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With a central simple algebra, A4, we can associate a quadratic form,
namely the trace form Trd ,(x?). This form has been studied by Rowen
[19], Formanek [5], Lewis [11], and Kersten [7]. Its Hasse invariant has
been computed by Saltman (unpublished), Serre [23, annexe], Lewis and
Morales [13], and Tignol [25].

In this paper, we consider a central simple algebra 4 endowed with an
involution o. With (A4, o) we associate the quadratic form 7, defined by
T, (x) = Trd ,(o(x)x), which has values in the subfield of the center of 4
fixed by the involution. This form has been introduced by Weil [26]. It has
been used in [14, 16] to define the signature of the involution o. We also
consider the restriction 7} of T, to the subspace of o-invariant elements
of A. The invariants of 7, and 7 are invariants of the algebra with
involution. The main purpose of this paper is to study the determinant and
the Hasse invariant of these quadratic forms.

In Section 2, we assume that the involution o is of the first kind. Then,
we have a notion of determinant, due to Jacobson [6] and Knus, Parimala,
and Sridharan [10]. We give here a new definition of the determinant of o,
in terms of the trace form 7,". We then compute the Hasse invariant of the
trace form 7, in terms of the degree of the algebra, its class in the Brauer
group, and the determinant of the involution. This last result has also been
obtained by Lewis [12].

If the involution is of the second kind, we first prove that the determi-
nant and the Hasse invariant of the trace form 7, are both trivial. Then,
we see that the Hasse invariant of the trace form 7, defines a non-trivial
invariant of (A, o), which we call determinant class mod 2. It is related to
the class in the Brauer group of the discriminant algebra of (A, o) defined
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in [8] by Knus, Merkurjev, Rost, and Tignol. Finally, we define a cohomo-
logical invariant of (A4, o), with values in the quotient of H?%(k, ,u,) by
the action of u,, where , w, is a twisted form of the group w,, which we
call the determinant class of (A4, o), and we prove that the determinant
class mod 2 of (A, o) is the reduction modulo 2 of this invariant. The
formula that gives the Hasse invariant of the form Trd ,(x?) can be viewed
as a particular case of this result.

In the last section, as an application of the previous results, we construct
an indecomposable involution of the second kind on a biquaternion
division algebra.

This work is part of my doctoral thesis, and | thank my advisor E. Bayer.
I am also very grateful to R. Parimala and J.-P. Tignol for useful conversa-
tions.

1. NOTATIONS

Let k£ be a field of characteristic different from 2 and let n be an
integer. If A4 is a k-algebra, we denote by Z(A4) its center. We recall that a
quadratic étale extension of k is either k X k or a separable field exten-
sion of degree 2 of k.

We consider a k-algebra A, such that either A4 is a central simple
algebra of degree n over k (case (i), or A is semi-simple, its center Z(A)
is a quadratic étale extension of k and dim,(A4) = 2n? (case (ii)).

An involution on A is an anti-automorphism of order 2 of the k-algebra
A. We suppose here that A4 is endowed with an involution o. We assume
moreover that if Z(A) is not k, then o acts on Z(A) as the only
non-trivial k-automorphism of Z(A), which we will denote by . In case (i),
the involution acts trivially on Z(A4) and is said to be of the first kind,
while in case (ii) it is said to be of the second kind.

In case (ii), if Z(A) = k X k, then there exists a central simple algebra
B of degree n over k such that 4 = B X B° where B° is the opposite
algebra of B, and the involution is given by o(x, y) = (y, x). Otherwise,
Z(A) is a quadratic field extension K of k, and A4 a central simple algebra
of degree n over K.

We let A*={a€A,0(a)=a} and A ={a € A, 0(a) = —a}. They
are supplementary k-subvector spaces of A.

Trace Forms

If C is a central simple algebra, we denote by Trd. the reduced trace on
C. Let us now define a trace 7, on A. If A is a central simple algebra,
then 7, is the reduced trace Trd,. Otherwise, there exists a central simple
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algebra B over k such that 4 =B XxB° and we define T,(x,y) =
I1Trd,(x + y).

In this paper, we are interested in studying the quadratic form 7,
defined by

T,(x)=T,(o(x)x) €k, foranyxeA.

We also consider the restrictions of 7, to A" and A~, which are
respectively denoted by 7,7 and T, . It is easy to check that 4™ and A~
are orthogonal for the trace form. Hence, we have

Remarks. (i) If the center of A is a quadratic field extension K of %,
then 7, has values in K. But since o(Trd (o (x)x)) = Trd (o (x)x), T,
actually has values in k.

(i) If 4A=BXxB° then T; is isometric to the quadratic form
Trdz(x?), which has been studied by Rowen [19], Formanek [5], Serre [23,
annexe], Lewis and Morales [13], and Tignol [25].

Involutions on Central Simple Algebras

We recall here a few well-known facts about central simple algebras and
involutions (see for instance [20] or [24]).

First of all, by Wedderburn’s theorem, a central simple algebra A4 is
isomorphic to a matrix algebra A = M,(D), with coefficients in a division
algebra D, with Z(D) = Z(A). Moreover, it is known that if A is endowed
with an involution, then there exists an involution = over D, of the same
kind. Once 7 is fixed, the classification of involutions on A corresponds to
the classification of hermitian forms up to similarity.

More precisely, if the involutions are of the first kind, then for any o on
A, there exists a 8-hermitian form H, : D" X D" — (D, ), where § = +1,
such that o is the adjoint involution with respect to H_, i.e., for any
x,y € D" and for any f € A, we have H_ (f(x), y) = H,(x, a(f)(y)). This
form H_ is uniquely determined, up to a scalar factor A € k*.

Let us assume now that the involutions are of the second kind. Then for
any o on A, there exists a o-hermitian form H_: D" X D" — (D, 1), such
that o is the adjoint involution with respect to H_, and where § is an
element of Z(A4) such that ¢(8)8 = 1. By Hilbert’s theorem 90, this form
H_ may actually be chosen to be a 1-hermitian form, in which case it is
uniquely determined up to a scalar factor A € k*.

If A is the split algebra 4 = End, (), where V' is an n-dimensional
k-vector space, this means that any involution of the first kind on A4 is the
adjoint involution o, with respect to some bilinear form b: V' X V — k,



302 ANNE QUEGUINER

which is either symmetric or skew-symmetric. If B is the matrix of b in a
fixed basis of V, then o, acts on M € M, (k) = End, (V') by o,(M) =
B 'M'B, where M' denotes the transposed matrix of M. By using a well
chosen basis of 17, one may always assume that B is a diagonal matrix if b
is symmetric, and B = J, where J is the matrix consisting of m diagonal
blocs all equal to ( °, %) if b is skew-symmetric.

Now if A = End(}'), where V' is an n-dimensional K-vector space, any
involution of the second kind on A is the adjoint involution with respect to
a 1-hermitian form h: V' XV — K. If B is a matrix of A, o, acts on
M € M,(K) by (M) = B"*M'B, where if M is the matrix (m,;), M'
denotes the matrix (mﬁ). We will usually choose B in diagonal form, in
which case its coefficients lie in k.

Algebraic Groups

The groups O(q), Spin(q), and GO(q) are respectively the orthogonal
group, the spinor group, and the group of similarities of the quadratic form
q. We denote by Sp, the symplectic group of order n, and by GSp, the
corresponding group of similarities. For any algebraic group G, PG is the
corresponding adjoint group, and G* the connected component of the
identity in G.

Galois Cohomology

Let k, be a separable closure of k. We denote by I, the Galois group
Gal(k,/k). If G is an algebraic group defined over k, and if i = 0 or 1,
H'(k,G) is the cohomology set H'(T,, G(k,)). For any T,-module C, and
for any integer i, we denote by H'(k, C) the cohomology group H'(T,, C).
In particular, if C = u,, we recall that H'(k, u,) is isomorphic to k* /k*?
and H?(k, u,) is isomorphic to the 2-part of the Brauer group of k,
Br,(k).

Quadratic and Hermitian Forms

Let ¢ be an r-dimensional quadratic form over &, and let {a,,...,a,) be
any diagonalization of ¢. The determinant of ¢ is d(g) =a, - a, €
k* /k*?. The Hasse invariant of ¢ is defined by w,(¢) = X, _, ;. (a;, a))
€ H%(k, u,), where (a,, a]-) denotes the cup-product of the square classes
of a, and a;. Both definitions are independent of the choice of a diagonal-
ization of ¢ [20]. Moreover, using the formulas given in [20, Chap. II,
11.13], one can easily check the following:
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LEMMA 1. The Hasse invariant of the direct sum of two quadratic forms q,
and q, is given by:

) wy(q, ® q,) = wy(q,) + wy(q,) + (d(q,), d(q,)). Moreover if we
denote by r the dimension of q, then for any integer k and any A € k* we
have:

(i) wykq) = kw,(q) + (k(k — 1) /2)(—1,d(q)), where kq is the di-
rect sum of k copies of q;

(i) w,({A) ® @) =w,(@)+ (r(r — 1) /2)(=1, M)+ (r — 1A, d(q));
V) w,({L, ) ® q) = (r(r — D /2)(—1, A) + (— A, d(g)).

If g is defined on the k-vector space V, and if L/k is any field
extension, we denote by g, the extension of g to the field L, that is, the
form defined on V' ®, L by q,(v ® A) = A%q(v).

For any elements a, b € k* /k*?, we denote by {{a, b)) the Pfister form
a, b)) =<1, —a) ® {1, —b).

Let now % be a hermitian form with values in (K, ~), and let us consider
any diagonalization <ay, ..., a,, of h. Then the coefficients 4, lie in k, and
the determinant of # is d(h) = a; - a, € k* /Ny ,,(K*).

2. INVOLUTIONS OF THE FIRST KIND

We assume in this section that we are in case (i), which means that A is
a central simple algebra over k of degree n, endowed with an involution of
the first kind o. We also assume that » is even, say n = 2m.

Let F be a splitting field of A4, and let b be a bilinear form associated
with the involution o ® Id defined on the split algebra A ®, F. We recall
that the involution o is said to be of orthogonal type if b is symmetric and
of symplectic type if b is skew-symmetric [20, 24]. This definition does not
depend upon the choice of a splitting field F.

In the first part of this section, we are going to give some examples in
which the trace forms and their invariants can be explicitly computed, and
which will be used later.

2.1. Examples

2.1.1. Split Case

Let us consider first the case when 4 = M, (k). Let o, be the adjoint
involution with respect to the bilinear form b. It is easy to check that its
trace form is 7, =b ® b [14, Corollary 1]. Hence we have d(7, ) = 1.
Moreover, if b is symmetric, we have w,(T, ) = (—=1,d(b)). In partlcular
if ¢ denotes the transposition, its trace form is given by T, = n?(1).
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If b is symmetric, we can also easily compute the trace form T;b. Let B
be a diagonal matrix of b, and let us call b,,..., b, its coefficients. The
involution is given by o,(M) =B 'M'B, for any M € M, (k). Hence
M, (k)" consists of the matrices B~'S, where S is any symmetric matrix
with coefficients in k. If (e;;); _; ; ., denotes the canonical basis of M, (k),
then (B~%e¢;,);.;_, U (B '(e; +¢;)) ., ;, is abasis of M,(k)*. More-
over, one can check that this basis is orthogonal for the trace form, and we
get that

T, =(br?,....b;%,2b; by 2b b5t .. 26,0 b, )
Hence the determinant of T, is 2""~Y/2(byt -+ by H)" ™1 = 2"d(b) €
k* /k*2. In particular, for the transposition, we have that
T,;'=n{l) ® (n(n — 1) /2)<2).
Moreover, using the same method, we get

17 = (n(n - 1)/2)(2).

2.1.2. Quaternion Algebras

Let O be a quaternion algebra over k. We denote by 7: O — Q its
canonical involution. It is known that 7 is the only involution of symplectic
type on Q. Now, if ¢ is an involution of orthogonal type on Q, there exists
an element i € Q such that 7(i) = —i and such that o is given by
o(x) =i"'7(x)i. Let j be an element in Q such that ij = —ji, and set
i?=a and j?>=b. Then (1,i,j,ij) is a basis of Q over k, which is
orthogonal for the trace forms, and one can easily check

T.= 2y ® (a,b)), TFr=<2), T =< —2a,—2b,2ab);
T,=(2) ® ((a, =b)), Tr=<2,2b,—2ab), T;=<{—2a).

It is now easy to check that the trace forms 7, and 7, both have trivial
determinant, and that their Hasse invariants are given by

{Wz(TT) =(=1,-1) + (a,b),
wo(T,)) = (-1, —a) + (a,b).

2.1.3. Case of the Algebra M, (Q)

Let us consider now the involutions 7' =t ® 7 and ¢’ =t ® ¢ on the
algebra M, (k) ® Q. The trace forms are given by

T. =T ® T, =m?{2, —2a, —2b,2ab),
T, =T, ®T,=m?2,—2a,2b, —2ab).
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Hence again they both have trivial determinant, and we have w,(T..) =
mw,(T.) = m(=1, —1) + m(a,b), and wy(T,) = mw,(T,) =m(—1, —a)
+ m(a, b).

Remark. These formulas also hold if Q is split. Hence, let us assume
now a = b = 1. Since 7' is of symplectic type, and since all involutions of
symplectic type on M, (k) are isomorphic, if b is any skew-symmetric
bilinear form, the Hasse invariant of 7, is given by

wyo(T, ) =m(—1,-1) + m(1,1) = m(-1, —1).
Moreover, the form T;b can also be computed this way. Indeed,
+ - ,
(M, (k) ® Q) =M, (k) & Q"o M, (k) & 0.
Hence we have
I, =TT o1 ®T

m(m — 1) m(m — 1)
m{l) + T<2> ® (2) @ T<2> ®(—2,-2,2).

In particular, its determinant is equal to 2™.

2.2. Determinant of an Involution

The determinant of involutions of the first kind was first introduced by
Jacobson in [6]. Later, Knus, Parimala, and Sridharan gave a more direct
definition [10]. We can also define it in terms of the trace forms. Precisely,
we give the following definition:

DerINITION 1. The determinant of o is d(o) = 2"d(T)).

Let us assume that 4 = M, (k), and that o is the adjoint involution o,
with respect to the bilinear form b. We then have the following result:

PRoPOSITION 1. The determinant of the involution o, is d(o,) = 1ifb is
skew-symmetric, and d(o,) = d(b) if b is symmetric.

Proof. We have computed the determinant of T+ in the previous
section. It is given by d(7;)) = 2" if b is skew- symmetrlc (cf. Remark
2.1.3), and d(T)) = 2"d(b) if b is symmetric (cf. Subsection 2.1.1). This
proves the proposmon

Remarks. (i) The form b is only defined up to a scalar factor A € k*.
But as n is even, its determinant d(b) does not depend upon the choice
of b.

(i) (See also [7, 11].) Let F be a generic splitting field of the
algebra A. One may take for F the function field of the Severi-Brauer
variety of A. It is easy to check that the trace form of the involution
o ® Id defined on the split algebra 4 ® F = M,(F) is simply the exten-
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sion to the field F of the trace form 7. We also have T,y = (T.)).
Hence the monomorphism : k* /k*? — F* /F*?> maps d(T,)) to d(T} 4
This implies

d(o® Id) = y(d(o)).

Since i is injective, this means we can extend scalars to F to compute the
determinant of o.

(iii) The definition we gave for the determinant of an involution
coincides with the usual one. Indeed, because of the previous remark, it is
enough to prove it in the split case, and this was done in Proposition 1.
One though has to be aware that what we call the determinant here,
following [8], is called the discriminant in [9, 10].

(iv) We have also seen in Subsection 2.1.1 that in the split case,
d(T, ) = 1. Again by extending scalars to a generic splitting field of the
algebra A, it is easy to check that for any (A4, o), we have d(T,) = 1.
Hence, since 7, = T,”® T, , we actually have

d(T;) = d(T;) = 2"d().

2.3. Hasse Invariant of the Trace Form
In this section, we compute the Hasse invariant of the trace form 7.

THEOREM 1 (see also [12]). The Hasse invariant of T, is given by

m(—1,—-1) + m[ A] if o is of symplectic type,

wy(T,) = (-1,d(a)) +m[A] if o is of orthogonal type.

Remarks. (i) Again let F be a generic splitting field of the algebra A.
It is known that the kernel of the morphism Br(k) — Br(F) is generated
by [ 4] [2, 18]. Since A is endowed with an involution of the first kind, its
class in Br(k) is of order 2. Hence, if we denote by ¥ the morphism
Br,(k) — Br,(F), we have Ker ¥ = {0,[ A]}.

We have already seen that 7, ;4 = (T, ). Hence W(w,(T,)) is equal to
w, (T, &4)- Since the algebra 4 ®, F is split, the Hasse invariant w,(7, ,,4)
has been computed in Subsections 2.1.1 and 2.1.3. We have

m(—1, 1) if o is of symplectic type,

wo(T,e1a) = {(_1,03(0)) if o is of orthogonal type.

From all this, we deduce

. m(—1,-1) + g[A] if o is of symplectic type,
walT,) = (-1,d(a)) + e[ 4] if o is orthogonal type,
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where ¢ € {0, 1}. Hence we only have to prove that ¢ is equal to 1 when m
is odd and 0 when m is even.

(i) The Hasse invariant of the restricted trace forms 7,7 and 7,
can also be computed. We get the following formulas [17]:

m(mz— 1) (—1,-1) + m(mz— 1) [A]
o if o is of symplectic type,
walT,) = m(m + 1)
(m = )(=2,d(0)) + [ 4]
if o is of orthogonal type;
+1 +1
w(_l, _1) + w[p\]
T = if o is of symplectic type,
wo(To) = m(m — 1)
(m=1)(-2.d(0)) + ————[A]
if o is of orthogonal type.

Proof of Theorem 1. The proof we give here is based on Galois
cohomology, using a method introduced by Serre in [22]. Very recently,
Lewis gave another proof, using the formula that gives the Hasse invariant
of the form Trd(x?) [12].

Cohomological Definition of the Hasse Invariant. Let us first recall a few
basic facts on Galois cohomology and quadratic forms (see for instance
[23D.

Let g, be an n-dimensional quadratic form over k. Then, H(k, O(q,))
classifies isometry classes of n-dimensional quadratic forms g over k.

From the exact sequence 1 — O*(g,) = O(q,) 4 1, = 1, we deduce a
map d*: H'(k,0(q,)) — k*/k*2. It maps the isometry class of a quadratic
form g to the class of d(q)/d(q,) in k*/k**. Moreover, the set
H'(k,07%(q,)) is in bijection with Ker d*. Hence, H*(k, 0" (q,)) classifies
isometry classes of n-dimensional quadratic forms over k with the same
determinant as g,.

Now, from the exact sequence 1 — u, = Spin(g,) = 0% (q,) — 1, we
deduce a connecting map §,: H'(k,0%(q,)) — Br,(k). The image under
5, of the isometry class of g is w,(g) — w,(g,)
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Classification of Algebras with Involution (A, o). Let g, be an n-dimen-
sional quadratic form over k. The following proposition holds:

PROPOSITION 2.  We have one-to-one correspondences between

(i) H(k, PSp,) and isomorphism classes of degree n central simple
algebras endowed with an involution of symplectic type;

(i) Hk, PGO(q,)) and isomorphism classes of degree n central sim-
ple algebras endowed with an involution of orthogonal type.

Before proving this proposition, we establish a lemma. Let 4 be a
central simple algebra of degree n over k. The algebra A splits over k..
Let ¢ be an isomorphism ¢: M, (k) - A ®, k,. Via this isomorphism,
the involution o ® Id defined on the algebra 4 ®, k, corresponds to an
involution o, on the algebra M,(k), which is the adjoint involution with
respect to some bilinear form b. The form b is symmetric if o is of
orthogonal type, and skew-symmetric if o is of symplectic type.

For any matrix P, we denote by Int(P) the associated inner automor-
phism, that is, Int(P)(M) = PMP~'. We then have the following:

LEMMA 2. Let G, be the group of similarities of the bilinear form b. Then
the group of automorphisms of the algebra with involution (M (k,), ;) is
{Int(P), P € G,} = PG, .

Proof of Lemma 2. Let B be a matrix of b, and let f be an automor-
phism of (M, (k,), o). There exists a matrix P € M,(k,) such that f =
Int(P). The fact that o, o f = fo o, implies that the matrices BP~* and
P'B define the same inner automorphism, and hence are proportional.
This means that P is the matrix of a similarity for b, and this proves the
lemma.

Proof of Proposition 2. The proof of Proposition 2 is now easy, follow-
ing [21, Chap. X]. First, one can show that the application c: y eI, —»
c(y) € PG, determined by Int(c(y)) = ¢~ o %, is a cocycle. Moreover, if
we start with another isomorphism ¢': M, (k,) - A ®, k,, the cocycle we
obtain is cohomologically equivalent to c. Finally, one can prove that the
isomorphism classes of algebras with involutions defined on k that become
isomorphic to (M,(k,), o) when we extend scalars to k, are in bijection
with H'(k, PG,).

If b is skew-symmetric, then PG, = PGSp, = PSp,,, and this proves part
(i) of Proposition 2. Now if b is symmetric, then PG, = PGO(b), and since
all n-dimensional quadratic forms are isomorphic over k_, this proves part

(ii).
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We will also use the following result:

PRoPOSITION 3. The morphism Int: PG, — O™ (T, ) induces a morphism
Int*: H'(k, PG,) — H'(k,0™(T,)) which maps the isomorphism class
[A, o] to the isometry class of T, .

Proof of Proposition 3. Let P be a matrix in G,, and let A(P) be its
similarity factor. We have P'‘BP = A(P)B. Hence, for any M € M, (k),

T, (Int(P)(M)) = Tr(B~Y(P~Y)' M'P'BPMP~?)
= Tr(P~*B~Y(P~Y)'M 'P'BPM |
= Tr(X(P) "B 'MA(P)BM) = T,(M).

If A is a central simple algebra over k, endowed with an involution of
the first kind o, then it is known that 4 ® A is isomorphic to End,(A),
the isomorphism being given by (¢ ® b)(z) = azo(b), for any a,b and
z € A. In particular, M, (k) ® M, (k) = End, (M, (k)), and modulo this
identification, the automorphism Int(P) corresponds to the tensor product
P ® (P~1)". Hence, the determinant of Int(P) is 1, and Int is a morphism
PG, - O(T,).

Now, if ¢ is the cocycle representing [ A4, o] introduced in the proof of
Proposition 2, then for any y € I}, Int(c(y)) = ¢!« %. Since o is an
isomorphism of algebras with involution (M, (k,), 0,) = (4 ®, k,, o ® Id),
it is also an isometry (M,(k), T, ) — (A4 ® k,(T,), ). Indeed for any
x € A, we have '

T,(¢(x ® 1)) = Tr(oy(d(x ® 1)) ¢(x ® 1))
= TH($((o ® 1d)(x ® 1)) d(x ® 1))
=Tr(¢p(o(x)x® 1)) =Trd,(o(x)x) =T, (x).

Hence the cocycle Int*(c): y — Int(c(y)) represents the isometry class of
the form 7, in H(k, O*(T,,)). This completes the proof of Proposition 3.

Hence, we now have the diagram
PG(T
1 — p, — Spin(TUb) — O*(Tgb) — 1.

To complete the proof of Theorem 1, we have to distinguish the
symplectic and orthogonal cases. Let us assume first that o is of symplec-



310 ANNE QUEGUINER

tic type. In that case, b is skew-symmetric and PG, = PSp,. Since we have
a morphism PSp, —» O'(T, ), we also have a morphism between the
corresponding simply connected covers Sp, — Spin(T,, ) [4, Proposition
2.24(i), p. 262]. Hence we have the diagram

1— p, —> Sp, —> PSp, —1

A

1— p, — Spin(T,) — O*(T, ) —> 1.
This diagram induces

HYk, PSp,) 3 H(k, uy)

l.m* l
HY(k, 0% (T, ) 5 H(k, ).
Moreover, we can check that the map A, maps the isomorphism class of
the algebra with involution (A, o) to [ A] € Br,(k). Indeed, we have the

commutative diagram

1— p, — Sp, — PSp, — 1

b

1 1, SL PGL

n n

which induces

A
Hk, PSp,) —> H?(k, u,)

l l

H(k, PGL,) > Hk, u,).

It is known that A maps the isomorphism class of a degree n algebra A to
its class [ 4] € Br, (k) (see for instance [21]). Hence, the isomorphism class
[A, o] € H'(k, PSp,) is mapped to [ A] € Br,(k) under A,.

Moreover, we proved in Proposition 3 that the image of [ 4, o] under
Int* is [T, ]. Hence, we have 8,((T,]) = 7([A]). From this, and from the
cohomological definition of the Hasse invariant, we deduce

wo(T,) = Wz(Ta,,) + 62([Tu']) =m(—1,-1) + Tf([A])
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Replacing k, if necessary, by the rational function field k(¢,, ¢,), we may
assume that there exists a division quaternion algebra Q over k. Since 7,
is @ morphism u, — w,, it can only be zero or the identity. But the
computation we made in Subsection 2.1.3 for the Hasse invariant of the
trace form of the involution 7’ = ¢ ® 7 on the algebra M, (k) ® Q proves
that 7, is zero if m is even and the identity if m is odd. Hence
7,[AD = m[ A] and this proves the result in the symplectic case.

Since the group PGO(q,) is not connected, the orthogonal case is
slightly more complicated. We actually have to work with a fixed determi-
nant. Precisely, we first prove the following:

PROPOSITION 4.  Isomorphism classes of degree n central simple algebras
endowed with an involution of orthogonal type and of determinant d(q,) are
in one-to-one correspondence with H'(k, PGO*(q,)).

Proof of Proposition 4. To prove this proposition, we first construct an
exact sequence. Over k, the groups PO and PGO are isomorphic. Hence,
we also have PO*= PGO™. Since n is even, the determinant O(gq,) — u,
maps both Id and —Id to 1. So, we have the diagram

1 1

1 — oy — pp —1

1 — 07(q) — O(gyo) = My —> 1

1 — PO"(q,) — PO(qy) —> p, — 1,

1 1 1
from which we deduce the exact sequence
1 - PGO™" (q,) = PGO(q,) 5 m, = 1.
Over k, this sequence induces
HY(k, PGO* (45)) ~ H(k, PGO(45)) > k* /2.

We proved in Proposition 2 that H'(k, PGO(q,)) is in one-to-one
correspondence with isomorphism classes of degree n central simple
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algebras endowed with an involution of orthogonal type. Since the set
H(k, PGO*(q,)) is in bijection with the kernel of p*, the next lemma
now clearly implies Proposition 4.

LEMMA 3. The map p* maps the isomorphism class [ A, o ] to the quotient
d(o)/d(q,) € k*/k*2.

Let us denote by o, the adjoint involution with respect to g,. In order
to prove Lemma 3, we first prove the following one.

LEMMA 4. There exists a morphism Int,: PGO(q,) —> O(T.}) such that
the induced morphism Int* @ H(k, PGO(qO)) — H(k, O(T*)) maps
[A4, o] to the isometry class of T, .

Proof of Lemma 4. The proof of this lemma is analogous to the proof
of Proposition 3. We have already seen that for any P € PGO(q,), Int(P)
is an isometry for 7, . Let Int,(P) be its restriction to M, It is an
isometry for 7.

Let ¢: (M, (k ), 0y) = (A ®, k,, o ® Id) be an isomorphism of algebras
with involutions. Such a ¢ exists since all orthogonal involutions of M, (k)
are isomorphic. The cocycle ¢ € Z*(k, PGO(q,)) determined by Int(c(y))
= ¢ 1% represents [A4, o ].

Moreover, we have proved that ¢ is an isometry between 7, and (T,,), .
Hence, the induced morphism ¢*: M (k)" —> A" ®, k, is an isometry
between 7 and (T*)k From this, we deduce that the cocycle Int* (¢):
v~ Int (c(y)) = ¢ 1o%" represents the isometry class of T;'.

Proof of Lemma 3. Since we have a morphism PGO(q,) — O(T}}), we
have the commutative diagram

1 — PGO*(q,) — PGO(q,) KN H, — 1

R

1— OY(T}) — OT) 5 p, — 1L

Moreover, it is easy to check that v, is non-trivial. Indeed, let B be a
diagonal matrix representing g, in a fixed basis, and let 4 be the diagonal
matrix with coefficients (1,...,1, —1). The matrix of Int, (A) in the basis
(Bei)oiza U (B ey + €)oo, of M(k)" can be easily com-
puted, and we get d(Int,(A)) = —1. Since v, is a morphism w, — wu,,
this proves that v, is the identity.
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We now have the diagram

H'k, PGO(q,) 2> HYk, w,)

J{Inti lld

HY(k, 0T} ) 5 H'(k, ).

It is known that d* maps [T,/] to d(T,}) /d(T}}). Using the definition of the
determinant of an involution given in Subsection 2.2, we get

p*([A.a]) =d(o)/d(oy).
This completes the proof of Lemma 3.

Let us now go back to the proof of Theorem 1. For any & € k* /k*?, we
let g5 be the n-dimensional quadratic form ¢§ =<1, —1,..., 1,
—1,1, —&). We call oy the associated involution on M, (k) or M, (k). Its
determinant is (—1)"s. We will simply denote by g, the form g2, and by
o, the corresponding involution. From Proposition 4, we deduce that
H(k, PGO*(q¢)) classifies isomorphism classes of algebras endowed with
an involution of orthogonal type and of determinant (—1)"e.

We now use the following lemma:

LEMMA 5. We have the commutative diagram

1— p, —> 0°(g5) —> PGO*(gf) — 1

L e

1— p, — Spin(T,;) — O°(T,,)) —> 1L

Lemma us assume for the moment that this lemma is proved. We then
obtain the diagram

H(k, PGO*(q0)) =5 H(k, ,)

[ K

HY(k, O (T,) > HA(k, y).

As in the symplectic case, we get §,({7,]) = 75([A]. Hence we have
wT,) = wyT,.) + 8,(T, D) = (—1,d(0)) + 75([A]. We now conclude
as in the symplectic case.

Replacing k, if necessary, by the rational function field k(z,, ¢,), we may
assume that there exists a division quaternion algebra over k. Since 7, is a
morphism w, — u,, it can only be zero or the identity. But in subsection
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2.1.3, we computed the Hasse invariant of the trace form of the involution
o' =t ® o on the algebra 4 = M, (k) ® O, and we proved w,(T, ) =
m(—1, —a) + m[Q] = m(—1, —a) + m[ A]. Moreover, one can easily
check that the determinant of the involution o' is equal to (—a)™. Hence
we actually have w,(T,)) = (—1,d(o ")) + m[ A]. This proves that 7, is
zero if m is even and the identity if m is odd, and gives the result in the
orthogonal case.

Proof of Lemma 5. We have already seen that for any matrix B €
GO(q;) the associated inner automorphism is in O (T, ). Hence we have
a morphism O*(q;) - O™(T,,), and a morphism between the corre-
sponding simply connected covers Spin(qg) — Spin(T,.) (see again [4,
Proposition 2.24(i), p. 262]), which yields the commutative diagram

1— p, — Spin(qf) — 07 (qf) — 1

R

1— p, —> Spin(T,;) —> O*(T,,;) — L.

LEMMA 6. The map v is equal to 0.

This lemma implies the previous one. Indeed, the fact that » = 0 implies
that the morphism Spin(qg) — Spin(T,,) factors through w, and induces a
morphism O (gg) — Spin(T, ).

Proof of Lemma 6. Let us first consider the case when ¢ = 1. The
previous diagram induces

0+ (g )k) 2 ko g2

l.m l

O (T, (k) =5 ke* icw?,

where SN; and SN, are spinor norms, respectively, with respect to g, and

T, . Since v can only be 0 or the identity, to prove Lemma 6, it suffices to

find an element f e 0" (gy)(k) such that SN,(f) # 1 and SN,(Int(f)) =
y(SN((f)) = 1.

If v, is any non-isotropic vector of V' = k", and if 7, is the orthogonal
reflexion with respect to vy, then SN,(Int(r, )) = 1. Indeed let (v,,...,v,)
be such that (v4, ..., v,) is an orthogonal basis of (V, ¢,), and let a; = qo(v ).
Then one can check that the standard basis (f;),.; ., of M, (k)=
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Endk(V) defined by f;,(v,) = §,v; is orthogonal for 7, and T,(f;) =
a; a Moreover,

Int(Tvl)(fij) = Tlllofij OTU1 = -
i if{

Hence if 7, is the orthogonal reflexion in (M, (k), T, ) with respect to f;,
we get Int(r ) T, ° 0Ty, 0Ty, 0 ety Lt is now easy to compute
SN,(Int(7,)) = 1.

The form (1, —1) represents all elements of k*, and replacing k if
necessary by the rational function field k(z), we may assume that & is not
quadratically closed. Hence there exists v, € V' such that go(v,) & k*2.
There also exists w, € V' such that g,(w;) = 1. Let f= 7, o7, . We have
fe 0" (gy), SN(f) = go(vy) # 1 and SN,(Int(f)) = SN (Int(r )°|nt(’T D)
= SN,(Int(7,, ))SN,(Int(, )) = 1. Lemma 6 is now proved in that case.

Let us assume now that & # 1 € k*/k*?. Let L = k(Y¢). Since ¢ is a
square in L, the extension to L of the form ¢ is q,. Hence we have the
two diagrams

1 — p(k) —> Spin(gé)k) —> O (g )Nk) —> 1

| l l

1 — py(k) — Spin(T, Nk) —> O™ (T, Xk) — 1, @

1 — (L) — Spin(go(L) —> O (g (L) — 1

| l l

1 —> p(L) — SpinT, XL) —> O™ (T, (L) — 1, )

with v, = 0. Diagram (2) can be deduced from diagram (1) by scalar
extension. Hence, v, = 0 implies v; = 0. This completes the proof of
Theorem 1.

3. INVOLUTIONS OF THE SECOND KIND

From now on, we assume that we are in case (ii). Hence we consider
algebras with involution (A, o) that satisfy hypothesis (H): A is a semi-
simple algebra over k, Z(A) is a quadratic étale extension of &, dim,(A4)
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= 2n?, and o is of the second kind. This means that either A4 is a central
simple algebra over a quadratic separable field extension K of k, endowed
with an involution of the second kind o, or there exists a central simple
algebra B over k such that 4 = B x B°, where B° denotes the opposite
algebra of B, and o is given by o (x, y) = (y, x).

In both cases, we let o« € k*/k*? be a generator of the quadratic &tale
extension Z(A)/k, ie., Z(A) = k[ X]/(X? — «), and we denote by~ the
only non-trivial k-automorphism of Z(.4). Moreover, we denote by m the
integral part of n/2,ie, n=2morn=2m + 1.

3.1. Classification of the Algebras (A, o)

Let A be the group of automorphisms of the algebra with involution
(M?, =), where = is defined by (X,Y)* = (Y’, X). The group A is
generated by the morphisms f;: (X,Y) = (Y, X), and f,: (X,Y) —
(PXP~,(P~1)'YP') for all P € PGL,. Hence, we have the exact sequence

15 PGL, > AD p, - 1,

and PGL, corresponds to the elements in A that act trivially on the
center of M2

PrROPOSITION 5. We have one-to-one correspondences between

(i) Hk, A) and isomorphism classes of algebras with involution
(A, o) satisfying the hypothesis (H) (see [23, 111 1.4]).

(ii) The quotient of H*(k, PGL,) by the action of w, and isomorphism
classes of algebras with involution (A, o) satisfying (H) and such that Z( A)
is split.

Remark. When Z(A) is split, there exists a central simple algebra B
over k such that 4 =B x B% It is known that H(k, PGL,) is in
one-to-one correspondence with the isomorphism classes of central simple
algebras B of degree n over k (see [21, X.5]). But we have to consider here
the quotient of H'(k, PGL,) by the action of wu,. Indeed, the algebras
with involution (B X B (x, y) — (y,x)) and (B° X B,(x,y) — (y, x)) are
isomorphic even though B and B° are not isomorphic in general.

Proof of Proposition 5. The proof of part (i) of Proposition 5 is analo-
gous to the beginning of the proof of Proposition 2. We have to notice that
the algebra with involution (A4 &, k,, o ® 1d) is isomorphic to (M2(k,), *).
As we will need it later, we give here an explicit description of this
isomorphism.

Let us assume first that Z(A) is split, and let B be a central simple
algebra over k such that 4 = B X B%. Let ¢: B ® k, > M, (k,) be an
isomorphism. Then ¢ composed with the transposition is an isomorphism
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B° ® k, - M (k,), and one can easily check the following:

LEMMA 7. The map

®: M,(k,)" > A® k,=(B® k) x (B°® k,)
(X,Y) = (¢71(X), ¢ (Y"))
is an isomorphism. Moreover, the inverse of ® is given by ® '((x,y) ®
N = (dp(x ® 1), d(y ® ).

Let us assume now that Z(A) is a field extension of k, Z(A4) = K =
k(). Let ¢ be an isomorphism ¢: A ®; k, — M,(k,). Again one can
easily check the following two lemmas:

LEMMA 8. Let i and j be the maps
it A ky>A®k
XQ A—>x @ A,

s

J A k,>AQ k

X X
XG A= S O A+ o= & Wa .

2Va

s

They are well defined, and satisfy
(i) ioj=1Id;
(i) ic(c®Id)ej=0;
(i) jei+ (@ Id)ejeio(o® Id) = Id.
LEMMA 9. The map

d: M2(k,) > A & k,

(X,Y) = jod ' (X) + (0@ ld)ojop(Y")

is an isomorphism. Moreover, the inverse of ® is given by ® *(x ® ) =

($oilx & ), (doio(o® 1d)(x & ).

Let us now prove part (ii) of Proposition 5. The exact sequence
1-PGL, > A—> u,—1

induces

15 PGL,(k) - A(k) 5 w, - H*(k, PGL,) — H*(k, A) > k* /k*2.
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But, in contrast with the previous cases, u, does not act trivially on PGL,.
In particular, if a: y— a(y) is a cocycle in Z'(k, PGL,) that does not
have all its values in u,, and if we denote by (a~')' the cocycle y —
(a(y)~1), then a and (a ')’ are not cohomologically equivalent in
ZY(k, PGL,), but they do correspond to the same class in H'(k, A).
Indeed, one can check that (a(y)~1)" = f, *a(y)"f,. Hence the kernel of
p* is in bijection with the quotient of H'(k, PGL,) by the action of w,.
The next lemma now clearly implies part (ii) of Proposition 5:

LEMMA 10. The image under p* of the isomorphism class of (A, o) is a
generator « of Z(A) over k.

Proof. Let a € Z*(k, A) be the cocycle defined by
a(y) =@ Lo’ ® =0 to(ld® y)o Doyt

It represents the class of (A4, o), and we want to compute p*(a). For any
fe A p(f)is equal to 1 if f acts trivially on the center k, X k, of
M, (k,)? and to —1 if f acts by permuting the two factors.

Let us assume first that « = 1. Then it is easy to check that for any
yeT,, ®to(ld® y)o Doy 1(1,0) =(I,0). Hence for any ye T,
pla(y)) = 1, and this proves that p*(yy) is the trivial cocycle.

Let us consider now the case when « # 1. One can easily check the
following lemma:

LEMMA 11. We have

. . |1dey ify(Va) = Va
fe(ld@ ) ]_{O ify(Va) = —Va;

. ) 0 ify(Va) = Va
io(0® y)ej= )
o® vy lfy(\/g)=—\/a.
Then, using the description of & given in Lemma 9, one can check that

(I,,0) if y(Va) = Va
(0,1,) if y(Va) = —Va.

Hence the cocycle p*(a) is given by

. 1 if y(Va) = Va
p (a)(Y) - -1 if 'y(‘/z) _ —\/E,

and this proves the result.

a(y)(1,,0) = {
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3.2. Trace Forms

The trace forms associated with the algebra with involution (A4, o) have
been defined in Section 1. Let us denote by T the trace form of the
algebra with involution (M2, %), and by T* its restriction to (M?)*. The
form T is defined by T(X,Y) = Tr(Y'X). The following proposition
holds:

PROPOSITION 6. There exists a morphism p: A — O(T*) such that the
induced morphism p*. H(k, A) > H(k, O(T")) maps the isomorphism
class of the algebra with involution (A, o) to the isometry class of T,

Proof. The proof is more or less the same as for Proposition 3 and
Lemma 4. For any f € A, f is an isometry for the trace form 7. Hence its
restriction p(f)to A~ is an isometry for T*.

Moreover, as @ is a morphism of algebras with involutions (M, (k,)?, )
- (A ®k,, o ® Id), it is also an isometry

(M,(k)2.T) = (A & k,.(T,)).

Hence the induced morphism ®*: (M, (k)*)*— A" &k, is an isometry
between 7" and (7,)),. This proves that p*(c): y— p(® *o7®) =
®d* 1o Yd* is a cocycle that represents the isometry class of T .

The next result is the following:

PROPOSITION 7. (i) We have the commutative diagram

l1— PGL, — A —u,—1

l Ll

1— OH(T") — O(T*) —> p, —> 1.

(ii) The map T is given by 7(x) = x""~Y/2,
Proof. To prove (i), we have to prove that p(f,) is of determinant 1 for
any P € PGL,. But the x-invariant elements of M? are

(M2)" = {(X,X"), X € M,).

Hence ((e;;, ;) ;. -, is a basis of (M?)*. The matrix of p(f,) in this
basis is P ® (P~1)". Hence we have det( p(f,)) = 1.
To prove part (ii), we must compute the determinant of p(f,). Let us

order the basis of (M2?)* as follows {(e;, e;);-;,. ((e; e;),
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(e, e, - < ;< .- Then, the matrix of p(f,) is

Hence det( p(f,)) = (—1)""~Y/2 and this proves part (ii) of the proposi-
tion.

3.3. Invariants of the Trace Form T,

We can compute the invariants of the trace form 7,. We obtain the
following result:

PROPOSITION 8. The determinant of T, is equal to (—a)". Its Hasse
invariant is trivial.

To prove Proposition 8, we first prove the following lemma:
LEMMA 12. We have T, = {1, —a) ® T, .

Let us assume first that o is different from 1. The map A" — 4",
x = Vax induces an isometry between T, and { — a) ® T;. Now, if
a=1, A" is the set {(x,x), x € B} and A~ is {(x, —x), x € B}. So, the
map A*— A7, (x, x) = (x, —x) induces an isometry between 7, and
( —1) ® T}. Hence in both cases, we have T, ={ — a) ® T,. Since
T, = T & T_, this proves the lemma.

Since dim(7,") = n?, this already implies that the determinant of 7, is
(—a)" =(—a) e k* /k*?. In particular, it is trivial if n is even. More-
over, to compute the Hasse invariant of 7, it is actually enough to know
the determinant of the form 7. It is given by the following:

LEMMA 13. The determinant of T, is d(T;)) = (—a)""~V/2,
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This can be easily deduced from Proposition 7. Indeed, diagram (i)
induces

HYk, A s fex jiex?

bk
HYk, O(T)) 25 k* k2,

Hence, we have 6(p*([A4, o]) = 7*(p*([4, o)), ie. d(T)) =
™*(a)d(T) = a""~Y/24(T"), and we only have left to prove that d(T")
= (—1)"»~D/2 "which can be done by direct computation.

We end the proof of Proposition 8 applying Lemma 1(iv). We get
wo(T,) = (n?(n®> — D/2X(—1, @) + (n(n + 1)/2Xa, —a) = 0.

3.4. Determinant Class Modulo 2

In this section, we assume that n is even, n = 2m (see Remark (i)
below). To define a non-trivial invariant of the algebra with involution
(A, o), we consider the Hasse invariant of the restricted trace form 7.
Precisely, we give the following definition:

DeriniTION 2. The determinant class modulo 2 of (A4, o) is D(A, o)
=(m(m — 1) /2)(—1, —a) + m(a,2) + wy(T,") € Br,(k).

Remarks. (i) (See also [13]) If n is odd, n = 2m + 1, then we can give
the same definition for the determinant class mod 2, but it is easy to check
that it is always trivial. Indeed, this can be done by a direct computation in
the split case (see proof of Proposition 10 below). In the general case, it is
a consequence of Springer’s theorem, since it is known that a maximal
commutative subfield L of A is a splitting field for A4, and has degree
n=2m+ 1over K.

(i) In [8], Knus, Merkurjev, Rost, and Tignol defined an invariant of
the algebra with involution (A4, o) which is a central simple algebra over k
endowed with an involution of the first kind. One can deduce from their
results that its class in the Brauer group of k is equal to D(A4,0) +
m(—1, a). In particular, if m is even, then this class coincides with the
determinant class mod 2.

The determinant class mod 2 can be easily computed in some special
cases. Let us assume first that « = 1. Then there exists a central simple
algebra B of degree n over k such that 4 = B X B® and o is given by
o(x,y) = (y, x). We then have the following:

PROPOSITION 9. The determinant class mod 2 of (A, o) is D(A,0) =
m[B].
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Proof. In this case, the form T} is isometric to the quadratic form
Trdz(x?). The Hasse invariant of this form has been computed by Saltman
(unpublished), Serre [23, annexe], Lewis and Morales [13], and Tignol [25].
They proved that w,(Trdz(x?)) = (m(m — 1) /2)(—1, —1) + m[ B]. Hence
the determinant class mod 2 of (A, o) is D(A, o) = m[B].

Let us assume now that « # 1, and let K = k(V/a). We have the
following:

ProrosITION 10. If A is the split algebra M,(K), and if o is the adjoint

involution o, with respect to some hermitian form h, then the determinant
class mod 2 of (A, ;) is D(A, 0,,) = (a, d(h)).

Proof. Let B be a matrix of the hermitian form #, chosen as before in
diagonal form. Its coefficients b,,..., b, lie in k. Then, M,(K)* consists
of all matrices of the form B~'M + YaB~'N, where M is a symmetric
matrix, and N a skew-symmetric one. It is easy to check that the basis

(B‘le- U (B‘l(eij + eﬁ))lgqgn U (\/EB_l(eij — eﬁ))

ti)lsign 1<i<j<n

of M,(K)" is orthogonal for 7, and we get
T, =(bi%...b;) @<l —a)®y,

where ¢ is the form = (2b; b, Y, 2b7 b3, ..., 2b, 52D, %), Hence
the Hasse invariant of 7} is w (7)) = w,({1, —a) ® ). Since the form
¢ has dimension N =n(n — 1)/2 = m(2m — 1) and determinant
2"d(h)"~1, Lemma 1 gives woT) = (N(N = 1)/2X(~1, —a) +
(a,2™d(h)""1) = (m(m — 1D)/2)(—1, —a) + m(a,2) + (a, d(h)), and
this proves the result.

Finally, we have the following:

ProposITION 11 (see also [8]). Let us assume there exists a central simple
algebra A, over k, endowed with an involution of the first kind o, such that
A=A4,8®, Kand o = o, ® ~. Then the determinant class mod 2 of (A, o)
is given by

(a,d(oy)) + m[A,] if o, is of orthogonal type,

D( A,
(A, 0) m(—1,a) + m[A,] if o, is of symplectic type.

Proof. Since A" is the direct sum of A4; and Va4, we have a
decomposition of 7,7 as
T)=T; ©{—a)®T, .

We have seen that 7,) and 7, both have determinant 2"d(o).
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Let us assume that o, is of orthogonal type. Then 7, has dimension
n(n — 1)/2. Hence by Lemma 1(i) and (iii), we get wz(T ) =wy(T)) +
wo(T,) + (@, d(oy)) + (m(m — 1)/2)(—1, —a) + m(e,2). Using Theo-
rem 1, we see that wo(T,)) + wyT, ) = wy(T, ) — (—1,d(ay)) is equal to
m[ A,], and this gives the result in the orthogonal case.

If o, is of symplectic type, then its determinant is trivial, and 7,_ has
dimension n(n + 1)/2. Hence, again applying Lemma 1, we get wZ(T+) =
wz(TjO) + wz(T,,‘O) + m(—1, —a) + (m(m — 1)/2)(—1, —a) + m(a, 2).
Moreover Theorem 1 in that case gives w,(T,)) + wy(T, ) = wy(T, ) =
m(—1, —1) + m[ A,], and this ends the proof of this proposition.

3.5. Cohomological Description of D(A, o)

In this section, if « is any element of k* /k*?, we will also denote by «
the associated cocycle in Z*(k, ), that is, o, = y(Va)/ Va. We let , u,,
be the group u, twisted by the cocycle «. This means that I', acts on , u,
by
X if a, =1

x = , foranyy e T,.
ol ifa, = -1 YvE e

Let (A, o) be an algebra with involution satisfying (H), and let « be a
generator of the extension Z(A4)/k. With the isomorphism class of (A4, o),
we associate an invariant D(A, o) which lies in the quotient of H?(k, , u,)
by the action of u,, and which we call the determinant class of (A, o).
This can be done for any value of the degree n.

If n is even, we have a non-trivial morphism , u, — u,. Moreover, for
any x € ,u,, x and x~ ! have the same image in u,. Hence, we have a
morphism H?%(k, ,w,)/m, = H?(k, u,). The main result of this section is
the following:

THEOREM 2. If n is even, then the morphism H?*(k,  w,)/m, —
H?*(k, u,) maps the determinant class D(A, o) to the determinant class
mod 2.

I thank J.-P. Serre for the useful comments and suggestions he made
concerning this section.

In order to explain how D(A, o) is defined and to prove this theorem,
we need a few preliminaries.

3.5.1. Classification of Algebras with a Fixed Center

We have seen in Proposition 5 that isomorphism classes of algebras with
involution (A, o) satisfying (H) and such that Z(A) is split are classified
by the quotient of H'(k, PGL,) by the action of wu,.
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Let o € k*/k*?, a# 1, and let K = k(o). Following [23, 1.5], to
classify isomorphism classes of algebras with involution (A, o) satisfying
(H) and such that Z(A) = K we have to twist the group PGL, by a
cocycle. Precisely, if G is an algebraic group on which w, acts, we denote
by .G the group G twisted by the cocycle «. If the action of My ON G is

denoted by x — e.x, then the action of T, on ,G is given by " x = a,"x
for any y € I',. In particular, I', acts on , A by

f if a,
fotefefo if a,

11

7*f= .,

Moreover, for any P € PGL,, we have f;*° f,° f, = fp-1,. Hence the
action of I', on ,PGL, is given by

v(P) if , =1,

(y(P)_l)[ if a, = —1.

Y*P —

We now have the following:

PROPOSITION 12. There is a one-to-one correspondence between the quo-
tient of H'(k, ,PGL,) by the action of w, and isomorphism classes of
algebras with involution (A, o) satisfying (H) and such that Z(A) =
KX1/(X? = a).

Proof. If o =1, this has already been proved in Proposition 5. Let us
assume now that « # 1. The proof we give here is explained in a more
general context in [23, 1.5.5, Corollaire 2]. We denote by g, the involution
defined on the algebra M (K) by o,(M) = M'. Let ¢ be the natural
isomorphism M (K) ®, k, - M, (k,), let ® be the morphism M, (k,)* —
A ® k, described in Lemma 9, and let a € Z'(k, A) be the cocycle
representing the isomorphism class of (M, (K), g,) defined by a(y) =
® 1D, The cocycle a is given by

Id if a, =1
a(y) = f,

Is a, = —1.

Hence a is the image of the cocycle « under the map w, — A defined
by 1 — Id and —1 ~ f,. From now on, we will also denote by « the co-
cycle a.

From the exact sequence 1 — PGL, —» A — u, — 1, we deduce

1 _)aPGLn _)ozA_)on’Z - 1'
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which induces

H'(k, PGL,) = H'(k, A) > H'(k, , s,).

Exactly as in the proof of Proposition 5, the quotient of H*(k, ,PGL,) by
the action of u, is in bijection with the kernel of p*.

Since « is a cocycle with values in A, the cohomology sets H(k, A) and
H*(k, ,A) are in one-to-one correspondence [23, 1.5.3, Proposition 35 bis].
Hence H'(k, ,A) classifies isomorphism classes of algebras with involu-
tion (A, o) satisfying (H). For the same reason, and since w, is abelian,
translation by « is a bijection H(k, u,) - H*(k, , u,). Hence the base
point of H'(k, , u,) is «, and the kernel of p* is in one-to-one correspon-
dence with isomorphism classes of algebras with involution (A, o) such
that p*((4, o]) = a, i.e., such that Z(A) = k(a). This proves the result.

We then have the following:

PROPOSITION 13. There exists a morphism
H'(k, PGL,) /1, = H'(k,0*(T;)),

which maps the isomorphism class of (A, o) to the isometry class of T, .

Proof. From diagram (i) of Proposition 7, we deduce

1— _PGL, — A Lo, —1

[e3 n [e3

l I I

1 — )0 (T7) — e OTT) — iy — 1.

Moreover, since the cocycle a represents the isomorphism class of the
algebra with involution (M, (K), a,), p*(a) represents the isometry class
of the trace form 7. Hence the twisted groups .., O(T") and . ,,O"(T")
are respectively |somorph|c to the orthogonal group and the special
orthogonal group of the form T+

Let a be a cocycle in ZX(k,, A). If a € Ker(p*), that is, p*(a) = a,
then p*(a) will be a cocycle with values in O™(T;), representing in

H'(k,0*(T})) the isometry class of 7,". Hence the restriction of p to the
kernel of p* induces a morphism Hl(k PGL,)/u, = H'(k,O*(T})),
and this proves Proposition 13.

3.5.2. Definition of D(A, o)
We can now give the definition of D(A, o). From the exact sequence

1 _)ap“n _)aSLn _)aPGLn - 1'
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we deduce a connecting map A,: H*k,, PGL,) — H?*(k, ,u,), which
induces a map D: H(k,  PGL,)/n, = H*(k, , u,)/u,, where the action
of w, on H?(k, ,u,) is induced by its action on _ u,,.

DeriNITION 3. The determinant class of (A4, o) is the image under D
of the isomorphism class of (A4, o).
3.5.3. Proof of Theorem 2

Let us assume now that # is even. Since we have a morphism ,PGL, —
O™ (T;}), we also have a morphism between the corresponding simply
connected covers _SL, — Spin(T,’) (see again [4, Proposition 2.24(i), p.
262]). Hence we have the commutative diagram

1— ,p, — ,SL, — ,PGL, — 1

a n

I l

1— u, — Spin(T)) — O (T,)) — 1.
It induces

H'(k, .PGL,) -5 H(k, .1,

8
H'(k,0*(T};)) = H(k, p,).
By Proposition 13, the morphism H'(k,,PGL,) — H'(k,0*(T})) in-
duces a morphism H(k, ,PGL,)/u, — H(k, 0+(T+)) that maps the
isomorphism class of (A, 0') to the isometry class of T+ Moreover, since
w, acts trivially on w,, the morphism H2(k, , u,) — Hz(k, u,) also in-

duces a morphism H?(k, , u,)/m, = H?(k, u,). Hence we actually have
the diagram

HY(k, ,PGL,)/ 1y > HX(k, , 1)/ s

HY k0 (T2) 25 H2k, ).
The commutativity of this diagram now gives
wo(T)) = WZ(T;;) + 7*(D(A4,0)).

The Hasse invariant of T+ is easy to compute. Indeed, the o,-invariant
elements of M (K) are matrices of the type M + \/_N Where M is a



INVARIANTS OF ALGEBRAS WITH INVOLUTION 327

symmetric matrix, and N a skew-symmetric one, both with coefficients in
k, and one can check that the basis (e;);.;., U (e;+e)ioicjc,
U Va(e; — )y, of M,(K)* is orthogonal for the trace form. We
get

n(n —1)
T(;_: = I’l<1> ® T<2, —20[>.

Hence w,(T,)) = (m(m — 1)/2)(—1, —a) + m(e, 2), and we now have
D(A,0)=1*(D(A4,0)).

To prove Theorem 2, we only have left to prove that the map = is
non-trivial. Let ¢, and ¢, be two indeterminates, and let L = k(z, ¢,). It is
enough to prove that 7 is non-trivial over the field L.

This can be done as follows. Let Q, be the quaternion algebra (¢, t,),
defined over L, let o, be its canonical involution, and let us consider the
algebra with involution (Q = Q, ®, L(Ya), o = o, ® 7). By Proposition
11, its determinant class mod 2 is given by D(Q, o) = (=1, a) + (¢, t,).
Hence, over L(Va), D(Q, )jay = (1) ey 18 @ division quaternion
algebra. This proves that over L, D(Q, o) = 7*( D(Q, o)) is not trivial,
and Theorem 2 is now proved.

Remark. Let B be a central simple algebra of degree n over k, and let
us consider the algebra B x B° endowed with the involution ¢ defined by
a(x,y) = (y, x). Its trace form T is isometric to the form Trdz(x?).

In that case, « = 1 and H?%(k, ,u,) is the n-part of the Brauer group of
k, Br, (k). Moreover, we have D(A, o) = [B] € Br,(k)/u,. Hence the
formula given in [23, annexe; 13, 25] for the Hasse invariant of the trace
form Trdz(x?) is a particular case of Theorem 2.

4. DECOMPOSABILITY

In this section, we assume that A is a central simple algebra. We recall
the following definition:

DerINITION 4. The algebra with involution (A, o) is said to be decom-
posable if o stabilizes a non-trivial subalgebra A, of A, with Z(A,) =
Z(A).

Indeed, if o stabilizes A4,, it also stabilizes the centralizer 4, of A4 in
A;. Let us denote by o; the restriction of o to A, for i = 1,2. We then
have A = A, & A, and 0 = 0, ® 0,.
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It is a classical problem to study the decomposability of an algebra with
involution, and the invariants may be a useful tool in that context. In
particular, for involutions of the first kind, Knus, Parimala, and Sridharan
have proved the following:

PrRoPOSITION 14 [9].  Let A be a central simple algebra of degree 4, and o
an involution of the first kind on A. Then (A, o) is decomposable if and only
if the determinant of o is trivial.

In the second kind case, we now have the following result:

PrRoPOSITION 15.  Let A be a central simple algebra of degree 4, and o an
involution of the second kind on A. If (A, o) is decomposable, then its
determinant class mod 2, D(A, o), is trivial.

Proof. To prove this result, we use the following lemma:

LEMMA 14 (Albert [1] or [24]). Let Q be a quaternion algebra over K,
endowed with an involution of the second kind o. Then there exists a
quaternion algebra Q defined over k such that Q = Q, ®, Kand 0= 17® 7,
where T is the canonical involution on Q.

To prove Proposition 15, let us assume now that the algebra with
involution (A4, o) is decomposable. Since A is of degree 4, it actually
decomposes as a tensor product of two quaternion algebras. Hence,
because of Albert’s lemma, there exist two quaternion algebras Q, and Q,
over k such that 4 = (Q; ® 0,) ® K, and o= (7, ® 7,) ® ~, where T,
is the canonical involution on Q,. Since 7, ® 7, is of orthogonal type, by
Proposition 11, we get that the determinant class mod 2 of (A4, o) is
D(A,0) = (a,d(r; ® 7,)) + 2[Q, ® O,]. Moreover, the involution 7, ®
T, IS decomposable, and hence has trivial determinant, which proves the
result.

Another natural question when we study the decomposability of alge-
bras with involution is the existence of indecomposable involutions. In the
first kind case, Amitsur, Rowen, and Tignol have constructed an indecom-
posable involution on a biquaternion division algebra [3]. In the second
kind case, examples of indecomposable involutions have been constructed
on degree 4 algebras that are either split or similar to a quaternion algebra
[16]. Here, using the existence of indecomposable involutions of the first
kind, we construct an indecomposable involution of the second kind on a
biquaternion division algebra. Namely, we have the following result:

ProrosITION 16. Let (A,, o,) be a biquaternion division algebra, en-
dowed with an indecomposable involution of the first kind and of orthogonal
type. Then the algebra A = (A, ®, k(1)) &, k(Vt) is a biquaternion divi-
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sion algebra, and the involution o= (o, ® Id) ® = is an indecomposable
involution of the second kind on A.

Proof. First of all, since V¢ is an indeterminate, the morphism k —
k(1) induces an injective morphism Br(k) — Br(k(yr)) that preserves
indices [15]. Hence A = A, ®, k(V1) is a biquaternion division algebra.

Moreover, by Proposition 11, we can compute the determinant class
mod 2 of (A4, o). We get the following: D(A, o) = (d, t),,,, where d is
the determinant of the involution o, ® Id. But the determinant of o, is
non-trivial, since o, is indecomposable. Hence d, which is the image of
d(o,) under the morphism k*/k*?> — k(¢)*/k(t)** is also non-trivial.
Now, one can check [15, pp. 383—385] that (¢, d),,, is the twisted Laurent
series algebra k(Vd )X(x, 7)), where x2 = ¢. Hence it is a division algebra,
and a fortiori (¢, d),, # 0 € Bry(k(¢)). Hence D(A, o) is non-trivial, and
by Proposition 15, this proves the result.
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