
Applied Mathematics Letters 22 (2009) 1150–1153

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Barriers in metric spaces
Andreas W.M. Dress a,∗, Vincent Moulton b, Andreas Spillner b, Taoyang Wu a
a CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, 200031 Shanghai, China
b School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK

a r t i c l e i n f o

Article history:
Received 16 October 2008
Accepted 16 October 2008

Keywords:
Metric space
Tight span
Cutpoint

a b s t r a c t

Defining a subsetB of a connected topological space T to be a barrier (in T ) ifB is connected
and its complement T −B is disconnected, we will investigate barriersB in the tight span

T (D) =
{
f ∈ RX : ∀x∈X f (x) = sup

y∈X

(
D(x, y)− f (y)

)}
of a metric D defined on a finite set X (endowed, as a subspace of RX , with the metric and
the topology induced by the `∞-norm) that are of the form

B = Bε(f ) := {g ∈ T (D) : ‖f − g‖∞ ≤ ε}

for some f ∈ T (D) and some ε ≥ 0. In particular, we will present some conditions on
f and ε which ensure that such a subset of T (D) is a barrier in T (D). More specifically,
we will show that Bε(f ) is a barrier in T (D) if there exists a bipartition (or split) of the
ε-support suppε(f ) := {x ∈ X : f (x) > ε} of f into two non-empty sets A and B such that
f (a) + f (b) ≤ ab + ε holds for all elements a ∈ A and b ∈ B while, conversely, whenever
Bε(f ) is a barrier in T (D), there exists a bipartition of suppε(f ) into two non-empty sets A
and B such that, at least, f (a)+ f (b) ≤ ab+ 2ε holds for all elements a ∈ A and b ∈ B.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Given a set X and a metric D : X × X → R : (x, y) 7→ xy defined on X , consider the tight span

T (D) := {f ∈ RX : f (x) = sup(xy− f (y) : y ∈ X) for all x ∈ X}

of D endowed, as a subspace of RX , with the metric and the topology induced by the `∞-norm; recall (cf. [1–3]) that

‖f − g‖∞ = sup(f (x)− g(x) : x ∈ X) = sup(g(x)− f (x) : x ∈ X) (1)

holds for all f , g ∈ T (D), and recall that, denoting the so-called Kuratowski map X → R : y 7→ xy associatedwith an element
x ∈ X by kx = kDx , one has kx ∈ T (D) and ‖f − kx‖∞ = f (x).
Next, given a map f ∈ T (D) and a non-negative number ε ∈ R≥0, let Bε(f ) := {g ∈ T (D) : ‖f − g‖∞ ≤ ε} denote the

(closed) ε-ball centered at f , put T(f ,ε)(D) := T (D) − Bε(f ), and denote the ε-support {x ∈ X : f (x) > ε} of f by suppε(f ).
Note that x ∈ suppε(f ) ⇐⇒ kx ∈ T(f ,ε)(D) holds for every x ∈ X and every f in T (D), and define f to be
– a topological ε-cutpoint of D ifBε(f ) is a barrier in T (D), i.e., if T(f ,ε)(D) is disconnected,
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– a virtual ε-cutpoint of D if there exists a bipartition of suppε(f ) into two non-empty disjoint subsets A and B such that
f (a)+ f (b) ≤ ab+ ε

holds for all elements a ∈ A and b ∈ B, and
– aweak virtual ε-cutpoint of D if there exists a bipartition of suppε(f ) into two non-empty disjoint subsets A and B such

that
f (a)+ f (b) ≤ ab+ 2ε

holds for all elements a ∈ A and b ∈ B.
Building on results obtained in [4–6] and motivated by related work (see e.g. [7]), we will show in this note that these

notions are, in fact, closely related to one another: A map f ∈ T (D) is a topological ε-cutpoint of D whenever it is a virtual
ε-cutpoint of Dwhile, conversely, if it is a topological ε-cutpoint of D, then it is, at least, a weak virtual ε-cutpoint.

2. Virtual ε-cutpoints are topological ε-cutpoints

With X,D, f , and ε as above, let Γ = Γ(f ,ε) = (suppε(f ), E(f ,ε)) denote the graph with vertex set suppε(f ) and edge set

E = E(f ,ε) :=
{
{a, b} ∈

(
suppε(f )
2

)
: f (a)+ f (b) > ab+ ε

}
so that f is a virtual ε-cutpoint if and only ifΓ is disconnected. Further, given a subset A of suppε(f ), letO(A) = Oεf (A) denote
the (necessarily open) subset O(A) = Oεf (A) := {g ∈ T(f ,ε)(D) : ∀x∈suppε(f )−Af (x) < g(x)} of the (also open) subset T(f ,ε)(D)
of T (D). Note that
– ka ∈ O(A) holds for every connected component A ∈ π0(Γ ), the set of connected components of Γ , and every a ∈ A as
f (x) < f (x)+ f (a)− ε ≤ xa = ka(x)

holds for all a, x ∈ suppε(f )with {a, x} 6∈ E(f ,ε) and, hence, for all a ∈ A and x ∈ suppε(f )− A if A is a connected component
of Γ ;
– O(A) ∩ O(B) = ∅ holds for any two subsets A, B of suppε(f )with A ∩ B = ∅ as g ∈ O(A) ∩ O(B) for some g ∈ T(f ,ε)(D)

would imply that g(x) exceeds f (x) for all x in suppε(f ) − A as well as in suppε(f ) − B and, hence, for all x ∈ suppε(f )
implying (cf. (1)) the contradiction

ε < ‖f − g‖∞ ≤ sup
(
f (x) : g(x) ≤ f (x)

)
≤ sup

(
f (x) : x 6∈ suppε(f )

)
≤ ε;

– if g ∈ T(f ,ε)(D) holds for some map g ∈ T (D), there must exist some a ∈ X with g(a) + ε < f (a) and, therefore,
with a ∈ suppε(f ) as well as g ∈ O

(
Γ (a)

)
(with Γ (a) denoting the connected component of Γ containing a) as

f (x) < f (x)+ f (a)− ε− g(a) ≤ xa− g(a) ≤ g(x)must hold for every x ∈ suppε(f )− Γ (a), i.e., T(f ,ε)(D) =
⋃
A∈π0(Γ )

O(A)
holds for every f and ε as above.
Together, these imply most of

Theorem 1. With X,D, f , and ε as above, the collection

O = O(f ,ε) :=
{
O(A) : A ∈ π0(Γ )

}
of open subsets of T(f ,ε)(D) forms a partition of T(f ,ε)(D) into a family of pairwise disjoint and non-empty subsets of T(f ,ε)(D),
each such subset O(A)

(
A ∈ π0(Γ )

)
containing all Kuratowski maps ka with a ∈ A.

More generally, given any partitionA of suppε(f ) into non-empty subsets for which f (a)+ f (a′) ≤ aa′ + ε or, equivalently,
{a, a′} 6∈ Γ(f ,ε) holds, for all a ∈ A and a′ ∈ A′, for any two distinct subsets A, A′ ∈ A, the corresponding collection
O(A) := {O(A) : A ∈ A} of open subsets of T(f ,ε)(D) forms a partition of T(f ,ε)(D) such that ka ∈ O(A) holds for all a ∈ A ∈ A.
In particular, there exists a canonical surjective mapping Πf = Π(f ,ε) from π0

(
T(f ,ε)(D)

)
, the set of connected components of

T(f ,ε)(D), into π0(Γ(f ,ε)) defined by associating, with each connected component C of T(f ,ε)(D), the unique connected component
A = Af (C) of Γ for which C ⊆ O(A) holds.

Proof. Clearly, the assertions not yet established above follow from the fact that
⋃
a∈A O

(
Γ (a)

)
= O(A) holds for any subset

A ∈ Awhich follows immediately from the fact that, as established already above, T(f ,ε)(D) is the disjoint union of its subsets
of the formO(A′)with A′ ∈ π0(Γ ) and that, by definition,O(U ′) ⊆ O(U) holds for allU,U ′ ⊆ suppε(f )withU ′ ⊆ U: Indeed,
this implies that

⋃
a∈A O

(
Γ (a)

)
⊆ O(A) as well as

⋃
b∈B O

(
Γ (b)

)
⊆ O(B) holds for any subset A ∈ A and its complement

B := suppε(f ) − A relative to suppε(f ) (as a ∈ A and b ∈ B implies Γ (a) ⊆ A and Γ (b) ⊆ B) and hence, in view of
O(A) ∩ O(B) = ∅, also O(A) ⊆ T(f ,ε)(D)− O(B) ⊆

⋃
x∈suppε(f )

O
(
Γ (x)

)
−
⋃
b∈B O

(
Γ (b)

)
=
⋃
a∈A O

(
Γ (a)

)
. �

Note that the converse of the second part of Theorem 1 does not hold in general. More precisely, Example 1 below presents
a metric space (X,D) together with a map f ∈ T (D) and a number ε > 0 such that T(f ,ε)(D) is disconnected while the
corresponding graph Γ(f ,ε) is connected (see Fig. 1).

Example 1. Put X := {a, b, a′, b′}, define D by ab = a′b′ := 1, aa′ = bb′ := 10 and ab′ = a′b := 11, put ε := 0.5, and
consider the map f on X with f (a) = f (a′) = f (b) = f (b′) := 5.5. Then f (x) + f (y) > xy + ε holds for all x, y ∈ X



1152 A.W.M. Dress et al. / Applied Mathematics Letters 22 (2009) 1150–1153

Fig. 1. The tight span T (D) = O1∪̇Bε(f )∪̇O2 for the space (X,D) considered in the example in the text.

except in the case {x, y} = {a, b′} and {x, y} = {a′, b} implying that Γ(f ,ε) is connected while T(f ,ε)(D) is the disjoint union
of the two open subsets O1 := {g ∈ T(f ,ε)(D) : g(a) < g(a′)} and O2 : {g ∈ T(f ,ε)(D) : g(a′) < g(a)}: Indeed, according
to [1, p. 335], g(a) + g(b′) = g(a′) + g(b) = 11 must hold for every g ∈ T (D) while, by definition of T (D), we must have
g(a)+ g(a′), g(b)+ g(b′) ≥ 10. So, g(a) = g(a′) can hold only in the case g(a) = g(a′) ∈ [5, 6] and g(b) = g(b′) ∈ [5, 6]
and, therefore, ‖g − f ‖ ≤ ε. So, T(f ,ε)(D) = O1 ∪̇ O2 must hold.

3. Topological ε-cutpoints are weak virtual ε-cutpoints

We now establish a partial converse of Theorem 1. To this end, we introduce the following notation.
With X,D, and f as above, we denote by Γ ∗ = Γ ∗(f ,ε) the graph with vertex set suppε(f ) (just as for Γ ) and edge set the

subset

E∗ = E∗(f ,ε) :=
{
{a, b} ∈

(
suppε(f )
2

)
: f (a)+ f (b) > ab+ 2ε

}
of E = E(f ,ε) (implying that f is aweak virtual ε-cutpoint if and only ifΓ ∗ is disconnected), we denote, for every a ∈ suppε(f ),
byΓ ∗(a) the unique connected component ofΓ ∗ that contains the vertex a, andwe denote, for every g ∈ T(f ,ε), by T(f ,ε)(D|g)
the unique connected component of T(f ,ε)(D) that contains the map g . Then, the following holds:

Theorem 2. There exists a canonical surjective mapping

Π∗f = Π
∗

(f ,ε) : π0(Γ
∗)→ π0

(
T(f ,ε)(D)

)
from the set π0(Γ ∗) of connected components of Γ ∗ onto π0

(
T(f ,ε)(D)

)
induced by associating, with every connected component

Γ ∗(a) ∈ suppε(f ), the connected component T(f ,ε)(D|ka) of T(f ,ε)(D), that is, there exists, for every g ∈ T(f ,ε), some a = ag ∈
suppε(f ) with T(f ,ε)(D|g) = T(f ,ε)(D|ka), and T(f ,ε)(D|ka) = T(f ,ε)(D|kb) holds for any two elements a, b in suppε(f ) for which
the connected components Γ ∗(a) and Γ ∗(b) of Γ ∗ coincide.
In particular, given a bipartition of suppε(f ) into two non-empty subsets A and B such that the corresponding two open subsets

O(f ,ε)(A) and O(f ,ε)(B) of T(f ,ε)(D) form a bipartition of T(f ,ε)(D), one has f (a)+ f (b) ≤ ab+ 2ε for all a ∈ A and b ∈ B.

Proof. To establish this theorem, we use the following well-known fact (cf. [1, Section 1.10]):
(Geod) T (D) is a geodesic space relative to the metric induced by the `∞-norm, i.e., there exists, for any two maps f1, f2 ∈
T (D), an isometry ϕ = ϕ(f1,f2) from the real interval [0, ‖f1 − f2‖∞] ⊂ R into T (D)with ϕ(0) = f1 and ϕ(‖f1 − f2‖∞) = f2.
Clearly, this implies that the following holds:

(i) Themetric interval

[f1, f2]D := {h ∈ T (D) : ‖f1 − h‖∞ + ‖h− f2‖∞ = ‖f1 − f2‖∞}

and the setsBε(f ) are connected subsets of T (D) for all f1, f2, f in T (D) and all ε ≥ 0.
(ii) Restricting Kuratowski’s mapping k : X → T (D) : a 7→ ka to the subset suppε(f ) of X induces a surjective mapping

k(f ,ε) : suppε(f )→ π0
(
T(f ,ε)(D)

)
because (cf. (1)) there exists, for every g ∈ T(f ,ε)(D), some a = ag ∈ X with

‖f − g‖∞ = f (a)− g(a)

and, hence, f (a) ≥ ‖f − g‖∞ > ε (i.e., a ∈ suppε(f )) as well as g ∈ [ka, f ]D in view of

‖ka − f ‖∞ = f (a) = g(a)+ ‖f − g‖∞ = ‖ka − g‖∞ + ‖f − g‖∞
which, in turn, implies [ka, g]D ⊆ T(f ,ε)(D) as h ∈ [ka, g]D ⊆ [ka, f ]D implies g ∈ [h, f ]D and, therefore ‖h − f ‖∞ =
‖h− g‖∞ + ‖g − f ‖∞ > ε as well as T(f ,ε)(D|g) = T(f ,ε)(D|ka).

(iii) And finally, given any two maps f1, f2 ∈ T(f ,ε)(D), the connected components T(f ,ε)(D|f1) and T(f ,ε)(D|f2) of T(f ,ε)(D)
containing the two maps f1, f2, respectively, must coincide whenever

‖f1 − f2‖∞ + 2ε < ‖f1 − f ‖∞ + ‖f − f2‖∞
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holds: Indeed, [f1, f2]D ⊆ T(f ,ε)(D)must hold in this case because h ∈ [f1, f2]D implies

2ε < ‖f1 − f ‖∞ + ‖f − f2‖∞ − ‖f1 − f2‖∞
= ‖f1 − f ‖∞ + ‖f − f2‖∞ − ‖f1 − h‖∞ − ‖h− f2‖∞
= (‖f1 − f ‖∞ − ‖f1 − h‖∞)+ (‖f − f2‖∞ − ‖h− f2‖∞)
≤ ‖h− f ‖∞ + ‖h− f ‖∞ = 2‖h− f ‖∞,

i.e., it implies h ∈ T(f ,ε)(D) for all h ∈ [f1, f2]D as claimed. In particular, T(f ,ε)(D|ka) = T(f ,ε)(D|kb) holds for any two
elements a, b in suppε(f ) with {a, b} ∈ E∗(f ,ε) (as this implies ‖ka − f ‖∞ + ‖f − kb‖∞ = f (a) + f (b) > ab + 2ε =
‖ka − kb‖∞ + 2ε) and, hence, for any two elements a, b in suppε(f ) for which the connected components Γ ∗(a) and
Γ ∗(b) of Γ ∗ containing a and b, respectively, coincide.

Clearly this establishes Theorem 2. �

Remark. Note that the factor 2 in the definition of Γ ∗ is optimal in the sense that there are topological ε-cutpoints f such
that the graph

Γ k := (suppε(f ), E
k) :=

{
{a, b} ∈

(
suppε(f )
2

)
: f (a)+ f (b) > ab+ kε

}
is connected for any k ∈ [1, 2): Indeed, for the space (X,D) considered in Example 1, f is a topological ε-cutpoint while the
graph Γ k is connected.

Our results suggest considering the following commutative diagram of canonical surjective maps:

suppε(f )
a7→Γ ∗(a)

xxqqqqqqqqqq
a7→Γ (a)

&&LLLLLLLLLL

π0(Γ
∗) //

Π∗f &&LLLLLLLLLL π0(Γ )

π0
(
T(f ,ε)(D)

) Πf

99rrrrrrrrrr

Clearly, our results imply:

Corollary 3.1. Continuing with the notation introduced above, the mapsΠf andΠ∗f are mutually inverse bijections if and only
if the canonical surjective map from π0(Γ ∗) onto π0(Γ ) that associates with any connected component C of Γ ∗ the unique
connected component of Γ that contains C is a bijection.

Note finally that in the particular case ε := 0, we clearly have Γ = Γ ∗ and, hence, recover a result from [6]: Πf is a
bijection from π0(T (D)− {f }) onto the set of connected components of the graph

Γf :=

(
supp(f ),

{
{a, b} ∈

(
supp(f )
2

)
: f (a)+ f (b) > ab

})
.

Acknowledgements

AD, VM, and AS thank the Warwick Institute for Advanced Study in Warwickshire, UK, and WT the Max Planck Institute
for Mathematics in the Sciences in Leipzig, Germany, for their hospitality. AS and VM also acknowledge support by the
Engineering and Physical Sciences Research Council (grant EP/D068800/1), and AD andWT, support by the Chinese Academy
of Sciences and the German BMBF.

References

[1] A. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric
spaces, Adv. Math. 53 (1984) 321–402.

[2] A. Dress, The tight span ofmetric spaces, in: Phylogenetic Combinatorics, Shaker Publishing Company, Greifswald, Germany, ISBN: 978-3-8322-7481-8,
2008, pp. 111–181.

[3] A. Dress, V. Moulton, W. Terhalle, T-Theory: An overview, European J. Combin. 17 (1996) 161–175.
[4] A. Dress, K. Huber, J. Koolen, V. Moulton, An algorithm for computing virtual cut points in finite metric spaces, in: COCOA 2007, in: Lecture Notes in
Computer Science, vol. 4616, 2007, pp. 4–10.

[5] A. Dress, K. Huber, J. Koolen, V. Moulton, Compatible decompositions and block realizations of finite metric spaces, European J. Combin. 29 (2008)
1617–1633.

[6] A. Dress, K. Huber, J. Koolen, V. Moulton, Cut points in metric spaces, Appl. Math. Lett. 21 (2008) 545–548.
[7] A. Dress, V. Moulton, T. Wu, A topological approach to tree (re-)construction (submitted for publication).


	Barriers in metric spaces
	Introduction
	Virtual  Ε-cutpoints are topological  Ε-cutpoints
	Topological  Ε-cutpoints are weak virtual  Ε-cutpoints
	Acknowledgements
	References


