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With a central simple algebra, A, we can associate a quadratic form,
Ž 2 .namely the trace form Trd x . This form has been studied by RowenA

w x w x w x w x19 , Formanek 5 , Lewis 11 , and Kersten 7 . Its Hasse invariant has
Ž . w xbeen computed by Saltman unpublished , Serre 23, annexe , Lewis and

w x w xMorales 13 , and Tignol 25 .
In this paper, we consider a central simple algebra A endowed with an

Ž .involution s . With A, s we associate the quadratic form T defined bys

Ž . Ž Ž . .T x s Trd s x x , which has values in the subfield of the center of As A
w xfixed by the involution. This form has been introduced by Weil 26 . It has

w xbeen used in 14, 16 to define the signature of the involution s . We also
consider the restriction Tq of T to the subspace of s-invariant elementss s

of A. The invariants of T and Tq are invariants of the algebra withs s

involution. The main purpose of this paper is to study the determinant and
the Hasse invariant of these quadratic forms.

In Section 2, we assume that the involution s is of the first kind. Then,
w xwe have a notion of determinant, due to Jacobson 6 and Knus, Parimala,

w xand Sridharan 10 . We give here a new definition of the determinant of s ,
in terms of the trace form Tq. We then compute the Hasse invariant of thes

trace form T , in terms of the degree of the algebra, its class in the Brauers

group, and the determinant of the involution. This last result has also been
w xobtained by Lewis 12 .

If the involution is of the second kind, we first prove that the determi-
nant and the Hasse invariant of the trace form T are both trivial. Then,s

we see that the Hasse invariant of the trace form Tq defines a non-trivials

Ž .invariant of A, s , which we call determinant class mod 2. It is related to
Ž .the class in the Brauer group of the discriminant algebra of A, s defined
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w xin 8 by Knus, Merkurjev, Rost, and Tignol. Finally, we define a cohomo-
Ž . 2Ž .logical invariant of A, s , with values in the quotient of H k, m bya n

the action of m , where m is a twisted form of the group m , which we2 a n n
Ž .call the determinant class of A, s , and we prove that the determinant

Ž .class mod 2 of A, s is the reduction modulo 2 of this invariant. The
Ž 2 .formula that gives the Hasse invariant of the form Trd x can be viewedA

as a particular case of this result.
In the last section, as an application of the previous results, we construct

an indecomposable involution of the second kind on a biquaternion
division algebra.

This work is part of my doctoral thesis, and I thank my advisor E. Bayer.
I am also very grateful to R. Parimala and J.-P. Tignol for useful conversa-
tions.

1. NOTATIONS

Let k be a field of characteristic different from 2 and let n be an
Ž .integer. If A is a k-algebra, we denote by Z A its center. We recall that a

quadratic etale extension of k is either k = k or a separable field exten-´
sion of degree 2 of k.

We consider a k-algebra A, such that either A is a central simple
Ž Ž .. Ž .algebra of degree n over k case i , or A is semi-simple, its center Z A

Ž . 2 Ž Ž ..is a quadratic etale extension of k and dim A s 2n case ii .´ k
An involution on A is an anti-automorphism of order 2 of the k-algebra

A. We suppose here that A is endowed with an involution s . We assume
Ž . Ž .moreover that if Z A is not k, then s acts on Z A as the only

Ž . Ž .non-trivial k-automorphism of Z A , which we will denote by . In case i ,
Ž .the involution acts trivially on Z A and is said to be of the first kind,

Ž .while in case ii it is said to be of the second kind.
Ž . Ž .In case ii , if Z A s k = k, then there exists a central simple algebra

B of degree n over k such that A s B = B0, where B0 is the opposite
Ž . Ž .algebra of B, and the involution is given by s x, y s y, x . Otherwise,

Ž .Z A is a quadratic field extension K of k, and A a central simple algebra
of degree n over K.

q � Ž . 4 y � Ž . 4We let A s a g A, s a s a and A s a g A, s a s ya . They
are supplementary k-subvector spaces of A.

Trace Forms

If C is a central simple algebra, we denote by Trd the reduced trace onC
C. Let us now define a trace T on A. If A is a central simple algebra,A
then T is the reduced trace Trd . Otherwise, there exists a central simpleA A
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0 Ž .algebra B over k such that AsB=B , and we define T x, y sA
1 Ž .Trd x q y .B2

In this paper, we are interested in studying the quadratic form T ,s

defined by

T x s T s x x g k , for any x g A.Ž . Ž .Ž .s A

We also consider the restrictions of T to Aq and Ay, which ares

respectively denoted by Tq and Ty. It is easy to check that Aq and Ay
s s

are orthogonal for the trace form. Hence, we have

T s Tq[ Ty.s s s

Ž .Remarks. i If the center of A is a quadratic field extension K of k,
Ž Ž Ž . .. Ž Ž . .then T has values in K. But since s Trd s x x s Trd s x x , TA A A s

actually has values in k.

Ž . 0 qii If A s B = B , then T is isometric to the quadratic forms

Ž 2 . w x w x wTrd x , which has been studied by Rowen 19 , Formanek 5 , Serre 23,B
x w x w xannexe , Lewis and Morales 13 , and Tignol 25 .

In¨olutions on Central Simple Algebras

We recall here a few well-known facts about central simple algebras and
Ž w x w x.involutions see for instance 20 or 24 .

First of all, by Wedderburn’s theorem, a central simple algebra A is
Ž .isomorphic to a matrix algebra A , M D , with coefficients in a divisionr

Ž . Ž .algebra D, with Z D s Z A . Moreover, it is known that if A is endowed
with an involution, then there exists an involution t over D, of the same
kind. Once t is fixed, the classification of involutions on A corresponds to
the classification of hermitian forms up to similarity.

More precisely, if the involutions are of the first kind, then for any s on
r r Ž .A, there exists a d-hermitian form H : D = D ª D, t , where d s "1,s

such that s is the adjoint involution with respect to H , i.e., for anys
r Ž Ž . . Ž Ž .Ž ..x, y g D and for any f g A, we have H f x , y s H x, s f y . Thiss s

form H is uniquely determined, up to a scalar factor l g k*.s

Let us assume now that the involutions are of the second kind. Then for
r r Ž .any s on A, there exists a d-hermitian form H : D = D ª D, t , suchs

that s is the adjoint involution with respect to H , and where d is ans

Ž . Ž .element of Z A such that s d d s 1. By Hilbert’s theorem 90, this form
H may actually be chosen to be a 1-hermitian form, in which case it iss

uniquely determined up to a scalar factor l g k*.
Ž .If A is the split algebra A s End V , where V is an n-dimensionalk

k-vector space, this means that any involution of the first kind on A is the
adjoint involution s with respect to some bilinear form b: V = V ª k,b
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which is either symmetric or skew-symmetric. If B is the matrix of b in a
Ž . Ž . Ž .fixed basis of V, then s acts on M g M k , End V by s M sb n k b

By1M tB, where M t denotes the transposed matrix of M. By using a well
chosen basis of V, one may always assume that B is a diagonal matrix if b
is symmetric, and B s J, where J is the matrix consisting of m diagonal

0 1Ž .blocs all equal to if b is skew-symmetric.y1 0

Ž .Now if A s End V , where V is an n-dimensional K-vector space, anyK

involution of the second kind on A is the adjoint involution with respect to
a 1-hermitian form h: V = V ª K. If B is a matrix of h, s acts onh

y1 t tŽ . Ž . Ž .M g M K by s M s B M B, where if M is the matrix m , Mn h i j
Ž .denotes the matrix m . We will usually choose B in diagonal form, inji

which case its coefficients lie in k.

Algebraic Groups

Ž . Ž . Ž .The groups O q , Spin q , and GO q are respectively the orthogonal
group, the spinor group, and the group of similarities of the quadratic form
q. We denote by Sp the symplectic group of order n, and by GSp then n

corresponding group of similarities. For any algebraic group G, PG is the
corresponding adjoint group, and Gq the connected component of the
identity in G.

Galois Cohomology

Let k be a separable closure of k. We denote by G the Galois groups k
Ž .Gal k rk . If G is an algebraic group defined over k, and if i s 0 or 1,s

iŽ . iŽ Ž ..H k, G is the cohomology set H G , G k . For any G -module C, andk s k
iŽ . iŽ .for any integer i, we denote by H k, C the cohomology group H G , C .k

1Ž . 2In particular, if C s m , we recall that H k, m is isomorphic to k*rk*2 2
2Ž .and H k, m is isomorphic to the 2-part of the Brauer group of k,2

Ž .Br k .2

Quadratic and Hermitian Forms

² :Let q be an r-dimensional quadratic form over k, and let a , . . . , a be1 r
Ž .any diagonalization of q. The determinant of q is d q s a ??? a g1 r

2 Ž . Ž .k*rk* . The Hasse invariant of q is defined by w q s Ý a , a2 1F i- jF r i j
2Ž . Ž .g H k, m , where a , a denotes the cup-product of the square classes2 i j

of a and a . Both definitions are independent of the choice of a diagonal-i j
w x wization of q 20 . Moreover, using the formulas given in 20, Chap. II,

x11.13 , one can easily check the following:
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LEMMA 1. The Hasse in¨ariant of the direct sum of two quadratic forms q1
and q is gï en by:2

Ž . Ž . Ž . Ž . Ž Ž . Ž ..i w q [ q s w q q w q q d q , d q . Moreo¨er if we2 1 2 2 1 2 2 1 2
denote by r the dimension of q, then for any integer k and any l g k* we
ha¨e:

Ž . Ž . Ž . Ž Ž . .Ž Ž ..ii w kq s kw q q k k y 1 r2 y1, d q , where kq is the di-2 2
rect sum of k copies of q;

Ž . Ž² : . Ž . Ž Ž . .Ž . Ž .Ž Ž ..iii w l m q sw q q r r y 1 r2 y1, l q r y 1 l, d q ;2 2

Ž . Ž² : . Ž Ž . .Ž . Ž Ž ..iv w 1, l m q s r r y 1 r2 y1, l q yl, d q .2

If q is defined on the k-vector space V, and if Lrk is any field
extension, we denote by q the extension of q to the field L, that is, theL

Ž . 2 Ž .form defined on V m L by q ¨ m l s l q ¨ .k L
2 ²² ::For any elements a, b g k*rk* , we denote by a, b the Pfister form

²² :: ² : ² :a, b s 1, ya m 1, yb .
Ž y.Let now h be a hermitian form with values in K, , and let us consider

² :any diagonalization a , . . . , a of h. Then the coefficients a lie in k, and1 n i
Ž . Ž .the determinant of h is d h s a ??? a g k*rN K* .1 n K r k

2. INVOLUTIONS OF THE FIRST KIND

Ž .We assume in this section that we are in case i , which means that A is
a central simple algebra over k of degree n, endowed with an involution of
the first kind s . We also assume that n is even, say n s 2m.

Let F be a splitting field of A, and let b be a bilinear form associated
with the involution s m Id defined on the split algebra A m F. We recallk
that the involution s is said to be of orthogonal type if b is symmetric and

w xof symplectic type if b is skew-symmetric 20, 24 . This definition does not
depend upon the choice of a splitting field F.

In the first part of this section, we are going to give some examples in
which the trace forms and their invariants can be explicitly computed, and
which will be used later.

2.1. Examples

2.1.1. Split Case

Ž .Let us consider first the case when A s M k . Let s be the adjointn b
involution with respect to the bilinear form b. It is easy to check that its

w x Ž .trace form is T s b m b 14, Corollary 1 . Hence we have d T s 1.s sb b
Ž . Ž Ž ..Moreover, if b is symmetric, we have w T s y1, d b . In particular,2 s b 2² :if t denotes the transposition, its trace form is given by T s n 1 .t
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If b is symmetric, we can also easily compute the trace form Tq. Let Bsb

be a diagonal matrix of b, and let us call b , . . . , b its coefficients. The1 n
Ž . y1 t Ž .involution is given by s M s B M B, for any M g M k . Henceb n

Ž .q y1M k consists of the matrices B S, where S is any symmetric matrixn
Ž . Ž .with coefficients in k. If e denotes the canonical basis of M k ,i j 1F i, jF n n

Ž y1 . Ž y1Ž .. Ž .qthen B e j B e q e is a basis of M k . More-i i 1F iF n i j ji 1F i- jF n n
over, one can check that this basis is orthogonal for the trace form, and we
get that

Tq s by2 , . . . , by2 , 2by1 by1 , 2by1 by1 . . . , 2by1 by1 .² :s 1 n 1 2 1 3 ny1 nb

q nŽny1.r2Ž y1 y1.ny1 m Ž .Hence the determinant of T is 2 b ??? b s 2 d b gs 1 nb

k*rk*2. In particular, for the transposition, we have that
q ² : ² :T s n 1 [ n n y 1 r2 2 .Ž .Ž .t

Moreover, using the same method, we get
y ² :T s n n y 1 r2 2 .Ž .Ž .t

2.1.2. Quaternion Algebras

Let Q be a quaternion algebra over k. We denote by t : Q ª Q its
canonical involution. It is known that t is the only involution of symplectic
type on Q. Now, if s is an involution of orthogonal type on Q, there exists

Ž .an element i g Q such that t i s yi and such that s is given by
Ž . y1 Ž .s x s i t x i. Let j be an element in Q such that ij s yji, and set

2 2 Ž .i s a and j s b. Then 1, i, j, ij is a basis of Q over k, which is
orthogonal for the trace forms, and one can easily check

² : ²² :: q ² : y ² :T s 2 m a, b , T s 2 , T s y 2 a, y2b , 2 ab ;t t t

² : ²² :: q ² : y ² :T s 2 m a, yb , T s 2, 2b , y2 ab , T s y 2 a .s s s

It is now easy to check that the trace forms T and T both have trivialt s

determinant, and that their Hasse invariants are given by

w T s y1, y1 q a, b ,Ž . Ž . Ž .2 t½ w T s y1, ya q a, b .Ž . Ž . Ž .2 s

Ž .2.1.3. Case of the Algebra M Qm

Let us consider now the involutions t 9 s t m t and s 9 s t m s on the
Ž .algebra M k m Q. The trace forms are given bym k

2² :T s T m T s m 2, y2 a, y2b , 2 ab ,t 9 t t

2½ ² :T s T m T s m 2, y2 a, 2b , y2 ab .s 9 t s
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Ž .Hence again they both have trivial determinant, and we have w T s2 t 9

Ž . Ž . Ž . Ž . Ž . Ž .mw T s m y1, y1 q m a, b , and w T s mw T s m y1, ya2 t 2 s 9 2 s

Ž .q m a, b .

Remark. These formulas also hold if Q is split. Hence, let us assume
now a s b s 1. Since t 9 is of symplectic type, and since all involutions of

Ž .symplectic type on M k are isomorphic, if b is any skew-symmetricn
bilinear form, the Hasse invariant of T is given bysb

w T s m y1, y1 q m 1, 1 s m y1, y1 .Ž . Ž . Ž .Ž .2 s b

Moreover, the form Tq can also be computed this way. Indeed,sb
q q yq yM k m Q s M k m Q [ M k m Q .Ž . Ž . Ž .Ž .m k m k m k

Hence we have
Tq s Tqm Tq[ Tym Ty

s t t t tb

m m y 1 m m y 1Ž . Ž .
² : ² : ² : ² : ² :s m 1 q 2 m 2 [ 2 m y 2, y2, 2 .ž /2 2

In particular, its determinant is equal to 2 m.

2.2. Determinant of an In¨olution

The determinant of involutions of the first kind was first introduced by
w xJacobson in 6 . Later, Knus, Parimala, and Sridharan gave a more direct

w xdefinition 10 . We can also define it in terms of the trace forms. Precisely,
we give the following definition:

Ž . m Ž q.DEFINITION 1. The determinant of s is d s s 2 d T .s

Ž .Let us assume that A s M k , and that s is the adjoint involution sn b
with respect to the bilinear form b. We then have the following result:

Ž .PROPOSITION 1. The determinant of the in¨olution s is d s s 1 if b isb b
Ž . Ž .skew-symmetric, and d s s d b if b is symmetric.b

Proof. We have computed the determinant of Tq in the previoussb
Ž q. m Žsection. It is given by d T s 2 if b is skew-symmetric cf. Remarksb

. Ž q. m Ž . Ž .2.1.3 , and d T s 2 d b if b is symmetric cf. Subsection 2.1.1 . Thissb

proves the proposition.

Ž .Remarks. i The form b is only defined up to a scalar factor l g k*.
Ž .But as n is even, its determinant d b does not depend upon the choice

of b.

Ž . Ž w x .ii See also 7, 11 . Let F be a generic splitting field of the
algebra A. One may take for F the function field of the Severi-Brauer
variety of A. It is easy to check that the trace form of the involution

Ž .s m Id defined on the split algebra A m F , M F is simply the exten-k n
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q Ž q.sion to the field F of the trace form T . We also have T s T .s s mId s F
2 2 Ž q. Ž q .Hence the monomorphism c : k*rk* ¨ F*rF* maps d T to d T .s s mId

This implies

d s m Id s c d s .Ž . Ž .Ž .
Since c is injective, this means we can extend scalars to F to compute the
determinant of s .

Ž .iii The definition we gave for the determinant of an involution
coincides with the usual one. Indeed, because of the previous remark, it is
enough to prove it in the split case, and this was done in Proposition 1.
One though has to be aware that what we call the determinant here,

w x w xfollowing 8 , is called the discriminant in 9, 10 .
Ž .iv We have also seen in Subsection 2.1.1 that in the split case,

Ž .d T s 1. Again by extending scalars to a generic splitting field of thesb
Ž . Ž .algebra A, it is easy to check that for any A, s , we have d T s 1.s

Hence, since T s Tq[ Ty , we actually haves s s

d Ty s d Tq s 2 md s .Ž .Ž . Ž .s s

2.3. Hasse In¨ariant of the Trace Form

In this section, we compute the Hasse invariant of the trace form T .s

Ž w x.THEOREM 1 see also 12 . The Hasse in¨ariant of T is gï en bys

w xm y1, y1 q m A if s is of symplectic type,Ž .
w T sŽ .2 s ½ w xy1, d s q m A if s is of orthogonal type.Ž .Ž .

Ž .Remarks. i Again let F be a generic splitting field of the algebra A.
Ž . Ž .It is known that the kernel of the morphism Br k ª Br F is generated

w x w xby A 2, 18 . Since A is endowed with an involution of the first kind, its
Ž .class in Br k is of order 2. Hence, if we denote by C the morphism

Ž . Ž . � w x4Br k ª Br F , we have Ker C s 0, A .2 2
Ž . Ž Ž ..We have already seen that T s T . Hence C w T is equal tosmId s F 2 s

Ž . Ž .w T . Since the algebra A m F is split, the Hasse invariant w T2 s mId k 2 s mId
has been computed in Subsections 2.1.1 and 2.1.3. We have

m y1, y1 if s is of symplectic type,Ž .
w T sŽ .2 s mId ½ y1, d s if s is of orthogonal type.Ž .Ž .

From all this, we deduce

w xm y1, y1 q « A if s is of symplectic type,Ž .
w T sŽ .2 s ½ w xy1, d s q « A if s is orthogonal type,Ž .Ž .
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� 4where « g 0, 1 . Hence we only have to prove that « is equal to 1 when m
is odd and 0 when m is even.

Ž . q yii The Hasse invariant of the restricted trace forms T and Ts s

w xcan also be computed. We get the following formulas 17 :

¡m m y 1 m m y 1Ž . Ž . w xy1, y1 q AŽ .
2 2

if s is of symplectic type,q ~w T sŽ .2 s m m q 1Ž . w xm y 1 y2, d s q AŽ . Ž .Ž .
2¢ if s is of orthogonal type;

¡m m q 1 m m q 1Ž . Ž . w xy1, y1 q AŽ .
2 2

if s is of symplectic type,y ~w T sŽ .2 s m m y 1Ž . w xm y 1 y2, d s q AŽ . Ž .Ž .
2¢ if s is of orthogonal type.

Proof of Theorem 1. The proof we give here is based on Galois
w xcohomology, using a method introduced by Serre in 22 . Very recently,

Lewis gave another proof, using the formula that gives the Hasse invariant
Ž 2 . w xof the form Trd x 12 .

Cohomological Definition of the Hasse In¨ariant. Let us first recall a few
Žbasic facts on Galois cohomology and quadratic forms see for instance

w x.23 .
1Ž Ž ..Let q be an n-dimensional quadratic form over k. Then, H k, O q0 0

classifies isometry classes of n-dimensional quadratic forms q over k.
dqŽ . Ž .From the exact sequence 1 ª O q ª O q ª m ª 1, we deduce a0 0 2

1Ž Ž .. 2map d*: H k, O q ª k*rk* . It maps the isometry class of a quadratic0
Ž . Ž . 2form q to the class of d q rd q in k*rk* . Moreover, the set0

1Ž qŽ .. 1Ž qŽ ..H k, O q is in bijection with Ker d*. Hence, H k, O q classifies0 0
isometry classes of n-dimensional quadratic forms over k with the same
determinant as q .0

Ž . qŽ .Now, from the exact sequence 1 ª m ª Spin q ª O q ª 1, we2 0 0
1Ž qŽ .. Ž .deduce a connecting map d : H k, O q ª Br k . The image under2 0 2
Ž . Ž .d of the isometry class of q is w q y w q .2 2 2 0
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Ž .Classification of Algebras with In¨olution A, s . Let q be an n-dimen-0
sional quadratic form over k. The following proposition holds:

PROPOSITION 2. We ha¨e one-to-one correspondences between

Ž . 1Ž .i H k, PSp and isomorphism classes of degree n central simplen
algebras endowed with an in¨olution of symplectic type;

Ž . 1Ž Ž ..ii H k, PGO q and isomorphism classes of degree n central sim-0
ple algebras endowed with an in¨olution of orthogonal type.

Before proving this proposition, we establish a lemma. Let A be a
central simple algebra of degree n over k. The algebra A splits over k .s

Ž .Let f be an isomorphism f : M k ª A m k . Via this isomorphism,n s k s
the involution s m Id defined on the algebra A m k corresponds to ank s

Ž .involution s on the algebra M k , which is the adjoint involution withb n s
respect to some bilinear form b. The form b is symmetric if s is of
orthogonal type, and skew-symmetric if s is of symplectic type.

Ž .For any matrix P, we denote by Int P the associated inner automor-
Ž .Ž . y1phism, that is, Int P M s PMP . We then have the following:

LEMMA 2. Let G be the group of similarities of the bilinear form b. Thens

Ž Ž . .the group of automorphisms of the algebra with in¨olution M k , s isn s b
� Ž . 4Int P , P g G , PG .s s

Proof of Lemma 2. Let B be a matrix of b, and let f be an automor-
Ž Ž . . Ž .phism of M k , s . There exists a matrix P g M k such that f sn s b n s

Ž . y1Int P . The fact that s ( f s f (s implies that the matrices BP andb b
P tB define the same inner automorphism, and hence are proportional.
This means that P is the matrix of a similarity for b, and this proves the
lemma.

Proof of Proposition 2. The proof of Proposition 2 is now easy, follow-
w xing 21, Chap. X . First, one can show that the application c: g g G ¬k

Ž . Ž Ž .. y1 gc g g PG , determined by Int c g s f ( f, is a cocycle. Moreover, ifs

Ž .we start with another isomorphism f9: M k ª A m k , the cocycle wen s k s
obtain is cohomologically equivalent to c. Finally, one can prove that the
isomorphism classes of algebras with involutions defined on k that become

Ž Ž . .isomorphic to M k , s when we extend scalars to k are in bijectionn s b s
1Ž .with H k, PG .s

If b is skew-symmetric, then PG s PGSp , PSp , and this proves parts n n
Ž . Ž .i of Proposition 2. Now if b is symmetric, then PG s PGO b , and sinces

all n-dimensional quadratic forms are isomorphic over k , this proves parts
Ž .ii .
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We will also use the following result:
qŽ .PROPOSITION 3. The morphism Int: PG ª O T induces a morphisms s b1Ž . 1Ž qŽ ..Int*: H k, PG ª H k, O T which maps the isomorphism classs s bw xA, s to the isometry class of T .s

Ž .Proof of Proposition 3. Let P be a matrix in G , and let l P be itss
t Ž . Ž .similarity factor. We have P BP s l P B. Hence, for any M g M k ,n

ty1 y1 t t y1T Int P M s Tr B P M P BPMPŽ . Ž . Ž .Ž . ž /sb

ty1 y1 y1 t ts Tr P B P M P BPMŽ .ž /
y1 y1 ts Tr l P B M l P BM s T M .Ž . Ž . Ž .Ž . sb

If A is a central simple algebra over k, endowed with an involution of
Ž .the first kind s , then it is known that A m A is isomorphic to End A ,k k

Ž .Ž . Ž .the isomorphism being given by a m b z s azs b , for any a, b and
Ž . Ž . Ž Ž ..z g A. In particular, M k m M k , End M k , and modulo thisn n k n

Ž .identification, the automorphism Int P corresponds to the tensor product
Ž y1 . t Ž .P m P . Hence, the determinant of Int P is 1, and Int is a morphism

qŽ .PG ª O T .s s b w xNow, if c is the cocycle representing A, s introduced in the proof of
Ž Ž .. y1 gProposition 2, then for any g g G , Int c g s f ( f. Since s is ank
Ž Ž . . Ž .isomorphism of algebras with involution M k , s ª A m k , s m Id ,n s b k s

Ž Ž . . Ž Ž . .it is also an isometry M k , T ª A m k , T . Indeed for anyn s s s s kb s

x g A, we have

T f x m 1 s Tr s f x m 1 f x m 1Ž . Ž . Ž .Ž . Ž .Ž .s bb

s Tr f s m Id x m 1 f x m 1Ž . Ž . Ž .Ž .Ž .
s Tr f s x x m 1 s Trd s x x s T x .Ž . Ž . Ž .Ž . Ž .Ž . A s

Ž . Ž Ž ..Hence the cocycle Int* c : g ¬ Int c g represents the isometry class of
1Ž qŽ ..the form T in H k, O T . This completes the proof of Proposition 3.s s b

Hence, we now have the diagram

PGs

6

q6 6 6 6Ž . Ž .1 m Spin T O T 1.2 s sb b

To complete the proof of Theorem 1, we have to distinguish the
symplectic and orthogonal cases. Let us assume first that s is of symplec-
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tic type. In that case, b is skew-symmetric and PG s PSp . Since we haves n
qŽ .a morphism PSp ª O T , we also have a morphism between then s b

Ž . wcorresponding simply connected covers Sp ª Spin T 4, Propositionn s b
Ž . x2.24 i , p. 262 . Hence we have the diagram

6 6 6 6

1 m Sp PSp 12 n n

6 6 6t Int1

q6 6 6 6Ž . Ž .1 m Spin T O T 1.2 s sb b

This diagram induces

D21 26Ž . Ž .H k, PSp H k, mn 2

6 6

UtInt* 1

d21 q 26Ž Ž .. Ž .H k, O T H k, m .s 2b

Moreover, we can check that the map D maps the isomorphism class of2
Ž . w x Ž .the algebra with involution A, s to A g Br k . Indeed, we have the2

commutative diagram

6 6 6 6

1 m Sp PSp 12 n n

6 6 66 6 6 6

1 m SL PGL 1,n n n

which induces

D21 26Ž . Ž .H k, PSp H k, mn 2

6 6

D1 26Ž . Ž .H k, PGL H k, m .n n

It is known that D maps the isomorphism class of a degree n algebra A to
w x Ž . Ž w x.its class A g Br k see for instance 21 . Hence, the isomorphism classn

w x 1Ž . w x Ž .A, s g H k, PSp is mapped to A g Br k under D .n 2 2
w xMoreover, we proved in Proposition 3 that the image of A, s under

w x Žw x. U Žw x.Int* is T . Hence, we have d T s t A . From this, and from thes 2 s 1
cohomological definition of the Hasse invariant, we deduce

w x U w xw T s w T q d T s m y1, y1 q t A .Ž . Ž . Ž .Ž .Ž .2 s 2 s 2 s 1b
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Ž .Replacing k, if necessary, by the rational function field k t , t , we may1 2
assume that there exists a division quaternion algebra Q over k. Since t 1
is a morphism m ª m , it can only be zero or the identity. But the2 2
computation we made in Subsection 2.1.3 for the Hasse invariant of the

Ž .trace form of the involution t 9 s t m t on the algebra M k m Q provesm k
that t is zero if m is even and the identity if m is odd. Hence1
Žw x. w xt A s m A and this proves the result in the symplectic case.1

Ž .Since the group PGO q is not connected, the orthogonal case is0
slightly more complicated. We actually have to work with a fixed determi-
nant. Precisely, we first prove the following:

PROPOSITION 4. Isomorphism classes of degree n central simple algebras
Ž .endowed with an in¨olution of orthogonal type and of determinant d q are0

1Ž qŽ ..in one-to-one correspondence with H k, PGO q .0

Proof of Proposition 4. To prove this proposition, we first construct an
exact sequence. Over k , the groups PO and PGO are isomorphic. Hence,s

q q Ž .we also have PO , PGO . Since n is even, the determinant O q ª m0 2
maps both Id and yId to 1. So, we have the diagram

1 1

6 66 6 6

1 m m 1

6 6 6

2 2

detq6 6 6 6Ž . Ž .1 O q O q m 1

6 6 6

0 0 2

q6 6 6 6Ž . Ž .1 PO q PO q m 1,

6 6 6

0 0 2

1 1 1

from which we deduce the exact sequence

p
q1 ª PGO q ª PGO q ª m ª 1.Ž . Ž .0 0 2

Over k, this sequence induces

p*
1 q 1 2H k , PGO q ª H k , PGO q ª k*rk* .Ž . Ž .Ž . Ž .0 0

1Ž Ž ..We proved in Proposition 2 that H k, PGO q is in one-to-one0
correspondence with isomorphism classes of degree n central simple
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algebras endowed with an involution of orthogonal type. Since the set
1Ž qŽ ..H k, PGO q is in bijection with the kernel of p*, the next lemma0

now clearly implies Proposition 4.

w xLEMMA 3. The map p* maps the isomorphism class A, s to the quotient
Ž . Ž . 2d s rd q g k*rk* .0

Let us denote by s the adjoint involution with respect to q . In order0 0
to prove Lemma 3, we first prove the following one.

Ž . Ž q.LEMMA 4. There exists a morphism Int : PGO q ª O T such thatq 0 s 0U 1Ž Ž .. 1Ž Ž q..the induced morphism Int : H k, PGO q ª H k, O T mapsq 0 s 0w x qA, s to the isometry class of T .s

Proof of Lemma 4. The proof of this lemma is analogous to the proof
Ž . Ž .of Proposition 3. We have already seen that for any P g PGO q , Int P0

Ž . qis an isometry for T . Let Int P be its restriction to M . It is ans q n0

isometry for Tq.s0
Ž Ž . . Ž .Let f : M k , s ª A m k , s m Id be an isomorphism of algebrasn s 0 k s

Ž .with involutions. Such a f exists since all orthogonal involutions of M kn s
1Ž Ž .. Ž Ž ..are isomorphic. The cocycle c g Z k, PGO q determined by Int c g0

y1 g w xs f ( f represents A, s .
Ž .Moreover, we have proved that f is an isometry between T and T .s s k0 sq Ž .q qHence, the induced morphism f : M k ª A m k is an isometryn s k s

q Ž q. U Ž .between T and T . From this, we deduce that the cocycle Int c :s s k q0 s
Ž Ž .. qy1 g q qg ¬ Int c g s f ( f represents the isometry class of T .q s

Ž . Ž q.Proof of Lemma 3. Since we have a morphism PGO q ª O T , we0 s 0

have the commutative diagram

pq6 6 6 6Ž . Ž .1 PGO q PGO q m 10 0 2

6 6 6nInt 0q

dq q q6 6 6 6Ž . Ž .1 O T O T m 1.s s 20 0

Moreover, it is easy to check that n is non-trivial. Indeed, let B be a0
diagonal matrix representing q in a fixed basis, and let A be the diagonal0

Ž . Ž .matrix with coefficients 1, . . . , 1, y1 . The matrix of Int A in the basisq
Ž y1 . Ž y1Ž .. Ž .qB e j B e q e of M k can be easily com-i i 1F iF n i j ji 1F i- jF n n s

Ž Ž ..puted, and we get d Int A s y1. Since n is a morphism m ª m ,q 0 2 2
this proves that n is the identity.0
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We now have the diagram

p*1 16Ž Ž .. Ž .H k, PGO q H k, m0 2

6 6

UInt Idq

d*1 q 16Ž Ž .. Ž .H k, O T H k, m .s 20

w qx Ž q. Ž q.It is known that d* maps T to d T rd T . Using the definition of thes s s 0

determinant of an involution given in Subsection 2.2, we get

w xp* A , s s d s rd s .Ž . Ž .Ž . 0

This completes the proof of Lemma 3.

Let us now go back to the proof of Theorem 1. For any « g k*rk*2, we
« « ²let q be the n-dimensional quadratic form q s 1, y1, . . . , 1,0 0

: « Ž . Ž .y1, 1, y« . We call s the associated involution on M k or M k . Its0 n n s
Ž .m 1determinant is y1 « . We will simply denote by q the form q , and by0 0

s the corresponding involution. From Proposition 4, we deduce that0
1Ž qŽ « ..H k, PGO q classifies isomorphism classes of algebras endowed with0

Ž .man involution of orthogonal type and of determinant y1 « .
We now use the following lemma:

LEMMA 5. We ha¨e the commutatï e diagram

6 6 q « 6 q « 6Ž . Ž .1 m O q PGO q 12 0 0

6 6 6t Int2

q6 6 6 6Ž . Ž .« «1 m Spin T O T 1.2 s s0 0

Lemma us assume for the moment that this lemma is proved. We then
obtain the diagram

D21 q « 26Ž Ž .. Ž .H k, PGO q H k, m0 2

6 6

UtInt* 2

d21 q 26Ž Ž .. Ž .«H k, O T H k, m .s 20

Žw x. U Žw x.As in the symplectic case, we get d T s t A . Hence we have2 s 2
Ž . Ž . Žw x. Ž Ž .. U Žw x.«w T s w T q d T s y1, d s q t A . We now conclude2 s 2 s 2 s 20

as in the symplectic case.
Ž .Replacing k, if necessary, by the rational function field k t , t , we may1 2

assume that there exists a division quaternion algebra over k. Since t is a2
morphism m ª m , it can only be zero or the identity. But in subsection2 2
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2.1.3, we computed the Hasse invariant of the trace form of the involution
Ž . Ž .s 9 s t m s on the algebra A s M k m Q, and we proved w T sm k 2 s 9

Ž . w x Ž . w xm y1, ya q m Q s m y1, ya q m A . Moreover, one can easily
Ž .mcheck that the determinant of the involution s 9 is equal to ya . Hence

Ž . Ž Ž .. w xwe actually have w T s y1, d s 9 q m A . This proves that t is2 s 9 2
zero if m is even and the identity if m is odd, and gives the result in the
orthogonal case.

Proof of Lemma 5. We have already seen that for any matrix B g
Ž « . qŽ .«GO q the associated inner automorphism is in O T . Hence we have0 s 0qŽ « . qŽ .«a morphism O q ª O T , and a morphism between the corre-0 s 0

Ž « . Ž . Ž w«sponding simply connected covers Spin q ª Spin T see again 4,0 s 0
Ž . x.Proposition 2.24 i , p. 262 , which yields the commutative diagram

6 6 « 6 q « 6Ž . Ž .1 m Spin q O q 12 0 0

6 6 6n Int

q6 6 6 6Ž . Ž .« «1 m Spin T O T 1.2 s s0 0

LEMMA 6. The map n is equal to 0.

This lemma implies the previous one. Indeed, the fact that n s 0 implies
Ž « . Ž .«that the morphism Spin q ª Spin T factors through m and induces a0 0 20qŽ « . Ž .«morphism O q ª Spin T .0 s 0

Proof of Lemma 6. Let us first consider the case when « s 1. The
previous diagram induces

SN1q 26Ž .Ž .0 q k k*rk*0

6 6Int n *

SN2q 26Ž .Ž .O T k k*rk* ,s0

where SN and SN are spinor norms, respectively, with respect to q and1 2 0
T . Since n can only be 0 or the identity, to prove Lemma 6, it suffices tos0 qŽ .Ž . Ž . Ž Ž ..find an element f g O q k such that SN f / 1 and SN Int f s0 1 2

Ž Ž ..n* SN f s 1.1
If ¨ is any non-isotropic vector of V s k n, and if t is the orthogonal1 ¨1

Ž Ž .. Ž .reflexion with respect to ¨ , then SN Int t s 1. Indeed, let ¨ , . . . , ¨1 2 ¨ 2 n1
Ž . Ž . Ž .be such that ¨ , . . . , ¨ is an orthogonal basis of V, q , and let a s q ¨ .1 n 0 i 0 i

Ž . Ž .Then one can check that the standard basis f of M k si j 1F i, jF n n
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Ž . Ž . Ž .End V defined by f ¨ s d ¨ is orthogonal for T and T f sk i j l i l j s s i j0 0

ay1a . Moreover,i j

¡ i s 1 i / 1
f if ori j ½ ½j s 1 j / 1~Int t f s t ( f (t sŽ . Ž .¨ i j ¨ i j ¨1 1 1 i s 1 i / 1yf if or .i j¢ ½ ½j / 1 j s 1

Ž Ž . .Hence if t is the orthogonal reflexion in M k , T with respect to f ,f n s i ji j 0
Ž .we get Int t s t ( ??? (t (t ( ??? (t . It is now easy to compute¨ f f f f1 12 1 n 21 n1

Ž Ž ..SN Int t s 1.2 ¨1
² :The form 1, y1 represents all elements of k*, and replacing k if

Ž .necessary by the rational function field k t , we may assume that k is not
Ž . 2quadratically closed. Hence there exists ¨ g V such that q ¨ f k* .1 0 1

Ž .There also exists w g V such that q w s 1. Let f s t (t . We have1 0 1 ¨ w1 1qŽ . Ž . Ž . Ž Ž .. Ž Ž . Ž ..f g O q , SN f s q ¨ / 1 and SN Int f s SN Int t (Int t0 1 0 1 2 2 w ¨1 1
Ž Ž .. Ž Ž ..s SN Int t SN Int t s 1. Lemma 6 is now proved in that case.2 w 2 ¨1 1

2 'Ž .Let us assume now that « / 1 g k*rk* . Let L s k « . Since « is a
square in L, the extension to L of the form q« is q . Hence we have the0 0
two diagrams

6 6 « 6 q « 6Ž . Ž .Ž . Ž .Ž .1 m k Spin q k O q k 12 0 0

6 6 6n1

q6 6 6 6Ž . Ž .Ž . Ž .Ž . Ž .« «1 m k Spin T k O T k 1, 12 s s0 0

6 6 6 q 6Ž . Ž .Ž . Ž .Ž .1 m L Spin q L O q L 12 0 0

6 6 6n2

q6 6 6 6Ž . Ž .Ž . Ž .Ž . Ž .1 m L Spin T L O T L 1, 22 s s0 0

Ž . Ž .with n s 0. Diagram 2 can be deduced from diagram 1 by scalar2
extension. Hence, n s 0 implies n s 0. This completes the proof of2 1
Theorem 1.

3. INVOLUTIONS OF THE SECOND KIND

Ž .From now on, we assume that we are in case ii . Hence we consider
Ž . Ž .algebras with involution A, s that satisfy hypothesis H : A is a semi-
Ž . Ž .simple algebra over k, Z A is a quadratic etale extension of k, dim A´ k
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s 2n2, and s is of the second kind. This means that either A is a central
simple algebra over a quadratic separable field extension K of k, endowed
with an involution of the second kind s , or there exists a central simple
algebra B over k such that A s B = B0, where B0 denotes the opposite

Ž . Ž .algebra of B, and s is given by s x, y s y, x .
In both cases, we let a g k*rk*2 be a generator of the quadratic etale´

2Ž . Ž . w x Ž .extension Z A rk, i.e., Z A s k X r X y a , and we denote by the
Ž .only non-trivial k-automorphism of Z A . Moreover, we denote by m the

integral part of nr2, i.e., n s 2m or n s 2m q 1.

Ž .3.1. Classification of the Algebras A, s

Let AA be the group of automorphisms of the algebra with involution
Ž 2 . Ž . Ž t t.M , ) , where ) is defined by X, Y * s Y , X . The group AA isn

Ž . Ž . Ž .generated by the morphisms f : X, Y ¬ Y, X , and f : X, Y ¬0 P
Ž y1 Ž y1 . t t.PXP , P YP for all P g PGL . Hence, we have the exact sequencen

p
1 ª PGL ª AA ª m ª 1,n 2

and PGL corresponds to the elements in AA that act trivially on then
center of M 2.n

PROPOSITION 5. We ha¨e one-to-one correspondences between

Ž . 1Ž .i H k, AA and isomorphism classes of algebras with in¨olution
Ž . Ž . Ž w x.A, s satisfying the hypothesis H see 23, III 1.4 .

Ž . 1Ž .ii The quotient of H k, PGL by the action of m and isomorphismn 2
Ž . Ž . Ž .classes of algebras with in¨olution A, s satisfying H and such that Z A

is split.

Ž .Remark. When Z A is split, there exists a central simple algebra B
0 1Ž .over k such that A s B = B . It is known that H k, PGL is inn

one-to-one correspondence with the isomorphism classes of central simple
Ž w x.algebras B of degree n over k see 21, X.5 . But we have to consider here

1Ž .the quotient of H k, PGL by the action of m . Indeed, the algebrasn 2
Ž 0 Ž . Ž .. Ž 0 Ž . Ž ..with involution B = B , x, y ¬ y, x and B = B, x, y ¬ y, x are

isomorphic even though B and B0 are not isomorphic in general.

Ž .Proof of Proposition 5. The proof of part i of Proposition 5 is analo-
gous to the beginning of the proof of Proposition 2. We have to notice that

Ž . Ž 2Ž . .the algebra with involution A m k , s m Id is isomorphic to M k , ) .k s n s
As we will need it later, we give here an explicit description of this
isomorphism.

Ž .Let us assume first that Z A is split, and let B be a central simple
0 Ž .algebra over k such that A s B = B . Let f : B m k ª M k be ank s n s

isomorphism. Then f composed with the transposition is an isomorphism
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0 Ž .B m k ª M k , and one can easily check the following:k s n s

LEMMA 7. The map

2 0F : M k ª A m k s B m k = B m kŽ . Ž . Ž .n s k s k s k s

X , Y ¬ fy1 X , fy1 Y tŽ . Ž . Ž .Ž .
y1ŽŽ .is an isomorphism. Moreo¨er, the in¨erse of F is gï en by F x, y m

. Ž Ž . Ž . t.l s f x m l , f y m l .

Ž . Ž .Let us assume now that Z A is a field extension of k, Z A s K s
'Ž . Ž .k a . Let f be an isomorphism f: A m k ª M k . Again one canK s n s

easily check the following two lemmas:

LEMMA 8. Let i and j be the maps

i : A m k ª A m kk s K s

x m l ¬ x m l,k K

j: A m k ª A m kK s k s

x x 'x m l ¬ m l q m l a .K k k'2 2 a

They are well defined, and satisfy

Ž .i i( j s Id;
Ž . Ž .ii i( s m Id ( j s 0;
Ž . Ž . Ž .iii j( i q s m Id ( j( i( s m Id s Id.

LEMMA 9. The map

F : M 2 k ª A m kŽ .n s k s

X , Y ¬ j(fy1 X q s m Id ( j(fy1 Y tŽ . Ž . Ž . Ž .
y1Ž .is an isomorphism. Moreo¨er, the in¨erse of F is gï en by F x m l sk

Ž Ž . Ž Ž .Ž .. t.f ( i x m l , f ( i( s m Id x m l .k k

Ž .Let us now prove part ii of Proposition 5. The exact sequence

1 ª PGL ª AA ª m ª 1n 2

induces

p p*
1 1 21 ª PGL k ª AA k ª m ª H k , PGL ª H k , A ª k*rk* .Ž . Ž . Ž . Ž .n 2 n
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But, in contrast with the previous cases, m does not act trivially on PGL .2 n
Ž . 1Ž .In particular, if a: g ¬ a g is a cocycle in Z k, PGL that does notn

Ž y1 . thave all its values in m , and if we denote by a the cocycle g ¬2
Ž Ž .y1 . t Ž y1 . ta g , then a and a are not cohomologically equivalent in

1Ž . 1Ž .Z k, PGL , but they do correspond to the same class in H k, AA .n
Ž Ž .y1 . t y1 Ž .gIndeed, one can check that a g s f a g f . Hence the kernel of0 0

1Ž .p* is in bijection with the quotient of H k, PGL by the action of m .n 2
Ž .The next lemma now clearly implies part ii of Proposition 5:

Ž .LEMMA 10. The image under p* of the isomorphism class of A, s is a
Ž .generator a of Z A o¨er k.

1Ž .Proof. Let a g Z k, AA be the cocycle defined by

a g s Fy1 (g F s Fy1 ( Id m g (F(gy1 .Ž . Ž .
Ž . Ž .It represents the class of A, s , and we want to compute p* a . For any

Ž .f g AA, p f is equal to 1 if f acts trivially on the center k = k ofs s
Ž .2M k , and to y1 if f acts by permuting the two factors.n s

Let us assume first that a s 1. Then it is easy to check that for any
y1 Ž . y1Ž . Ž .g g G , F ( Id m g (F(g I , 0 s I , 0 . Hence for any g g G ,k n n k

Ž Ž .. Ž .p a g s 1, and this proves that p* g is the trivial cocycle.
Let us consider now the case when a / 1. One can easily check the

following lemma:

LEMMA 11. We ha¨e

' 'Id m g if g a s aŽ .
i( Id m g ( j sŽ . ½ ' '0 if g a s y a ;Ž .

' '0 if g a s aŽ .
i( s m g ( j sŽ . ½ ' 's m g if g a s y a .Ž .

Then, using the description of F given in Lemma 9, one can check that

' 'I , 0 if g a s aŽ . Ž .n
a g I , 0 sŽ . Ž .n ½ ' '0, I if g a s y a .Ž . Ž .n

Ž .Hence the cocycle p* a is given by

' '1 if g a s aŽ .
p* a g sŽ . Ž . ½ ' 'y1 if g a s y a ,Ž .

and this proves the result.
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3.2. Trace Forms

Ž .The trace forms associated with the algebra with involution A, s have
been defined in Section 1. Let us denote by T the trace form of the

Ž 2 . q Ž 2 .qalgebra with involution M , ) , and by T its restriction to M . Then n
Ž . Ž t .form T is defined by T X, Y s Tr Y X . The following proposition

holds:

Ž q.PROPOSITION 6. There exists a morphism r : AA ª O T such that the
1Ž . 1Ž Ž q..induced morphism r*: H k, AA ª H k, O T maps the isomorphism

Ž . qclass of the algebra with in¨olution A, s to the isometry class of T .s

Proof. The proof is more or less the same as for Proposition 3 and
Lemma 4. For any f g AA, f is an isometry for the trace form T. Hence its

Ž . q qrestriction r f to A is an isometry for T .
Ž Ž .2 .Moreover, as F is a morphism of algebras with involutions M k , )n s

Ž .ª A mk , s m Id , it is also an isometryk s

2M k , T ª A m k , T .Ž . Ž .Ž .Ž . kn s k s s s

q Ž Ž .2 .q qHence the induced morphism F : M k ª A mk is an isometryn s k s
q Ž q. Ž . Ž y1 g .between T and T . This proves that r* c : g ¬ r F ( F ss k s

Fqy1 (g Fq is a cocycle that represents the isometry class of Tq.s

The next result is the following:

Ž .PROPOSITION 7. i We ha¨e the commutatï e diagram

6 6 6 6

1 PGL AA m 1n 2

6 6 6r t

q q q6 6 6 6Ž . Ž .1 O T O T m 1.2

Ž . Ž . nŽny1.r2ii The map t is gï en by t x s x .

Ž . Ž .Proof. To prove i , we have to prove that r f is of determinant 1 forP
any P g PGL . But the )-invariant elements of M 2 aren n

q2 tM s X , X , X g M .Ž .� 4Ž .n n

ŽŽ .. Ž 2 .q Ž .Hence e , e is a basis of M . The matrix of r f in thisi j ji 1F i, jF n n P
Ž y1 . t Ž Ž ..basis is P m P . Hence we have det r f s 1.P

Ž . Ž .To prove part ii , we must compute the determinant of r f . Let us0
Ž 2 .q �Ž . ŽŽ .order the basis of M as follows e , e , e , e ,n i i i i 1 F i F n i j ji
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Ž .. 4 Ž .e , e . Then, the matrix of r f isji i j 1F i- jF n 0

1¡ ¦
. . .

1
0 1 .
1 0

. . .
0 1¢ §
1 0

Ž Ž .. Ž .nŽny1.r2 Ž .Hence det r f s y1 , and this proves part ii of the proposi-0
tion.

3.3. In¨ariants of the Trace Form Ts

We can compute the invariants of the trace form T . We obtain thes

following result:

Ž .nPROPOSITION 8. The determinant of T is equal to ya . Its Hasses

in¨ariant is trï ial.

To prove Proposition 8, we first prove the following lemma:

² : qLEMMA 12. We ha¨e T s 1, ya m T .s s

Let us assume first that a is different from 1. The map Aqª Ay,
y q' ² :x ¬ a x induces an isometry between T and y a m T . Now, ifs s

q �Ž . 4 y �Ž . 4a s 1, A is the set x, x , x g B and A is x, yx , x g B . So, the
q y Ž . Ž . ymap A ª A , x, x ¬ x, yx induces an isometry between T ands

² : q y ² : qy 1 m T . Hence in both cases, we have T , y a m T . Sinces s s

T s Tq[ Ty , this proves the lemma.s s s

Ž q. 2Since dim T s n , this already implies that the determinant of T iss s

Ž .n2 Ž .n 2ya s ya g k*rk* . In particular, it is trivial if n is even. More-
over, to compute the Hasse invariant of T , it is actually enough to knows

the determinant of the form Tq. It is given by the following:s

q Ž q. Ž .nŽny1.r2LEMMA 13. The determinant of T is d T s ya .s s
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Ž .This can be easily deduced from Proposition 7. Indeed, diagram i
induces

p*1 26Ž .H k, AA k*rk*

6 6r* t *

d11 q 26Ž Ž ..H k, O T k*rk* .

Ž Žw x.. Ž Žw x.. Ž q.Hence, we have d r* A, s s t * p* A, s , i.e. d T s1 s

Ž . Ž q. nŽny1.r2 Ž q. Ž q.t * a d T s a d T , and we only have left to prove that d T
Ž .nŽny1.r2s y1 , which can be done by direct computation.

Ž .We end the proof of Proposition 8 applying Lemma 1 iv . We get
Ž . Ž 2Ž 2 . .Ž . Ž Ž . .Ž .w T s n n y 1 r2 y1, a q n n q 1 r2 a , ya s 0.2 s

3.4. Determinant Class Modulo 2

Ž Ž .In this section, we assume that n is even, n s 2m see Remark i
.below . To define a non-trivial invariant of the algebra with involution

Ž . qA, s , we consider the Hasse invariant of the restricted trace form T .s

Precisely, we give the following definition:

Ž . Ž .DEFINITION 2. The determinant class modulo 2 of A, s is D A, s
Ž Ž . .Ž . Ž . Ž q. Ž .s m m y 1 r2 y1, ya q m a , 2 q w T g Br k .2 s 2

Ž . Ž w x .Remarks. i See also 13 . If n is odd, n s 2m q 1, then we can give
the same definition for the determinant class mod 2, but it is easy to check
that it is always trivial. Indeed, this can be done by a direct computation in

Ž .the split case see proof of Proposition 10 below . In the general case, it is
a consequence of Springer’s theorem, since it is known that a maximal
commutative subfield L of A is a splitting field for A, and has degree
n s 2m q 1 over K.

Ž . w xii In 8 , Knus, Merkurjev, Rost, and Tignol defined an invariant of
Ž .the algebra with involution A, s which is a central simple algebra over k

endowed with an involution of the first kind. One can deduce from their
Ž .results that its class in the Brauer group of k is equal to D A, s q

Ž .m y1, a . In particular, if m is even, then this class coincides with the
determinant class mod 2.

The determinant class mod 2 can be easily computed in some special
cases. Let us assume first that a s 1. Then there exists a central simple
algebra B of degree n over k such that A s B = B0 and s is given by
Ž . Ž .s x, y s y, x . We then have the following:

Ž . Ž .PROPOSITION 9. The determinant class mod 2 of A, s is D A, s s
w xm B .
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Proof. In this case, the form Tq is isometric to the quadratic forms

Ž 2 .Trd x . The Hasse invariant of this form has been computed by SaltmanB
Ž . w x w x w xunpublished , Serre 23, annexe , Lewis and Morales 13 , and Tignol 25 .

Ž Ž 2 .. Ž Ž . .Ž . w xThey proved that w Trd x s m m y 1 r2 y1, y1 q m B . Hence2 B
Ž . Ž . w xthe determinant class mod 2 of A, s is D A, s s m B .

'Ž .Let us assume now that a / 1, and let K s k a . We have the
following:

Ž .PROPOSITION 10. If A is the split algebra M K , and if s is the adjointn
in¨olution s with respect to some hermitian form h, then the determinanth

Ž . Ž . Ž Ž ..class mod 2 of A, s is D A, s s a , d h .h h

Proof. Let B be a matrix of the hermitian form h, chosen as before in
Ž .qdiagonal form. Its coefficients b , . . . , b lie in k. Then, M K consists1 n n

y1 y1'of all matrices of the form B M q a B N, where M is a symmetric
matrix, and N a skew-symmetric one. It is easy to check that the basis

y1 y1 y1'B e j B e q e j a B e y eŽ . Ž .Ž . Ž . ž /i i i j ji i j ji1FiFn 1Fi-jFn 1Fi-jFn

Ž .q qof M K is orthogonal for T , and we getn s h

q y2 y2 ² :T s b , . . . , b [ 1, ya m c ,² :s 1 nh

² y1 y1 y1 y1 y1 y1 :where c is the form c s 2b b , 2b b , . . . , 2 b 2b . Hence1 2 1 3 ny1 ny1
q Ž q. Ž² : .the Hasse invariant of T is w T s w 1, ya m c . Since the forms 2 s 2h h

Ž . Ž .c has dimension N s n n y 1 r2 s m 2m y 1 and determinant
m Ž .ny1 Ž q. Ž Ž . .Ž .2 d h , Lemma 1 gives w T s N N y 1 r2 y1, ya q2 s h

Ž m Ž .ny1. Ž Ž . .Ž . Ž . Ž Ž ..a , 2 d h s m m y 1 r2 y1, ya q m a , 2 q a , d h , and
this proves the result.

Finally, we have the following:

Ž w x.PROPOSITION 11 see also 8 . Let us assume there exists a central simple
algebra A o¨er k, endowed with an in¨olution of the first kind s , such that0 0

y Ž .A s A m K and s s s m . Then the determinant class mod 2 of A, s0 k 0
is gï en by

w xa , d s q m A if s is of orthogonal type,Ž .Ž .0 0 0D A , s sŽ . ½ w xm y1, a q m A if s is of symplectic type.Ž . 0 0

q q y'Proof. Since A is the direct sum of A and a A , we have a0 0
decomposition of Tq ass

q q ² : yT s T [ y a m T .s s s0 0

q y m Ž .We have seen that T and T both have determinant 2 d s .s s 00 0
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Let us assume that s is of orthogonal type. Then Ty has dimension0 s 0
Ž . Ž . Ž . Ž q. Ž q.n n y 1 r2. Hence by Lemma 1 i and iii , we get w T s w T q2 s 2 s 0
Ž y. Ž Ž .. Ž Ž . .Ž . Ž .w T q a , d s q m m y 1 r2 y1, ya q m a , 2 . Using Theo-2 s 00

Ž q. Ž y. Ž . Ž Ž ..rem 1, we see that w T q w T s w T y y1, d s is equal to2 s 2 s 2 s 00 0 0w xm A , and this gives the result in the orthogonal case.0
If s is of symplectic type, then its determinant is trivial, and Ty has0 s 0

Ž . Ž q.dimension n n q 1 r2. Hence, again applying Lemma 1, we get w T s2 s

Ž q. Ž y. Ž . Ž Ž . .Ž . Ž .w T q w T q m y1, ya q m m y 1 r2 y1, ya q m a , 2 .2 s 2 s0 0
Ž q. Ž y. Ž .Moreover Theorem 1 in that case gives w T q w T s w T s2 s 2 s 2 s0 0 0

Ž . w xm y1, y1 q m A , and this ends the proof of this proposition.0

Ž .3.5. Cohomological Description of D A, s

In this section, if a is any element of k*rk*2, we will also denote by a
1 ' 'Ž . Ž .the associated cocycle in Z k, m , that is, a s g a r a . We let m2 g a n

be the group m twisted by the cocycle a . This means that G acts on mn k a n
by

gx if a s 1gg *x s , for any g g G .kg y1½ x if a s y1g

Ž . Ž .Let A, s be an algebra with involution satisfying H , and let a be a
Ž . Ž .generator of the extension Z A rk. With the isomorphism class of A, s ,

Ž . 2Ž .we associate an invariant DD A, s which lies in the quotient of H k, ma n
Ž .by the action of m , and which we call the determinant class of A, s .2

This can be done for any value of the degree n.
If n is even, we have a non-trivial morphism m ª m . Moreover, fora n 2

any x g m , x and xy1 have the same image in m . Hence, we have aa n 2
2Ž . 2Ž .morphism H k, m rm ª H k, m . The main result of this section isa n 2 2

the following:
2Ž .THEOREM 2. If n is e¨en, then the morphism H k, m rm ªa n 2

2Ž . Ž .H k, m maps the determinant class DD A, s to the determinant class2
mod 2.

I thank J.-P. Serre for the useful comments and suggestions he made
concerning this section.

Ž .In order to explain how DD A, s is defined and to prove this theorem,
we need a few preliminaries.

3.5.1. Classification of Algebras with a Fixed Center

We have seen in Proposition 5 that isomorphism classes of algebras with
Ž . Ž . Ž .involution A, s satisfying H and such that Z A is split are classified

1Ž .by the quotient of H k, PGL by the action of m .n 2
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2 'Ž . w xLet a g k*rk* , a / 1, and let K s k a . Following 23, I.5 , to
Ž .classify isomorphism classes of algebras with involution A, s satisfying

Ž . Ž .H and such that Z A s K we have to twist the group PGL by an
cocycle. Precisely, if G is an algebraic group on which m acts, we denote2
by G the group G twisted by the cocycle a . If the action of m on G isa 2
denoted by x ¬ e . x, then the action of G on G is given by g*x s a .g xk a g

for any g g G . In particular, G acts on AA byk k a

gf if a s 1,gg *f s gy1½ f ( f ( f if a s y1.0 0 g

Moreover, for any P g PGL , we have fy1 ( f ( f s f y1 t. Hence then 0 P 0 ŽP .
action of G on PGL is given byk a n

¡g P if a s 1,Ž . g
g * ~P s ty1¢ g P if a s y1.Ž .Ž . g

We now have the following:

PROPOSITION 12. There is a one-to-one correspondence between the quo-
1Ž .tient of H k, PGL by the action of m and isomorphism classes ofa n 2

Ž . Ž . Ž .algebras with in¨olution A, s satisfying H and such that Z A s
w x Ž 2 .k X r X y a .

Proof. If a s 1, this has already been proved in Proposition 5. Let us
assume now that a / 1. The proof we give here is explained in a more

w xgeneral context in 23, I.5.5, Corollaire 2 . We denote by s the involutiona
tŽ . Ž .defined on the algebra M K by s M s M . Let f be the naturaln a

Ž . Ž . Ž .2isomorphism M K m k ª M k , let F be the morphism M k ªn K s n s n s
1Ž .A m k described in Lemma 9, and let a g Z k, AA be the cocyclek s

Ž Ž . . Ž .representing the isomorphism class of M K , s defined by a g sn a

Fy1 (g
F. The cocycle a is given by

Id if a s 1g
a g sŽ . ½ f is a s y1.0 g

Hence a is the image of the cocycle a under the map m ª AA defined2
by 1 ¬ Id and y1 ¬ f . From now on, we will also denote by a the co-0
cycle a.

From the exact sequence 1 ª PGL ª AA ª m ª 1, we deducen 2

1 ª PGL ª AA ª m ª 1,a n a a 2



INVARIANTS OF ALGEBRAS WITH INVOLUTION 325

which induces

p*
1 1 1H k , PGL ª H k , AA ª H k , m .Ž . Ž . Ž .a n a a 2

1Ž .Exactly as in the proof of Proposition 5, the quotient of H k, PGL bya n
the action of m is in bijection with the kernel of p*.2

1Ž .Since a is a cocycle with values in AA, the cohomology sets H k, AA and
1Ž . w xH k, AA are in one-to-one correspondence 23, I.5.3, Proposition 35 bis .a

1Ž .Hence H k, AA classifies isomorphism classes of algebras with involu-a

Ž . Ž .tion A, s satisfying H . For the same reason, and since m is abelian,2
1Ž . 1Ž .translation by a is a bijection H k, m ª H k, m . Hence the base2 a 2

1Ž .point of H k, m is a , and the kernel of p* is in one-to-one correspon-a 2
Ž .dence with isomorphism classes of algebras with involution A, s such

'Žw x. Ž . Ž .that p* A, s s a , i.e., such that Z A s k a . This proves the result.

We then have the following:

PROPOSITION 13. There exists a morphism

H 1 k , PGL rm ª H 1 k , Oq Tq ,Ž . Ž .Ž .a n 2 sa

Ž . qwhich maps the isomorphism class of A, s to the isometry class of T .s

Ž .Proof. From diagram i of Proposition 7, we deduce
p6 6 6 6

1 PGL AA m 1a n a a 2

6 6 6r t

q q q6 6 6 6Ž . Ž .1 O T O T m 1.r*Ža . r*Ža . r*Ža . 2

Moreover, since the cocycle a represents the isomorphism class of the
Ž Ž . . Ž .algebra with involution M K , s , r* a represents the isometry classn a

q Ž q. qŽ q.of the trace form T . Hence the twisted groups O T and O Ts r*Ža . r*Ža .a

are respectively isomorphic to the orthogonal group and the special
orthogonal group of the form Tq.sa1Ž . Ž . Ž .Let a be a cocycle in Z k, AA . If a g Ker p* , that is, p* a s a ,a

Ž . qŽ q.then r* a will be a cocycle with values in O T , representing insa1Ž qŽ q.. qH k, O T the isometry class of T . Hence the restriction of r to thes sa 1Ž . 1Ž qŽ q..kernel of p* induces a morphism H k, PGL rm ª H k, O T ,a n 2 sa

and this proves Proposition 13.

Ž .3.5.2. Definition of DD A, s

Ž .We can now give the definition of DD A, s . From the exact sequence

1 ª m ª SL ª PGL ª 1,a n a n a n
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1Ž . 2Ž .we deduce a connecting map D : H k, PGL ª H k, m , which2 a n a n
1Ž . 2Ž .induces a map DD: H k, PGL rm ª H k, m rm , where the actiona n 2 a n 2

2Ž .of m on H k, m is induced by its action on m .2 a n a n

Ž .DEFINITION 3. The determinant class of A, s is the image under DD

Ž .of the isomorphism class of A, s .

3.5.3. Proof of Theorem 2

Let us assume now that n is even. Since we have a morphism PGL ªa n
qŽ q.O T , we also have a morphism between the corresponding simplysa

Ž q. Ž w Ž .connected covers SL ª Spin T see again 4, Proposition 2.24 i , p.a n sax.262 . Hence we have the commutative diagram

6 6 6 6

1 m SL PGL 1a n a n a n

6 6 6t

q q q6 6 6 6Ž . Ž .1 m Spin T O T 1.2 s sa a

It induces

D21 26Ž . Ž .H k, PGL H k, ma n a n

6 6t *

d21 q q 26Ž Ž .. Ž .H k, O T H k, m .s 2a

1Ž . 1Ž qŽ q..By Proposition 13, the morphism H k, PGL ª H k, O T in-a n sa1Ž . 1Ž qŽ q..duces a morphism H k, PGL rm ª H k, O T that maps thea n 2 sa

Ž . qisomorphism class of A, s to the isometry class of T . Moreover, sinces
2Ž . 2Ž .m acts trivially on m , the morphism H k, m ª H k, m also in-2 2 a n 2

2Ž . 2Ž .duces a morphism H k, m rm ª H k, m . Hence we actually havea n 2 2
the diagram

DD1 26Ž . Ž .H k, PGL rm H k, m rma n 2 a n 2

6 6t *

d21 q q 26Ž Ž .. Ž .H k, O T H k, m .s 2a

The commutativity of this diagram now gives

w Tq s w Tq q t * DD A , s .Ž .Ž .Ž . Ž .2 s 2 sa

The Hasse invariant of Tq is easy to compute. Indeed, the s -invariants aa 'Ž .elements of M K are matrices of the type M q a N, where M is an
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symmetric matrix, and N a skew-symmetric one, both with coefficients in
Ž . Ž .k, and one can check that the basis e j e q eii 1F iF n i j ji 1F i- jF n

q' Ž . Ž .j a e y e of M K is orthogonal for the trace form. Wei j ji 1F i- jF n n
get

n n y 1Ž .q ² : ² :T s n 1 [ 2, y2a .sa 2

Ž q. Ž Ž . .Ž . Ž .Hence w T s m m y 1 r2 y1, ya q m a , 2 , and we now have2 sa

D A , s s t * DD A , s .Ž . Ž .Ž .

To prove Theorem 2, we only have left to prove that the map t is
Ž .non-trivial. Let t and t be two indeterminates, and let L s k t , t . It is1 2 1 2

enough to prove that t is non-trivial over the field L.
Ž .This can be done as follows. Let Q be the quaternion algebra t , t ,0 1 2

defined over L, let s be its canonical involution, and let us consider the0
y'Ž Ž . .algebra with involution Q s Q m L a , s s s m . By Proposition0 L 0

Ž . Ž . Ž .11, its determinant class mod 2 is given by D Q, s s y1, a q t , t .1 2'Ž . Ž . Ž .Hence, over L a , D Q, s s t , t is a division quaternionLŽ a . 1 2 LŽ a .' '
Ž . Ž Ž ..algebra. This proves that over L, D Q, s s t * DD Q, s is not trivial,

and Theorem 2 is now proved.

Remark. Let B be a central simple algebra of degree n over k, and let
us consider the algebra B = B0 endowed with the involution s defined by
Ž . Ž . q Ž 2 .s x, y s y, x . Its trace form T is isometric to the form Trd x .s B

2Ž .In that case, a s 1 and H k, m is the n-part of the Brauer group ofa n
Ž . Ž . w x Ž .k, Br k . Moreover, we have DD A, s s B g Br k rm . Hence then n 2

w xformula given in 23, annexe; 13, 25 for the Hasse invariant of the trace
Ž 2 .form Trd x is a particular case of Theorem 2.B

4. DECOMPOSABILITY

In this section, we assume that A is a central simple algebra. We recall
the following definition:

Ž .DEFINITION 4. The algebra with involution A, s is said to be decom-
Ž .posable if s stabilizes a non-trivial subalgebra A of A, with Z A s1 1

Ž .Z A .

Indeed, if s stabilizes A , it also stabilizes the centralizer A of A in1 2
A . Let us denote by s the restriction of s to A for i s 1, 2. We then1 i i
have A s A m A and s s s m s .1 K 2 1 2
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It is a classical problem to study the decomposability of an algebra with
involution, and the invariants may be a useful tool in that context. In
particular, for involutions of the first kind, Knus, Parimala, and Sridharan
have proved the following:

w xPROPOSITION 14 9 . Let A be a central simple algebra of degree 4, and s
Ž .an in¨olution of the first kind on A. Then A, s is decomposable if and only

if the determinant of s is trï ial.

In the second kind case, we now have the following result:

PROPOSITION 15. Let A be a central simple algebra of degree 4, and s an
Ž .in¨olution of the second kind on A. If A, s is decomposable, then its

Ž .determinant class mod 2, D A, s , is trï ial.

Proof. To prove this result, we use the following lemma:

Ž w x w x.LEMMA 14 Albert 1 or 24 . Let Q be a quaternion algebra o¨er K,
endowed with an in¨olution of the second kind s . Then there exists a
quaternion algebra Q defined o¨er k such that Q s Q m K and s s t my,0 0 k
where t is the canonical in¨olution on Q .0

To prove Proposition 15, let us assume now that the algebra with
Ž .involution A, s is decomposable. Since A is of degree 4, it actually

decomposes as a tensor product of two quaternion algebras. Hence,
because of Albert’s lemma, there exist two quaternion algebras Q and Q1 2

Ž . Ž . yover k such that A s Q m Q m K, and s s t m t m , where t1 k 2 k 1 2 i
is the canonical involution on Q . Since t m t is of orthogonal type, byi 1 2

Ž .Proposition 11, we get that the determinant class mod 2 of A, s is
Ž . Ž Ž .. w xD A, s s a , d t m t q 2 Q m Q . Moreover, the involution t m1 2 1 2 1

t is decomposable, and hence has trivial determinant, which proves the2
result.

Another natural question when we study the decomposability of alge-
bras with involution is the existence of indecomposable involutions. In the
first kind case, Amitsur, Rowen, and Tignol have constructed an indecom-

w xposable involution on a biquaternion division algebra 3 . In the second
kind case, examples of indecomposable involutions have been constructed
on degree 4 algebras that are either split or similar to a quaternion algebra
w x16 . Here, using the existence of indecomposable involutions of the first
kind, we construct an indecomposable involution of the second kind on a
biquaternion division algebra. Namely, we have the following result:

Ž .PROPOSITION 16. Let A , s be a biquaternion dï ision algebra, en-0 0
dowed with an indecomposable in¨olution of the first kind and of orthogonal

'Ž Ž .. Ž .type. Then the algebra A s A m k t m k t is a biquaternion dï i-0 k kŽ t .
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Ž . ysion algebra, and the in¨olution s s s m Id m is an indecomposable0
in¨olution of the second kind on A.

'Proof. First of all, since t is an indeterminate, the morphism k ª
' 'Ž . Ž . Ž Ž ..k t induces an injective morphism Br k ª Br k t that preserves

'w x Ž .indices 15 . Hence A s A m k t is a biquaternion division algebra.0 k
Moreover, by Proposition 11, we can compute the determinant class

Ž . Ž . Ž .mod 2 of A, s . We get the following: D A, s s d, t , where d iskŽ t .
the determinant of the involution s m Id. But the determinant of s is0 0
non-trivial, since s is indecomposable. Hence d, which is the image of0
Ž . 2 Ž . Ž . 2d s under the morphism k*rk* ª k t *rk t * is also non-trivial.0

w x Ž .Now, one can check 15, pp. 383]385 that t, d is the twisted LaurentkŽŽ t ..
y 2'Ž .ŽŽ ..series algebra k d x, , where x s t. Hence it is a division algebra,

Ž . Ž Ž .. Ž .and a fortiori t, d / 0 g Br k t . Hence D A, s is non-trivial, andkŽ t . 2
by Proposition 15, this proves the result.
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