every node in the digraph is incident
with at least one branch of T . As usual in circuit theory, we use ‘tree’ tomean spanning tree. Branches in a tree are called twigs.
The branches which are not in T (termed links or chords) are said to define a cotree. The choice of a tree in every connected
component of a non-connected digraph defines a forest, the remaining branches yielding a coforest.

Lemma 3. Let T be a subset of branches of a connected digraph. T defines a tree if and only if AT is a non-singular matrix, being
det AT = ±1 in this case.

Contractions andminors. The contraction of a given branch is a digraph operation defined by the identification of the terminal
nodes of that branch into a single one, which inherits the adjacencies of the original pair of nodes. In the electrical circuit
literature such a branch is said to be short-circuited. A sequence of branch removals (or open-circuits) and contractions
defines aminor of a given digraph: find details in [15].
A subgraph of a minor can be also considered as a subgraph of the original digraph. It is also true that an acyclic subgraph

of a given minor is acyclic in the original digraph; however, typically a spanning subgraph of a minor will not span the
original digraph. Therefore, a tree of a given minor defines an acyclic subgraph (but not necessarily a tree) of the original
graph.

Coloured (di)graphs. Proper and normal trees. Topological properties of electrical circuits are those which can be assessed
just in terms of the electrical nature (resistive, capacitive, etc.) of every branch, regardless of the actual current-voltage
characteristic in that branch. In the analysis of different topological features of circuits, it will therefore be useful to consider
digraphs in which every branch is assigned a given colour; different assignments will be used for the analysis of different
properties (cf. Section 5).
In the sequel we will not make specific use of the branch directions and thus the discussion in the remainder of this

Section is stated for graphs, in the understanding that it applies also to digraphs via the underlying graph (that is, the graph
without reference directions).
The main role will be played by three-colour graphs, in which branches are painted green, blue or red. Two-colour graphs

(either green/blue or blue/red) will also arise in the analysis. Paint also the nodes of three-colour graphs as follows: a node
will be painted green if it is incident with at least one green branch, blue if it is not incident with green branches but it is
incident with at least one blue branch, and red if it is just incident with red branches. This applies also to two-colour graphs.
The green and green/blue subgraphs will be hence defined by the green and the green and blue branches, respectively,
together with their incident nodes.
In this setting it is possible to define proper and normal trees, which were introduced by Bashkow and Bryant [5,10,11]

(cf. also [28]) in order to tackle the state formulation problem for RLC circuits.

Definition 1. In a three-colour connected graph, a tree will be called proper if it contains all green branches and no red
branches, together with (possibly) some blue branches.

The existence of a proper tree imposes that the graph has neither green loops nor red cutsets. In their presence we will
have to deal with normal trees instead.

Definition 2. In a three-colour connected graph, a tree will be called normal if it contains the maximum possible number
of green branches, the minimum possible number of red branches, and (possibly) some blue branches.
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This notion is well-defined; the number of green branches in a normal cotree can be actually shown to be given by
the number xg of independent green loops, and similarly the number of red branches in a normal tree equals the number
xr of independent red cutsets [8,10]. The notions of a proper and a normal forest in a non-connected graph are defined
componentwise. Note that the term ‘normal tree’ is sometimes used in another sense (specifically, to mean depth-first
search trees [15]).
In two-colour graphs the notions above apply with just one requirement, being defined by all or the maximum possible

number of green branches in green/blue graphs, and by none or the minimum possible number of red branches in blue/red
graphs. Note, incidentally, that from the point of view of proper and normal trees there is no difference between both types
of two-colour graphs; a difference will be made by the augmented nodal matrices of both types, though. One-colour graphs
can be modeled as blue graphs, and the augmented nodal matrix will amount in this setting to the nodal matrix ABWBATB .
In this one-colour context the notions of a proper and a normal tree would simply amount to that of a tree.
We will also make use of the coloured branch theorem as stated in Lemma 4 below [14,49]. This is actually a corollary of

a more general result proved by Minty (cf. Theorem 3.1 in [35]).

Lemma 4. In a three-colour graph with just one blue branch, this branch either forms a loop exclusively with green branches or
a cutset exclusively with red branches, but not both.

Certainly, the loop or cutset arising in this result need not be unique.
Weights. As indicated in the Introduction, the analysis of augmented nodal matrices performed in Sections 3 and 4 relies on
the assignment ofweights to blue branches in coloured digraphs; these real-valued parameters will define the entries in the
diagonal of the weight matrixWB . Given a tree in a coloured digraph with a diagonal weight matrixWB , we will define its
b-weight as the product of weights in the blue twigs; this weight would be set to 1 in the absence of blue branches in the
tree. Note that in Section 4 we will deal, additionally, with problems in which the existence of non-vanishing entries away
from the diagonal ofWB will generalize the notion of the b-weight of a tree.

2.2. The structure of normal trees

The analysis of augmented nodal matrices carried out in Section 3 makes fundamental use of the characterization of
the set of normal trees of two- and three-colour graphs presented here. As indicated above, the main ideas supporting
Theorems 1 and 2 below are already present in the construction of a normal tree within the seminal work of Bryant [10,11].
The results in this subsection apply in particular to proper trees since they are a particular case of normal trees, being
displayed in graphs without green loops and red cutsets. Other related types of trees (namely, balanced trees and regular
tree pairs) will arise in the analysis of problems with non-diagonal weight matricesWB , and are discussed in Section 4.

2.2.1. Two-colour graphs
Given a green/blue connected graph, let us construct its blue-cut minor as detailed in the sequel. Note first that, by the

coloured branch theorem, every blue branch either defines a loop exclusively with green branches or a cutset exclusively
with other blue branches; indeed, for every single blue branch, paint the remaining blue ones in red and apply Lemma 4.
Remove every blue branch that defines a loop exclusivelywith green branches, so that all the remaining blue branches define
blue cutsets of the original graph; the blue-cut minor is then obtained after contracting all green branches. By construction,
the blue-cut minor has kg + nb nodes, where kg is the number of components of the green subgraph and nb the number of
blue nodes, which in a green/blue graph are the nodes incident with blue branches only.

Theorem 1. The normal trees of a green/blue connected graph are defined by all possible combinations of a forest of the green
subgraph and a tree of the blue-cut minor.

Proof. Let us first show that any such combination defines a normal tree, namely, that it defines an acyclic, spanning
subgraph with the maximum possible number of green branches.
1. To see that such a combination must be acyclic, note that green loops are precluded in a green forest, so that any loop

should include at least one blue branch. However, the contraction of all green branches in such a loop would yield a loop in
the blue-cut minor, against the hypothesis that blue branches come from a tree of this minor.
2. Any such combination spans the whole graph; indeed, every green node (i.e. a node incident with at least one green

branch) must belong to the green forest, whereas blue nodes (incident with blue branches only) are necessarily in the blue-
cut tree.
3. Finally, to check that these combinations attain the maximum possible number of green branches in a tree, keep in

mind that a green forest has ng–kg green branches, ng and kg being the number of green nodes and connected components
of the green subgraph, respectively. A set of more than ng − kg green branches must include a subset of branches coming
from the same green component (say the j-th one) and exceeding the number (ng)j − 1 of twigs in that component, and
should therefore include a green loop.
Conversely, in order to see that every normal tree has this structure, proceed as follows.
4. As indicated above, by the coloured branch theorem every blue branch either defines a loop with green branches only,

or a blue cutset, but not both. Now, a blue branch defining a loop with green branches cannot take part in a normal tree.
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Assume it does. Then the fundamental cutset defined by the blue twig must include at least another branch from the loop;
this follows from the fact that any cutset includes an even number of branches from any loop (see item 3.28 in [2]). This
extra branch must be green. Replacing in the tree the blue branch by this green one we get another tree (since all branches
in the cutset connect the two separated components), with more green branches than the original one. This contradicts the
hypothesis that the tree is normal. Hence, the normal trees belong to the subgraph defined by the green branches together
with the blue branches forming blue cutsets.
5. From items 1–3 above, a normal tree has ng − kg green branches. In order to distribute them among the components

of the green subgraph without forming loops, for j = 1 . . . kg the j-th green component must include (ng)j − 1 branches,
which by the absence of loops define a tree in that component.
6. Since the graph has ng + nb nodes, any tree must have ng + nb − 1 branches. We know that in a normal one there are

ng − kg green branches, so that there must be ng +nb−1− (ng − kg) = kg +nb−1 blue branches. By item 4 they all belong
to the blue-cut minor. Additionally, the set of blue branches in the tree must be incident with all green trees in the forest
andwith the nb blue nodes. This means that the kg+nb−1 blue branches in the normal tree span the blue-cut minor, which
has kg + nb nodes; since a spanning subgraph with n− 1 branches in a connected graph with n nodes must necessarily be
acyclic (if it were not, remove a branch from a loop to spuriously obtain a spanning subgraphwith n−2 branches), it follows
that the blue branches in the normal tree define a tree of the blue-cut minor, thus completing the proof. �

2.2.2. Three-colour graphs
The red-cut minor of a green/blue/red connected graph is defined by the removal of all red branches which define loops

just with green and/or blue branches, and by the subsequent contraction of green and blue branches. It has kgb + nr nodes,
kgb being the number of components of the green/blue subgraph and nr the number of red nodes (that is, nodes incident
with red branches only).

Theorem 2. The normal trees of a three-colour connected graph are defined by all possible combinations of a normal forest of the
green/blue subgraph and a tree of the red-cut minor.
The normal forests of the green/blue subgraph are defined by the choice of a normal tree (as given by Theorem 1) in each

component of the green/blue subgraph.
Proof. The proof of the first assertion parallelizes the one of Theorem 1 and can be obtained in a straightforward manner
by replacing ‘‘green loop’’ by ‘‘green/blue loop’’, ‘‘green tree’’ by ‘‘green/blue normal tree’’, ‘‘blue-cut’’ by ‘‘red-cut’’, etc. The
only thing needing to be proved is that such a combination has the minimum possible number of red branches and hence
defines indeed a normal tree. In this regard, note that the red branches must connect kgb green/blue components and nr red
nodes, so that there must be no less than kgb+ nr − 1 red branches in the tree. Since this is the number of branches in a tree
of the red-cut contraction, then normal trees actually have kgb + nr − 1 red branches and the combinations arising in the
statement of the theorem actually define normal trees. �

The second assertion in Theorem 2 is self-evident: it is included only to provide a full account of the complete structure
of the set of normal trees.

3. Augmented nodal matrices of three-colour weighted digraphs

3.1. Cauchy–Binet determinantal expansions

The analysis of augmented nodal matrices presented belowwill crucially rely on the Cauchy–Binet formula (see e.g. [27])
stated in Lemma 5 for products of three matrices D ∈ Rp×m, E ∈ Rm×m and F ∈ Rm×p, with p ≤ m. We will use α, β to
denote subsets of {1, . . . ,m} with cardα = cardβ = p, whereas ω will stand for {1, . . . , p}. This way, Eα,β is the p × p
submatrix of E defined by the rows indexed by α and the columns indexed by β , whereas Dω,α (resp. Fβ,ω) is the submatrix
of D (resp. of F ) including entries from all rows in D (resp. all columns in F ) and the columns indexed by α (resp. the rows
indexed by β).

Lemma 5. If D ∈ Rp×m, E ∈ Rm×m, and F ∈ Rm×p, with p ≤ m, then

detDEF =
∑
α,β

detDω,α det Eα,β det Fβ,ω, (4)

the sum being taken over all index sets α, β ⊆ {1, . . . ,m} with cardα = cardβ = p.

3.2. Maximal rank characterization of augmented nodal matrices

The results of Sections 2.2 and 3.1 make it possible to undertake the rank analysis of the augmented nodal matrix M
(cf. (1)) of a three-colour digraph. The matrixWB of weights in blue branches will be assumed throughout this Section to be
diagonal. Problems with non-diagonal matricesWB will be addressed in Section 4.

Lemma 6. In a three-colour connected digraph, the corank of M is greater than or equal to the number of independent red cutsets
plus the number of independent green loops.
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Proof. Indeed, it is straightforward to check that

u ∈ ker

(
ATB
ATG

)
, v ∈ ker AG ⇒

(
u
v

)
∈ ker

(
ABWBATB AG

ATG 0

)
, (5)

and therefore

ker

(
ATB
ATG

)
× ker AG ⊆ ker

(
ABWBATB AG

ATG 0

)
= kerM. (6)

The result is then due to the fact that the number of independent red cutsets and independent green loops equal the

dimensions of ker
(
ATB
ATG

)
and ker AG, respectively (cf. Lemmas 1 and 2). �

The main results in this Section are Theorem 3 and, specially, Theorem 4. The former, which can be considered as a
particular case of the latter, is stated separately because of its independent interest and also for the sake of clarity in the
proof of Theorem 4. The proof of Theorem 3 follows the ideas introduced in [16] for the analysis of circuits without VC-loops
and IL-cutsets. Recall from Section 2.1 that the b-weight of a tree in a digraph with a diagonal matrixWB is the product of
the weights of all blue twigs.

Theorem 3. For a connected digraph, the matrix M in (1) is nonsingular if and only if
(i) there are neither red cutsets nor green loops, and
(ii) the sum of b-weights in proper trees does not vanish.

Proof. From Lemma 6 it is clear that the nonsingularity of M precludes the existence of green loops and red cutsets. We
then need to show that, in the absence of these configurations, the nonsingularity ofM is equivalent to the non-vanishing of
the sum of products of the weights of blue branches in proper trees. Notice that the absence of green loops and red cutsets
yields the existence of at least one proper tree.
In order to achieve this, we will make use of the factorization

M =
(
ABWBATB AG

ATG 0

)
=

(
AB AG 0
0 0 IG

)
︸ ︷︷ ︸

D

(WB 0 0
0 0 IG
0 IG 0

)
︸ ︷︷ ︸

E

ATB 0
ATG 0
0 IG


︸ ︷︷ ︸

F

, (7)

following the idea introduced in [16]. The size of the matrix IG above equals the number of green branches. Applying the
Cauchy–Binet formula stated in Lemma 5 we can write

detM = detDEF =
∑
α,β

detDω,α det Eα,β det Fβ,ω, (8)

for certain submatrices (with the same size asM) Dω,α , Eα,β and Fβ,ω of D, E and F , respectively. As explained in Section 3.1,
the index sets α, β ,ωwithin the superscripts specify the rows and columns defining the different submatrices; in particular,
ω indicates that entries from all rows of D and all columns of F are present in Dω,α and Fβ,ω , respectively.
The structure of the matrices D, E and F makes it possible to restrict considerably the set of submatrices Dω,α , Eα,β and

Fβ,ω for which the corresponding determinants in (8) do not vanish. Specifically, the only nonzero determinants come from
submatrices of the form

Dω,α =
(
AB̃ AG 0
0 0 IG

)
, Eα,β =

W̃ 0 0
0 0 IG
0 IG 0

 , Fβ,ω =
(
AT

B̃
0ATG 0

0 IG

)
,

the tilde ˜ indicating that only the entries corresponding to some blue branches must be present in each non-vanishing
factor. This structure is due to the facts explained in the sequel. First, the full row rank and full column rank requirements
in Dω,α and Fβ,ω , respectively, imply that the IG blocks must be fully present in these submatrices and, subsequently, in
Eα,β . In turn, this means that the blocks AG from D and ATG from F must be entirely present in D

ω,α and Fβ,ω , respectively.
Additionally, the diagonal structure of the weight matrixWB = diag (w1, w2, . . . , wmb) (wherewi is the weight of the i-th
blue branch andmb the number of blue branches) implies that the same set of blue branches (denoted by B̃) enters AB̃ and
AT

B̃
within Dω,α and Fβ,ω . By W̃ we denote the (diagonal) matrix of weights of the blue branches within B̃.
The block diagonal structure of W̃ yields

det Eα,β = (−1)mg
∏
mi∈B̃

wi, (9)
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where mg is the number of green branches (note that mg column exchanges transforms Eα,β into a diagonal matrix); with
the expressionmi ∈ B̃ we specify the branches that belong to B̃, whereaswi denotes their corresponding weights.
In turn, the set B̃ must make the square matrix (AB̃ AG) nonsingular, meaning that this set of blue branches together

with all green branches (mind the full presence of AG and ATG in D
ω,α and Fβ,ω) must define a tree. Since it includes all green

branches and no red ones, it will actually be a proper tree. We then have

detDω,α = det Fβ,ω = ±1. (10)

The expressions depicted in (9) and (10) transform (8) into

detM = (−1)mg
∑
T∈Tp

∏
mi∈T∩B

wi, (11)

Tp being the set of proper trees. This expression completes the proof. �

Remark that in special cases there may exist a proper green tree, that is, a tree comprising all green branches and no
blue or red ones. In this situation AG is a square nonsingular matrix, and this makes M in (1) nonsingular because of its
block structure. It is easy to check that in this situation there cannot exist other proper trees and, since in a tree without
blue branches the b-weight is assumed to be 1, this setting is implicitly comprised in the statement above. It is also worth
remarking that, if there are no proper green trees, then all proper trees must have at least one blue branch.
In the presence of red cutsets or green loops, the matrixM will be a singular one. Because of their applications in circuit

theory, it is important to characterize the situations in which the corank ofM actually equals the number xr of independent
red cutsets plus the number xg of independent green loops or, equivalently, the situations in which

kerM = ker

(
ATB
ATG

)
× ker AG, (12)

as done in Theorem 4 below. Note that Theorem 3 can be considered a particular case of Theorem 4 with xr = xg = 0,
corresponding to kerM = {0}.

Theorem 4. The corank of the augmented nodal matrix M of a three-colour connected digraph equals the number of independent
red cutsets plus the number of independent green loops (or, equivalently, the identity (12) holds) if and only if the sum of b-weights
in normal trees does not vanish.

Proof. We will first perform a sequence of transformations which result in the identity corkM = corkM ′′′ + xg + xr for a
certain matrixM ′′′. After that we will prove that the nonsingularity ofM ′′′ (that is, the vanishing of its corank) is equivalent
to the non-vanishing of the sum of products of the weights of the blue branches in normal trees.
1. Let us first delete from the digraph a coforest of the green subgraph; this is equivalent to removing xg green branches

from the digraph in away such that no green loop remains in the resulting subgraph. Note that the deletion of these branches
does not disconnect the graph. The incidence matrix of this subgraph reads

M ′ =
(
ABWBATB AG

AT
G

0

)
, (13)

where AG is the submatrix of AG corresponding to the green branches in the forest, that is, to the green branches which were
not deleted. The columns removed from AG belong to the subspace spanned by AG, since all the deleted branches form a loop
with some of the green branches which were not removed. This means that rkM ′ = rkM , and then

corkM = corkM ′ + xg . (14)

2. The green/blue subgraph of the digraph defined this way has the same number of components (kgb) as the original one.
Hence, after a reordering of columns and rows (which does not affect the rank) in (13), we obtain a block-diagonal matrix
of the form

M ′′ =



ÃB1WB1 Ã
T
B1

ÃG1
0 0 . . . 0 0 0

ÃT
G1

0 0 0 . . . 0 0 0
0 0 ÃB2WB2 Ã

T
B2

ÃG2
. . . 0 0 0

0 0 ÃT
G2

0 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . ÃBkgb
WBkgb

ÃTBkgb ÃGkgb
0

0 0 0 0 0 ÃT
Gkgb

0 0

0 0 0 0 0 0 0 0


,
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whereWBj stands for the (diagonal) matrix of weights in blue branches of the j-th green/blue component, and ÃBj , ÃGj
are

incidence submatrices of that component. The last vanishing rows and columns correspond to red nodes, namely, nodes
which are not incident with the green/blue subgraph.
Remark that, if the j-th component does not include the circuit reference node, we can choose a reference node in that

component and therefore remove a row and the corresponding column of the j-th block without affecting the rank. Denote
by ÂBj , ÂGj

the corresponding reduced incidence matrices; for the block including the reference node (if it is not red) set

ÂBj = ÃBj , ÂGj
= ÃGj

. This means that every block (except the one including the reference node, if it is not red) contributes
in one to the corank ofM ′′. Together with the contribution to the corank coming from the last vanishing rows and columns,
and using the fact that the number of components of the green/blue subgraph plus the number of red nodes exceeds by one
the number of independent red cutsets, we derive the relation corkM ′′ = corkM ′′′ + xr , with

M ′′′ =



ÂB1WB1 Â
T
B1

ÂG1
0 0 . . . 0 0

ÂT
G1

0 0 0 . . . 0 0

0 0 ÂB2WB2 Â
T
B2

ÂG2
. . . 0 0

0 0 ÂT
G2

0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . ÂBkgb
WBkgb

ÂTBkgb ÂGkgb

0 0 0 0 0 ÂT
Gkgb

0


.

Together with corkM ′′ = corkM ′ and (14), this yields

corkM = corkM ′′′ + xg + xr . (15)

3. The matrixM ′′′ is nonsingular (i.e. has a corank of zero) if and only if the blocks(
ÂBjWBj Â

T
Bj

ÂGj

ÂT
Gj

0

)
(16)

are nonsingular for j = 1, . . . , kgb. Note that the digraph in item 1 above has been constructed in a way such that each one
of these blocks defines the augmented nodal matrix of a connected component which does not include green loops or red
cutsets. According to Theorem 3, the nonsingularity of each block of the form (16) is then equivalent to the non-vanishing
of the sum of b-weights in proper trees of that component.
4. It then remains to be shown that the condition arising in item 3 is equivalent to the non-vanishing of the sum of

b-weights in normal trees of the original digraph.
4.1. Due to the structure of normal trees presented in Theorem 2, the sum of products of the weights of blue branches in

normal trees can be written as

tr
∑
F∈Fgb

∏
mi∈F∩B

wi. (17)

Here tr is the number of trees in the red-cut contraction (if there are no red cutsets set tr = 1, green/blue forests amounting
in this case to trees), whereasFgb is the set of normal forests of the green/blue subgraph, and F∩B is the set of blue branches
in the forest F .
4.2. These normal forests are defined by all possible combinations of normal trees coming from different components of

the green/blue subgraph. This means that (17) can be recast as

tr
∏
Cj∈C

∑
T∈Tj

∏
mi∈T∩B

wi, (18)

C being the set of connected components of the green/blue subgraph, and Tj the set of normal trees in its j-th component.
4.3. Additionally, according to Theorem 1, the normal trees of every green/blue component are defined by all possible

combinations of a forest of the corresponding green subgraph and a tree of the blue-cutminor coming from that component.
This means that∑

T∈Tj

∏
mi∈T∩B

wi = (fg)j
∑
T∈T bj

∏
mi∈T

wi, (19)

where (fg)j is the number of green forests in the j-th component (if there are no green branches in that component set
(fg)j = 1) and T bj is the set of trees in the blue-cut minor of the j-th component.



52 R. Riaza, A.J. Encinas / Discrete Applied Mathematics 158 (2010) 44–61

From (19) we can rewrite (18) as

tr
∏
Cj∈C

(fg)j ∑
T∈T bj

∏
mi∈T

wi

 = tr fg ∏
Cj∈C

∑
T∈T bj

∏
mi∈T

wi, (20)

fg standing for the total number of forests in the green subgraph (in the absence of green branches in the digraph set fg = 1).
4.4. Since tr and fg are positive integers, the non-vanishing of (20) is equivalent to the non-vanishing of the sum of tree

weights in the blue-cut minor of each component of the green/blue subgraph. However, by construction, the trees in this
blue-cut minor correspond to the blue branches in the proper trees referred to in item 3 above. This means that, indeed, the
nonsingularity of M ′′′ is equivalent to the non-vanishing of the sum of b-weights in normal trees. In the light of (15), this
completes the proof. �

4. Controlled branches and coupling effects

The results so far are focused on problems in which the matrix WB within M (cf. (1)) is diagonal. However, many
important applications in circuit theory lead to problems which can be modeled by augmented nodal matrices of the form
(1)with a non-diagonal structure inWB . This is the case in circuits including certain types of controlled sources, in particular
those arising in most transistor models, and also in the presence of coupling effects.
In this Section we extend some of the previous results to digraphs with a non-diagonal matrixWB . We do not attempt to

accommodate in our analysis all possible non-diagonal structures forWB ; instead, the attention will be focused on certain
structures which allow for a reasonably simple rank characterization in terms of trees and, at the same time, lead to relevant
applications in circuit theory: see, in this regard, Sections 5.4 and 5.5.

4.1. Controlled branches

Non-diagonal matrices WB often come in practice from electrical circuits including controlled sources for which the
controlling device is modeled by a blue branch. In digraph terms, we will now classify blue branches in two classes, as
follows. The blue branches of Sections 2 and 3 will now be dark blue branches, having non-zero weightswii (i = 1, . . . ,md).
Additionally, there will be a second class of so-called light blue branches, with wii = 0 (i = md + 1, . . . ,mb), each one
of which will be controlled by a dark blue branch; this means that for every i ∈ {md + 1, . . . ,mb} there exists a unique
j ∈ {1, . . . ,md} such that wij 6= 0. The parameter wii of dark blue branches will be termed the branch weight; in turn,
wij 6= 0 is the control parameter of the i-th branch, the j-th one being its controlling branch. This framework may model for
instance electrical circuits in which dark blue branches are resistors and light blue branches are voltage-controlled current
sources in which the controlling device is a resistor.
The setting described above givesWB the structure

WB =

(
W1 0
W2 0

)
, (21)

whereW1 ∈ Rmd×md is diagonal andW2 ∈ Rml×md has exactly one non-vanishing entry per row; hereml = mb−md stands
for the number of light blue branches.
The results of previous Sections can be extended to this context by means of the concept of a balanced tree. In order to

introduce this notion, let us classify the blue branches intomutually-disjoint groups, each one defined by a unique dark blue
branch together with the set of light blue branches that it controls, if any; this dark blue branch is called the representative
of all the branches in its group, including itself. Let us also recall that that a proper tree is a tree which contains all green
branches, (possibly) some blue ones –which can now be dark or light ones–, but no red branches.

Definition 3. A balanced tree is a proper tree which satisfies the following:

(1) it contains no more than one blue twig from each one of the mutually-disjoint groups defined above; and
(2) it is such that the removal of all light blue twigs and the inclusion of their representatives still result in a (proper) tree.

We will call the tree without light blue branches arising in item (2) the associated tree of the original balanced one.
The b-weight of a balanced tree is defined by the product of

(a) the branch weights of the dark blue twigs;
(b) the control parameters of the light blue twigs; and
(c) the signature of the tree, defined as+1 or−1 if det AT1 = det AT2 or det AT1 6= det AT2 , respectively; here AT1 and AT2 are
the incidence matrices of the balanced tree and its associated one, and the columns in AT1 are assumed to be ordered
according to the order of the representatives in AT2 .
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By definition, any proper tree in which all blue branches are dark is balanced and coincides with its associated tree.
Furthermore, its signature is +1 and its b-weight is simply defined by the product of its branch weights, as in Sections 2
and 3. These trees play the role of the proper trees in previous Sections, but in the rank characterization of Theorem 5 below
there is an additional contribution coming from balanced trees which include light blue branches.

Theorem 5. For a connected digraph with controlled branches in which WB has the structure depicted in (21), the matrix M in
(1) is nonsingular if and only if

(i) there are neither cutsets defined by red and/or light blue branches, nor green loops, and
(ii) the sum of b-weights in balanced trees does not vanish.

Proof. Regarding item (i), it is only worth clarifying that the presence of at least one balanced tree precludes the existence
of cutsets defined by red and/or light blue branches (besides green loops), since the associated tree of that balanced one just
includes dark blue branches (apart from all the green ones).
For item (ii) we proceed as in the proof of Theorem 3. The non-trivial determinants in the Cauchy–Binet expansion come

from submatrices of the form

Dω,α =
(
AB̂ AG 0
0 0 IG

)
, Eα,β =

W̃ 0 0
0 0 IG
0 IG 0

 , Fβ,ω =
(
AT

B̌
0ATG 0

0 IG

)
. (22)

Note that now the sets B̂ and B̌ of blue branches entering Dω,α and Fβ,ω need not be the same, and that W̃ will be non-
diagonal in many cases.
For det W̃ not to vanish, it is easy to see that no more than one blue branch from each group may enter the tree T1

defined by B̂ and the green branches, and that the corresponding representativesmust enter T2 (defined by B̌ and the green
branches). Thismeans that the only tree pairs leading to non-vanishing terms in the expansion are defined by balanced trees
and their associated ones; these include, of course, the cases in which B̂ = B̌, that is, the pairs of coincident trees in which
all blue twigs are dark.
In cases inwhich T1 includes at least one light blue twig (iewhen B̂ 6= B̌), reordering the rows in W̃ and, correspondingly,

the columns in (AB̂ AG) we do not alter the sign of the determinantal products; once the branches in the balanced tree are
ordered according to their representatives, W̃ gets a diagonal form and its determinant equals the product of branchweights
and control parameters. The result then follows from the fact that the determinantal product of the incidence matrices
coming from Dω,α and Fβ,ω yields the signature of the balanced tree as defined above. �

For brevity we do not address the analogue of Theorem 4 in this setting, although the reader can derive it without
difficulty just redefining balanced trees in terms of normal ones.

4.2. Coupled problems

Another family of problems with non-diagonal matrices WB come from electrical circuits displaying coupling effects
among the devices modeled by blue branches, which lead to non-trivial entries away from the main diagonal in WB . In
digraph terms, a non-vanishing value wij in the (i, j)-th entry ofWB , with i 6= j, may be seen as a weight which describes
the influence of the j-th branch on the i-th one. It may certainly happen that also the i-th branch has a non-trivial influence
on the j-th one, namely, that wji 6= 0, possibly with wij 6= wji. In any of these situations, the i-th and j-th branches are said
to be coupled; wij and wji are called the coupling coefficients between the i-th and the j-th branches. This setting does not
imply anything about the values ofwii andwjj, which will still be referred to as the branch weights and may vanish or not.
Wewill assume in the sequel that every blue branch is coupled to atmost another one.Without loss of generality coupled

branches will be supposed to be the first c ones and to be numbered consecutively, so thatWB has the form

WB =



w11 w12 0 0 . . . 0 0 . . . 0
w21 w22 0 0 . . . 0 0 . . . 0
0 0 w33 w34 . . . 0 0 . . . 0
0 0 w43 w44 . . . 0 0 . . . 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . wc+1 c+1 0 . . . 0
0 0 0 0 . . . 0 wc+2 c+2 . . . 0
...

...
...

...
...

...
. . .

...
0 0 0 0 . . . 0 0 . . . wmbmb


. (23)

By the weight of a pair of coupled branches (say the i-th and the (i + 1)-th ones) we will mean the determinant
wi iwi+1 i+1 − wi i+1wi+1 i.
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Theorem 3 can be extended to augmented nodal matrices M in whichWB has the form depicted in (23), as detailed in
Theorem 6 below. Now, in the sum arising in item (ii), there is a new term involving certain (so-called regular) tree pairs
which are intrinsic to the existence of coupled branches. Note also that, in the contribution of proper trees to that sum, the
b-weight is defined as the determinant of the submatrix ofWB defined by the blue twigs, and now it equals the product of
the weights of pairs of coupled twigs times the product of the branch weights of the twigs which are not coupled to other
twigs (regardless of the fact that some of them may be coupled to links).

Definition 4. A pair {T1, T2} of proper trees is said to be regular if their sets of blue twigs can be described asB0 ∪ B1 and
B0 ∪B2, respectively, and satisfy the following:

(1) B1 andB2 are not empty;
(2) every branch inB1 is coupled to one branch ofB2; and
(3) no branch ofB1 (resp.B2) is coupled to any other blue branch of T1 (resp. T2).

This way, the regular pairs {T1, T2} are defined by all possible distributions of (one or more pairs of) coupled branches
between T1 and T2 in a way such that there exists a common set of blue branches which (together with the set of green
branches) yield a pair of proper trees.
Now, the b-weight of a regular pair of trees {T1, T2} is defined as the product of

(a) the weight of the coupled pairs inB0;
(b) the branch weights of the twigs inB0 which are not coupled to other branches inB0;
(c) the coupling coefficients wij between the coupled branches from B1 and B2, in the understanding that the i-th branch
belongs toB1 and the j-th one belongs toB2; and

(d) the signature of {T1, T2}, defined as+1 or−1 if det AT1 = det AT2 or det AT1 6= det AT2 , respectively.

Theorem 6. For a connected digraph in which every blue branch is coupled to at most another one, the matrix M in (1) is
nonsingular if and only if

(i) there are neither red cutsets nor green loops, and
(ii) the sum of b-weights in proper trees and regular tree pairs does not vanish.

Proof. The result again relies on the Cauchy–Binet expansion,which leads to factors of the form shown in (22).When B̂ = B̌

we are led to the proper trees arising in item (ii), where it is worth emphasizing that now their b-weights det W̃ may include
some factors of the formwi iwi+1 i+1 − wi i+1wi+1 i coming from pairs of coupled twigs, as indicated above.
The cases B̂ 6= B̌ lead to the contribution coming from the regular tree pairs defined above. This is a consequence of the

form ofWB in (23) and can be checked by means of the following remarks.
First, for a given pair of coupled branches, if both of them belong to B̂ then they must also enter B̌ (if none of them do,

there would be two vanishing rows in W̃ , and if only of them enters B̂, W̃ would have two linearly dependent rows). These
branches belong toB0 in the notion of a regular pair and their weights contribute through item (a) above.
If exactly one branch of a coupled pair belongs to B̂, then it must happen that either this branch or the other one in the

pair (but not both) must belong to B̌; the absence of both would result in a vanishing row in W̃ , whereas if both of them
enter B̌ then W̃ would have two linearly dependent columns. In the first case the branch belongs toB0 and contributes to
the b-weight through item (b), whereas in the second one the coupled branches enterB1 andB2, respectively, contributing
to the b-weight through the coefficientwij in item (c). Note that at least one coupled pair mustmeet the second case in order
to make B̂ 6= B̌; otherwise we would be led to a term in the sum coming from a proper tree.
If no branch of a given coupled pair enters B̂, none of them can appear in B̌ either since they would yield vanishing

columns in W̃ .
Additionally, if an uncoupled branch enters B̂ then it must also belong to B̌ since, otherwise, W̃ would have a vanishing

row. These branches also belong to B0 and contribute to the b-weight via item (b). Similarly, if an uncoupled branch does
not belong to B̂ then it cannot be displayed in B̌ either, in order to prevent vanishing columns.
Finally, the product detDω,α det Fβ,ω yields the contribution coming from the signature of the pair in item (d). �

Again, for the sake of brevitywedonot tackle the analogue of Theorem4 in this context, although it essentially parallelizes
Theorem 6; we just need to replace proper trees by normal ones (also in the notion of a regular tree pair) and the result
follows along the same lines.

5. Applications in electrical circuit theory

The results presented in Sections 2–4 make it possible to tackle different analytical properties of non-passive lumped
circuits. Specifically, after introducing some background on nodal analysis of electrical circuits in Section 5.1, wewill address
the DC-solvability problem in Section 5.2 and the index characterization of different nodal circuit models in Section 5.3,
working in both cases without passivity restrictions and in an uncoupled setting without controlled sources. In Sections 5.4
and 5.5 we analyze the corresponding properties for circuits with controlled sources and coupling effects, respectively.
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The fact that different applications involving electrical circuits can be discussed in the terms of Sections 2–4 relies
on different assignments of green/blue/red branches to circuit devices. Conductances and, occasionally, capacitances will
define the weights of blue branches. In uncoupled problems, the passivity conditions amounts to the requirement that the
individual conductances, inductances and capacitances are positive. The goal is to assess properties which are known to
hold for passive problems in a more general setting, by allowing these weights to take on negative values.
Wewill assume throughout this Section that the circuits under study arewell-posed, in the sense that they do not include

V-loops (i.e. loops formed exclusively by voltage sources) or I-cutsets (cutsets defined only by current sources). This is
(generically) a necessary requirement for solutions to exist.

5.1. Nodal analysis of lumped circuits

Analysis methods currently used to set up circuit equations use a semistate formalism, which allows some variable
redundancy in order to automatically generate a network model. In the time-domain, this approach leads to models based
on differential–algebraic equations (DAEs). This is the case of Augmented Nodal Analysis (ANA) [30,44] or Modified Nodal
Analysis (MNA), used in actual circuit simulation programs such as SPICE or TITAN [17,22,23,47].
Augmented Nodal Analysis. ANA models are defined by a differential–algebraic system of the form

C(vc)v′c = ic (24a)

L(il)i′l = A
T
Le (24b)

0 = ARγ (ATRe)+ AC ic + ALil + AV iv + AIis(t) (24c)

0 = ATCe− vc (24d)

0 = ATVe− vs(t). (24e)

We are assuming the circuit to be connected. Thematrices AR , AC, AL, AV and AI describe the incidence relations in resistive,
capacitive, inductive, voltage source and current source branches, respectively. Eq. (24c) describes the Kirchhoff Current
Law (KCL) in the form Ai = 0, having expressed resistor currents in terms of branch voltages and these in turn in terms of
node voltages. In Eqs. (24b)–(24e), we have made use of the formulation of Kirchhoff Voltage Law (KVL) as v = ATe. The
variables arising in the model are then defined by the node voltages e, the capacitor voltages vc and currents ic , the inductor
currents il, and the voltage source currents iv . The functions is(t) and vs(t) describe the currents and voltages in the (assumed
independent) corresponding sources. Controlled sources can be included in this model as explained in Section 5.4.
The resistors are voltage-controlled by a C1 relation of the form ir = γ (vr) = γ (ATRe). The incremental conductance

matrix will be denoted by G(vr) = γ ′(vr), whereas capacitors and inductors are characterized by their incremental
capacitance and inductance matrices C(vc) and L(il), respectively. In the sequel we will often omit the label ‘incremental’
to refer to the conductances, capacitances and inductances. When the conductance, capacitance and inductance matrices
are diagonal the corresponding devices are said to be uncoupled. Additionally, the circuit is said to be strictly locally passive
(or, with terminological abuse, sometimes simply ‘passive’) if G(vr), C(vc) and L(il) are positive definite; a square matrix
M ∈ Rp×p is said to be positive definite if uTMu > 0 for every u ∈ Rp − {0}.
Modified Nodal Analysis.MNAmodels can be derived from (24) by inserting (24d) into (24a), and this one in turn into (24c),
leading to the DAE

ACC(ATCe)A
T
Ce
′
+ ARγ (ATRe)+ ALil + AV iv = −AIis(t) (25a)

L(il)i′l − A
T
Le = 0 (25b)

ATVe = vs(t). (25c)

The elimination of capacitive voltages and currents results in a more compact model, better-suited than ANA for
computational purposes. The presence of the nodal capacitance matrix ACC(ATCe)A

T
C in the leading term of the system leads,

however, to several technical difficulties not displayed by ANA (cf. [17,41,44,47]).

5.2. DC-solvability and L-proper trees

Assume that a given circuit is driven by DC sources, namely, that the excitations in the sources have the form is(t) = Is
and vs(t) = Vs for certain constant vectors Is, Vs. Let us denote by f (x) the map displayed in the right-hand side of (24),
namely

f (x) =


ic
ATLe

ARγ (ATRe)+ AC ic + ALil + AV iv + AIIs
ATCe− vc
ATVe− Vs

 . (26)
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A set of values for x = (vc, il, e, ic, iv)which annihilates f (x) is then said to define an equilibriumpoint of the circuit. Note that
the equilibrium condition requires ic = 0 andATLe = vl = 0, and therefore these conditions define aDC operating point of the
network, that is, a solution of the resistive network obtained after open-circuiting capacitors and short-circuiting inductors.
Except for the conditions ic = 0 and vc = ATCe, which involve capacitive currents and voltages not used in Modified Nodal
Analysis, the same set of requirements defines an equilibrium point in the MNA model (25).
Fix in the sequel an equilibrium point x∗, that is, a point for which f (x∗) = 0, and let f ′(x∗) stand for the Jacobian

matrix (i.e. the matrix of partial derivatives) of f evaluated at x∗. The nonsingularity of f ′(x∗) implies that x∗ is an isolated
equilibrium point (in linear cases, the equilibrium would actually be unique) and, from a computational perspective, is a
key requirement for its determination in nonlinear problems via Newton-basedmethods; for this reason the nonsingularity
of f ′(x∗) (or, equivalently, that of the Jacobian matrix arising in other circuit models) is often referred to as a DC-solvability
condition [18]. See also [13,20,21,43,45,46] and the bibliography therein.
It is already known that the DC-solvability requirement implies, as a necessary condition, the absence of VL-loops (that is,

loops defined by inductors and (maybe) voltage sources) and IC-cutsets (cutsets formed by capacitors and (maybe) current
sources). This topological check is performed by current circuit simulators [18], the role of these configurations having been
already examined in [24,25,34]. In strictly locally passive circuits, the absence of VL-loops and IC-cutsets is actually enough
to guarantee DC-solvability (cf. Theorem 4.1 in [43]).
We are now in a position to improve on this result, extending the characterization of DC-solvability to uncoupled, non-

passive circuits. Indeed, the Jacobian matrix at an equilibrium point x∗ = (v∗c , i
∗

l , e
∗, i∗c , i

∗
v) reads

f ′(x∗) =


0 0 0 Ic 0
0 0 ATL 0 0
0 AL ARGATR AC AV

−Ic 0 ATC 0 0
0 0 ATV 0 0

 , (27)

where Ic is an identity matrix whose size is given by the number of capacitors and G stands for γ ′(ATRe
∗). The nonsingularity

of f ′(x∗) is easily seen to be equivalent to that of the augmented nodal matrixARGATR AL AV

ATL 0 0
ATV 0 0

 . (28)

Inspired in the notion of an L-normal tree [37], let us define a tree as L-proper if it contains all voltage sources and all inductors,
possibly some resistors, but neither current sources nor capacitors. Assign blue branches to resistors, their conductances
defining theweights of these branches, green branches to voltage sources and inductors, and red branches to current sources
and capacitors. The following result, which extends the DC-solvability characterization to non-passive circuits without
coupling among resistors, then follows in a straightforward manner from Theorem 3.

Proposition 1. The DC-solvability condition holds at an equilibrium point of a well-posed, connected circuit without resistive
coupling if and only if

(i) the circuit has neither IC-cutsets nor VL-loops, and
(ii) the sum of conductance products in L-proper trees does not vanish.

Note that in uncoupled, strictly locally passive circuits the incremental conductances are positive and thus the sum of
conductance products in item (ii) above is always positive. Therefore, in the uncoupled setting the characterization of DC-
solvability for passive circuits in terms of the absence of VL-loops and IC-cutsets can be seen as a corollary of Proposition 1
above. The advantage of the present result relies on the fact that it accommodates, for instance, negative differential
resistances (NDR’s) arising e.g. in tunnel diodes or in Chua’s circuit family. In Proposition 6 (Section 5.4) we will address
the analogue of this result for problems with certain types of controlled sources which arise in other circuit applications,
involving e.g. transistor models.

5.3. Index analysis of DAE circuit models

The systems (24) and (25) arising in nodal analysis define differential–algebraic models of lumped electrical circuits.
Stemming from the seminal work of Newcomb and others (cf. [36]), the DAE or semistate approach is nowadays pervasive
in time-domain circuit modeling and simulation [17,22,23,39,42,44,47,48,50].
Amajor issue in the characterization of semistate circuitmodels involve their index; cf. [7,26,29,31,32,38,42] for extensive

discussions of this notion for general DAEs and [17,40,41,44,47,48] for index analyses of passive circuits. Roughly speaking,
the index measures how much a given DAE differs from an explicit ODE, and reflects the sensitivity of the system to the
derivatives of the excitation terms. It also provides a measure of the difficulties expected in the numerical treatment of the
DAE.
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Much research on the index characterization of lumped circuits is based on the so-called tractability index, supported
on projector methods (see [31,32,42,48]). Focusing on quasilinear DAEs of the form A(x)x′ = f (x, t), the index is said to be
zero if A(x) is a nonsingular matrix; if it is not, provided that it has a constant kernel and letting Q be a constant projector
onto ker A(x), the DAE is said to have a tractability index of one if A1(x) = A(x) − fx(x, t)Q is non-singular; we are using
the fact that for the circuit models (24) and (25) the derivative fx(x, t) is actually independent of t , so that A1 only depends
on x. If A1(x) is singular with constant rank and Q1(x) is a continuous projector onto its kernel, the DAE is said to have a
tractability index of two if A2(x) = A1(x) − fx(x, t)(I − Q )Q1(x) is nonsingular. These notions support not only analytical
characterizations of the system solutions but also numerical techniques (cf. [17,32,33,42,47,48]).
For strictly locally passive circuits, the index behavior of the MNA system (25) is known to depend crucially on the

presence or absence of VC-loops (loops defined by capacitors and (maybe) voltage sources) and IL-cutsets (cutsets formed by
inductors and (maybe) current sources) [47]. This is also the case for the ANAmodel (24) [41,42,44]. MNA systems are index
zero when modeling a passive circuit with a capacitive tree and without voltage sources [48]. However, the index of non-
passive circuits is largely unexplored in the literature. In [16], low (≤ 1) index characterizations are presented for uncoupled
circuits without passivity requirements. In the forthcoming subsections we show how different properties discussed in [16]
can be seen as a consequence of the general results of previous Sections; we also present some new results aimed at the
analysis of index-two configurations in non-passive circuits.

5.3.1. ANA models and C-normal trees
Assume that in the Augmented Nodal Analysis model (24) the capacitance and inductance matrices C , L are nonsingular.

Since the leading matrix A(x) of this system has the block-diagonal structure {C, L, 0, 0, 0}, a constant projector Q onto
ker A(x) is defined by

Q =


0 0 0 0 0
0 0 0 0 0
0 0 In−1 0 0
0 0 0 Ic 0
0 0 0 0 Iv

 , (29)

the sizes of the identity submatrices being given by the number of nodes different from the reference one, of capacitors and
of voltage sources, respectively. The matrix A1 = A− fxQ reads

A1 =


C 0 0 −Ic 0
0 L −ATL 0 0
0 0 −ARGATR −AC −AV

0 0 −ATC 0 0
0 0 −ATV 0 0

 . (30)

Due to the nonsingularity of C and L, the matrix A1 is nonsingular if and only if so it is

J1 =

ARGATR AC AV

ATC 0 0
ATV 0 0

 . (31)

Define a tree as C-proper if it contains all voltage sources and all capacitors, possibly some resistors, but neither current
sources nor inductors. This concept corresponds to the original use of the term ‘proper tree’ in [5]. Assigning now blue
branches to resistors, green branches to voltage sources and capacitors, and red branches to current sources and inductors,
we may consider Proposition 2 below (cf. [16]) as a corollary of Theorem 3.

Proposition 2. Consider a well-posed, connected circuit with nonsingular capacitance and inductance matrices C, L, and no
coupling among resistors. The ANA model (24) has tractability index one if and only if
(i) the circuit has neither IL-cutsets nor VC-loops, and
(ii) the sum of conductance products in C-proper trees does not vanish.

As in Section 5.2, Proposition 2 allows one to include devices with negative incremental resistance in the index analysis.
Note also that the parallelism between Propositions 1 and 2 extends to non-passive settings the reactive duality explored
for passive circuits in [41]. Again, Proposition 7 in Section 5.4 extends this characterization to problems with controlled
sources.
The existence of IL-cutsets and/or VC-loops may lead to an index two configuration in the ANA model (24). Even though

a complete index two characterization of ANA models for non-passive circuits is beyond the scope of this paper, a key
requirement in this direction is that the identity

ker J1 = ker

ATRATC
ATV

× ker (AC AV) (32)
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holds. Equivalently, the dimension of the kernel of thematrix J1 in (31) (or, equivalently, that of the kernel of A1 in (30))must
not exceed the number of independent IL-cutsets plus the number of independent VC-loops. In this regard, the following
result can be derived from Theorem 4 if we define a tree as C-normalwhen it contains all voltage sources, no current source,
themaximumpossible number of capacitors and theminimumpossible number of inductors, together with (possibly) some
resistors. This is the type of tree used by Bryant [10,11] and corresponds to the common use of the term ‘normal tree’ in
electrical circuit theory (cf. [28]).

Proposition 3. Consider a well-posed, connected circuit with nonsingular capacitance and inductance matrices C, L, and no
coupling among resistors. In the presence of IL-cutsets and/or VC-loops, the corank of the matrix A1 in (30) equals the number
of independent IL-cutsets plus the number of independent VC-loops (or, equivalently, the identity (32) holds) if and only if the sum
of conductance products in C-normal trees does not vanish.

Proof. The nonsingularity of C and L guarantees that the corank of A1 equals that of J1. In turn, the well-posedness
assumption precludes V-loops and I-cutsets in the circuit. Let us short-circuit (contract) voltage sources and open-circuit
(remove) current sources, and then assign blue branches to resistors, green branches to capacitors, and red branches to
inductors. It is easy to check that the C-normal trees of the original circuit correspond to the normal trees (in the sense of
Definition 2) of the modified circuit. The result then follows in a straightforward manner from Theorem 4. �

5.3.2. Two-colour problems, MNA models and capacitive-normal trees
In index characterizations of Modified Nodal Analysis, an important role is played by the nodal capacitance matrix

ACC(ATCe)A
T
C because of its appearance in the leading term of (25). Under a positive definiteness assumption on C , the

nonsingularity of thismatrix is known to rely on the existence of a capacitive tree [48]; thismakes theMNAmodel (25) index
zero for strictly locally passive circuits without voltage sources. In the absence of capacitive trees, the positive definiteness
requirement on C guarantees that the identity

ker ACCATC = ker A
T
C (33)

holds, a property which is needed in index one analyses of MNA [16,17,42,47,48].
The extension of these properties to non-passive circuits (more precisely, to circuits without the restriction of

definiteness on C) has been examined in [16]. We show below that such analysis can be also derived from the results of
Sections 2 and 3, by an appropriate assignment of colours to circuit devices. In our present context we will be led to a
two-colour setting, in which capacitors are painted in blue, and all the remaining devices in red.

Proposition 4. Consider a well-posed, connected circuit without capacitive coupling. Then the nodal capacitance matrix ACCATC
is nonsingular if and only if

(i) the circuit has no VILR-cutsets (i.e. there exists at least one capacitive tree), and
(ii) the sum of capacitance products in capacitive trees does not vanish.

The result above is an immediate consequence of Theorem 3. Indeed, since capacitors correspond to blue branches and
all the other devices define red branches, item (i) is just a restatement of item (i) in Theorem 3 because of the fact that there
are no green branches; for item (ii), notice that proper trees amount in this setting to capacitive trees. Remark also that
the absence of VILR-cutsets makes the capacitive subgraph connected, which is equivalent to the existence of at least one
capacitive tree. Proposition 8 in Section 5.5 extends this result to circuits with coupled capacitors.
The presence of VILR-cutsets rules out the existence of capacitive trees andmakesACCATC a singularmatrix. In this context,

the assessment of the identity depicted in (33) can be performed in terms of Theorem 4; to achieve this, let us define a
capacitive-normal tree (not to be confused with the C-normal trees of 5.3.1) as a tree which contains as many capacitors as
possible.

Proposition 5. Consider awell-posed, connected circuit without capacitive coupling. In the absence of capacitive trees, the corank
of the nodal capacitance matrix ACCATC equals the number of independent VILR-cutsets (or, equivalently, the identity (33) holds)
if and only if the sum of capacitance products in capacitive-normal trees does not vanish.

Proceeding as in Section 2, it is easy to check that capacitive-normal trees are defined by all possible combinations of
a capacitive forest coming from the capacitive subgraph and a tree of the VILR-cut minor. Hence, the sum of capacitance
products in capacitive-normal trees can be rewritten as a product (ranging over all connected components of the capacitive
subgraph) of sums of capacitance products in capacitive components, times a non-vanishing factor given by the number
of trees in the VILR-cut minor. This proves the equivalence of the statement in Proposition 5 with the non-degeneracy of
capacitive blocks referred to in [16], showing that the results involving nodal capacitancematrices in [16] can be also derived
as a two-colour version of the results discussed in Sections 2 and 3 above.
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5.4. Controlled sources

The results discussed above can be extended to circuits including certain types of controlled sources by means of
Theorem 5 (cf. Section 4.1).We illustrate this by addressing the analogues of Propositions 1 and 2 for problemswith voltage-
controlled current sources (VCCS’s),which are pervasive in active circuits because of its appearance inmost transistormodels
(see e.g. [17,46]).
The ANA model for circuits including VCCS’s can be written as

C(vc)v′c = ic (34a)

L(il)i′l = A
T
Le (34b)

0 = ARγ (ATRe)+ AC ic + ALil + AV iv + AIis(t)+ AJγj(ATRe, vc, vs(t)) (34c)

0 = ATCe− vc (34d)

0 = ATVe− vs(t). (34e)

Notice the presence in (34c) of the new term AJγj(ATRe, vc, vs(t))whichmodels the contribution of the VCCS’s. Thematrix AJ

describes the incidence of these devices,whereas ij = γj(vr , vc, vs(t)) = γj(ATRe, vc, vs(t)) stands for the controlling relation
of the sources; for later-detailed reasons, only resistors, capacitors and independent voltage sources will be allowed to act
as controlling devices. As discussed below, this is not a too restrictive condition regarding real applications in circuit theory.

5.4.1. DC-solvability
TheDC-solvability condition can be now characterized for circuitswith VCCS’s inwhich the controlling device is a resistor

using Theorem 5. Assign dark blue branches to resistors, light blue branches to VCCS’s and, as in Section 5.2, green branches
to voltage sources and inductors, and red branches to current sources and capacitors. Define an L-balanced tree as a tree
which contains all voltage sources and all inductors, neither independent current sources nor capacitors, andwhich satisfies
the following requirements involving resistors and controlled sources: first, it does not simultaneously include as twigs a
resistor and any of its controlled VCCS’s, nor two (or more) VCCS’s controlled by the same resistor; second, the removal of
all VCCS’s from the tree and the inclusion of their controlling resistors still define a tree. The b-weight of an L-balanced tree
is defined as the product of the conductances of its resistors, the control parameters of its VCCS’s, given by the non-zero
entries of K ≡ ∂γj/∂vr , and its signature as defined in item (c) of Section 4.1.
Theorem 5 then yields the following DC characterization, which can be derived in a straightforward manner once we

note that the block ARGATR in f
′(x∗) (cf. (27)) is now replaced by

ARGATR + AJKATR = (AR AJ)

(
G 0
K 0

)(
ATR
ATJ

)
(35)

Proposition 6. Assume that a given well-posed, connected circuit without resistive coupling includes VCCS’s, each one being
controlled by exactly one resistor. The DC-solvability condition then holds at an equilibrium point if and only if

(i) the circuit has neither IJC-cutsets nor VL-loops, and
(ii) the sum of b-weights in L-balanced trees does not vanish.

Notice that the absence of cutsets defined by red and/or light blue branches precludes the presence of all types of current
sources (namely, independent and controlled ones) in the cutsets of item (i).

5.4.2. Index characterization of ANA models of circuits with VCCS’s
Similarly, Theorem 5 makes it possible to include certain voltage-controlled current sources in the index analysis of

ANA models. A C-balanced tree is a tree which contains all voltage sources and all capacitors, neither independent current
sources nor inductors, and which satisfies the requirements involving resistors and VCCS’s detailed in Section 5.4.1 above.
The b-weight of these trees is defined exactly as in 5.4.1.

Proposition 7. Assume that a well-posed, connected circuit with nonsingular capacitance and inductance matrices C, L, and no
coupling among resistors, includes VCCS’s, each one being controlled by the voltage of one resistor and/or some capacitors and/or
some voltage sources. The ANA model (24) of these circuits has a tractability index of one if and only if

(i) the circuit has neither IJL-cutsets nor VC-loops, and
(ii) the sum of b-weights in C-balanced trees does not vanish.

This result follows again from Theorem 5 noting that the product ARGATR in A1 (cf. (30)) now takes on the expression
depicted in (35).
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It is worth emphasizing that the voltages of capacitors (and also those of voltage sources) may act as controlling variables
for the sources; this is due to the fact that the derivativeswith respect to vc are not involved in thematrixA1. This is important
in applications since in many transistor models the controlling variables are capacitor voltages (see for instance [17,46]).
Finally, remark that also the voltage of deviceswhich define loopswith capacitors and voltage sourcesmay act as controlling
variables without affecting the characterization above: this follows from the fact that Kirchhoff’s voltage law allows one
to write γj still in terms of ATRe, vc and vs(t), and shows that the requirements on the controlling devices are not unduly
restrictive (compare with Table III of [17]).

5.5. Coupling effects

Propositions 1 and 2 can also be extended to problems with resistive coupling along the lines defined by Theorem 6
in Section 4.2. This allows one, for instance, to include gyrators [13] in the above-discussed DC-solvability analysis and
index characterization. For the sake of brevity, however, we just illustrate the analysis of coupled problems by means of the
analogue of Proposition 4 in problems with coupled capacitors, arising often in real applications.
Assume that each capacitor may be coupled to at most another one; this means that the capacitance matrix has a block-

diagonal structure in which the blocks have the form(
Cii Cij
Cji Cjj

)
.

Here Cii and Cjj are the capacitances of the i-th and the j-th capacitors, whereas Cij and Cji are the coupling coefficients
between both capacitors. These parameters stand for the branch weights wii, wjj and the coefficients wij, wji of Section 4.2.
Recall from 5.3.2 that, in the characterization of nonsingular nodal capacitance matrices ACCATC , capacitors were painted
in blue and the remaining circuit devices in red, so that proper trees amount in this setting to capacitive trees. Define the
b-weight of a capacitive tree as the product of the determinants CiiCjj − CijCji of pairs of coupled capacitors in the tree times
the product of the capacitances of the twigs which are not coupled to other twig capacitors. Additionally, let us then define
a pair of capacitive trees as regular if their twigs satisfy the requirements displayed in Definition 4; the b-weight of a regular
capacitive tree pair is then defined exactly as in Section 4.2. The following result then follows from Theorem 6.

Proposition 8. Consider a well-posed, connected circuit in which every capacitor is coupled to at most another one. Then the
nodal capacitance matrix ACCATC is nonsingular if and only if

(i) the circuit has no VILR-cutsets (i.e. there exists at least one capacitive tree), and
(ii) the sum of the b-weights in capacitive trees and regular capacitive tree pairs does not vanish.
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