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We consider the complexity of numerical integration and piecewise polynomial at
approximation of bounded functions from a subclass of Ck([a, b]"Z), where Z is
a finite subset of [a, b]. Using only function values or values of derivatives, we
usually cannot guarantee that the costs for obtaining an error less than = are
bounded by O(=&1�k) and we may have much higher costs. The situation changes
if we also allow ``realistic'' estimates of ranges of functions or derivatives on inter-
vals as observations. A very simple algorithm now yields an error less than = with
O(=&1�k)-costs and an analogous result is also obtained for uniform approximation
with piecewise polynomials. In a practical implementation, estimation of ranges
may be done efficiently with interval arithmetic and automatic differentiation. The
cost for each such evaluation (also of ranges of derivatives) is bounded by a con-
stant times the cost for a function evaluation. The mentioned techniques reduce the
class of integrands, but still allow numerical integration of functions from a wide
class with O(=&1�k) arithmetical operations and guaranteed precision =. � 1998

Academic Press

1. MOTIVATION

One main point in the dispute between B. N. Parlett (1992) on the one
hand, and J. F. Traub and H. Woz� niakowski (1992) on the other, about
the relevance of information-based complexity (IBC) was the problem class
F. Let I: F � G be a mapping into the normed linear space G. IBC theory
is interested in the estimation of the minimal cost, which is necessary to
approximate I[ f ] for f # F with at most an error =. ``The ingredient of
IBCT that allows it to generate irrelevant results is the problem class F.
... We might say that knowledge of membership in F is information and
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should have a cost attached to it'' (B. N. Parlett, 1992). ``Do researchers in
other disciplines charge for F? For example, researchers in numerical
analysis often analyze the cost and error of important algorithms. The
analysis depends on F. To give a simple example, the analysis of the com-
posite trapezoidal rule usually requires that the second derivative of the
integrand is bounded. There is no charge for membership in F. Indeed, how
would one charge for knowing that a function has a bounded second
derivative?'' (J. F. Traub and H. Woz� niakowski, 1992).

Only reliable information about the membership to the class F is able to
produce a reliable output. Although we do not agree with B. N. Parlett's
opinion that ``whenever F is very large, it is realistic to assign no cost it''
(How can the size be measured?), there are situations, where the mem-
bership is obvious and situations, where it may be ``expensive'' to verify. In
general, it seems to be difficult to find a bound on a higher derivative of
f but it seems to be relatively easy to recognize that a function f is com-
posed from standard functions and that it may have only singularities of,
e.g., the type |x&z0 |:, :>0, and z0 # R fixed, or jump discontinuities
produced by a piecewise definition of f. In this second case, we will see that
it is not very expensive to extract information about the ranges of higher
derivatives, which is useful for error estimation. However, what is also
important, we may use this more global information in order to make the
algorithm faster in a certain precise sense. The reason for that seems to be
that adaption (respectively mathematics) can be more effective when it is
based on additional ``reliable global information'' instead of only ``local
information'' such as function evaluations.

2. INTRODUCTION

In many applications, the numerical calculation of integrals is desired or
it is one constituent in a more complex problem. Consequently, there are
many proposals for linear quadrature formulae Qm of the form

Qm[ f ]= :
m

&=1

a& f (x&) (1)

or

Qm[ f ]= :
m

&=1

a+ f (&+)(x+),

or for adaptive quadrature schemes using at most m function evaluations
or evaluations of derivatives (see, e.g., the books of Brass (1977), Davis
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and Rabinowitz (1984), or Krommer and U� berhuber (1994)). We define
the remainder functional Rm by

Rm[ f ]=|
1

&1
f (x) dx&Qm[ f ].

If we are sure that the integrand f is sufficiently smooth, we might trust
the output of most of the frequently used quadrature methods in ``many''
cases, since the rate of convergence of either sequences of linear quadrature
formulae with increasing number of nodes x+ or of adaptive techniques is
high. The situation changes if there are singularities, possibly hidden in any
derivative, whose locations and types are unknown. It is not possible to
guarantee the detection of singularities by using only function values or
values of derivatives (see Wasilkowski and Gao (1992)). If a singularity is
not detected, it may influence the speed of convergence drastically. While
functions in Ak[a, b], i.e., functions with a bounded kth derivative, may be
integrated with an error of order O(n&k) by using n function values, we can
expect an error of the order n&:&1 for functions similar to f (x)=|x&x0 | :

(no linear method, yielding o(n&:&1) for all x0 , is known). This is a
particular great decline if :<<k. However, the main result in Wasilkowski
and Gao's article is that, in a certain sense, singularities can be found with
high probability.

Example. The standard routine for our purposes, DQAGS, of the
standard integration package, QUADPACK (see Piessens et al. (1983)), is
used to calculate

Iz :=|
1

0 \sin x+
1
8

|x&z|3�2+ dx

for different values of z. First we require a relative accuracy of 10&8 and
choose z=zi=(2i&1)�400, i=1, ..., 100. In most cases, DQAGS calculates
Iz with the given accuracy, while in two cases, the error is more than 100
times the permitted error. Requiring an accuracy of 10&9 and choosing
z=zi=(2i&1)�4000, i=1, ..., 1000, there is one z such that the error is
more than 10,000 times the permitted error.

Of course, it depends on the underlying problem, whether errors as in
the example are acceptable. We cannot avoid such errors if we may only
use function values of the integrand or of some of its derivatives. If the
values of the integrand themselves stem from the solution of a complicated
numerical problem, we can indeed use only function values and we have to
live with possible uncertainties in the output of an integration routine.
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The situation changes, if we may allow ``realistic range estimates'' of f or
its derivatives as observations. We first define the set of functions.

Definition 1. We say that a function f is in Sk[a, b] if it is bounded
on the interval [a, b] and if there is a subset Z :=Z( f )=[z0 , ..., zr] of
[a, b] and a constant c such that f has a k th derivative on [a, b]"Z
satisfying

| f (k)(x)|�c } dist([x], Z� )&k, where Z� :=Z _ [a&1].

Here and in the following, for arbitrary subsets Y1 , Y2 of Rd, d�1, we use
the notation

dist(Y1 , Y2)=inf [&y1& y2 &� | yi # Yi].

(The set Z� is defined for the case Z=<).
What could ``realistic range estimates'' for functions in Sk[a, b] mean? In

practice, it may be difficult to estimate f on the whole interval [a, b] in one
step (see Section 4), but the corresponding mapping should at least yield a
bound for the range of f if we ask for it on a sufficiently small subinterval
of [a, b]. Furthermore, if dist([zi], [c, d ]) is much smaller than d&c, then
it may be too difficult to estimate f (k) on [c, d ]. We therefore require
that a ``centered extension'' of [c, d ] by a certain factor ;�1 still does not
contain zi . By a centered extension of an interval [x& y, x+ y], we mean

;h[x& y, x+ y] :=[x&;y, x+;y].

For the next definition we need the modulus of an interval [c, d ],

|[c, d ]| :=max[ |c| , |d |].

Definition 2. We say that the pair (E0 , Ek) is a realistic range
estimator for f # Sk[a, b] if the following conditions are satisfied.

(i) There are positive numbers $ and M such that
E0( f, [c, d ])#f ([c, d ]) is an interval, whose width is less than M
whenever [c, d ]/[a, b] and d&c<$;

(ii) There are numbers ;�1 and # such that for each
[c, d ]/[a, b], Ek( f, [c, d ]) is an interval (possibly of infinite width),
which contains the set f (k)([c, d ]) and which satisfies

|Ek( f, [c, d ])|�# dist(;h[c, d ], Z)&k.

The intervals Ei ( f, [c, d ]), i=0, k, are then called realistic range estimates.
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In Section 3, we describe a simple algorithm for integration of
f # Sk[a, b] involving function evaluations and realistic range estimates.
For all such functions, we can prove that we obtain the precision = after
O(=&1�k) function evaluations and range estimations. Modifying the set of
functions, we show an analogous result for uniform approximation in
Section 4.

If the integrand is given as a combination of standard or library func-
tions, we have all necessary information to produce realistic range
estimates and therefore to integrate numerically with an error within any
required accuracy. Although it does not seem to be well known (``global
information of that kind is only rarely available in practice'' [anonymous])
interval arithmetic and differentiation tools such as automatic differentia-
tion are able to provide realistic range estimators in many cases very
efficiently. Basic properties of these two techniques are therefore described
in Section 5. In Section 6, we discuss the consequences of the practical
computation of realistic range estimates for the application of the results
stated in Sections 3 and 4.

3. AN ALGORITHM FOR SELF-VALIDATING NUMERICAL
INTEGRATION

In order to formulate our algorithm, we first have to introduce some
notation and notions from quadrature theory.

Of course, we may take any quadrature formula Qm of the form (1) and
transform it to any interval [c, d ] (see Brass (1977, p. 14)). We denote this
transformed formula by Qm; [c, d ] . Let Rm[Pk]=0, where Pk denotes the
set of all polynomials of degree less than or equal to k. Denote furthermore
by Var g the total variation of the function g. Then, the Peano kernel
representation (see Brass (1977, p. 41))

Rm[ f ]=|
1

&1
f (s)(x) dKs+1(x)

=|
1

&1 _ f (s)(x)&
1
2

(max
t

f (s)(t)+min
t

f (s)(t))& dKs+1(x),

s=0, 1, ..., k

yields constants

cs=2&s&2 Var Ks+1 ,
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such that

|Rm; [c, d ][ f ]|�cs } (c&d )s+1 } max
x, y # [c, d ]

| f (s)(x)& f (s)( y)|,

where s=0, 1, ..., k.

Suppose now that f # Sk[a, b] and that we have a realistic range estimator
(E0 , Ek). We obtain

|Rm; [c, d ][ f ]|� min
i # [0, k]

ci } (c&d ) i+1 } Ei ( f, [c, d ])=: u(Qm , f, [c, d ]),

i.e., we may say that u(Qm , f, [c, d ]) is the uncertainty of Qm for the
function f on the interval [c, d ], (with respect to (E0 , Ek)).

Algorithm 1. Our initial (sub-)interval is [a, b].

(1) Estimate the uncertainties on each new subinterval.

(2) If the sum of the uncertainties is less than the required accuracy,
apply the quadrature formula Qm on each subinterval and stop. Otherwise
subdivide the interval with the greatest uncertainty in two intervals of
equal width and continue with step (1).

Theorem 1. Let f # Sk[a, b] and let (E0 , Ek) be a realistic range
estimator. Then, Algorithm 1 yields an =-approximation to �b

a f (x) dx after at
most O(=&1�k) range estimations and function evaluations.

The proof of the theorem requires the following estimate.

Lemma. Let D0>0, *>1 and let :>0. Define

Dj+1=Dj {1+: \D0

Dj +
1�*

= .

Then, there is a constant

q�min {1, \ 2:
*2*+

*

=
such that

Dj>q } j* } D0 .
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Proof of the Lemma. We prove the lemma by induction over j. The
lemma obviously holds for j=1 if q<1+:, since

D1=(1+:) D0>q } D0 .

By the induction hypothesis, we obtain

Dj+1>q } j* } D0 } \1+
:

j } q1�*+ .

This is greater than or equal to q } ( j+1)* } D0 if and only if

'j :=
(1+1�j)*&1

1�j
<

:
q1�*.

Defining h(x)=(1+x)*, we see that

'j� max
x # [0, 1]

|h$(x)|=h$(1)=
*

2
} 2*,

i.e., the number q only has to satisfy

*2*&1�
:

q1�*.

This yields the statement. K

Proof of the Theorem. First note that the properties of E0 imply that
the maximal uncertainty on the subintervals would tend to zero if the algo-
rithm would have no exit point. For a given *>0, we may therefore
assume that, at a certain time, the algorithm has generated subintervals of
[a, b] such that the maximal uncertainty on any subinterval does not
exceed * for the first time. We will estimate how many subintervals may
have been generated at most. Therefore, we have to estimate the widths of
the produced subintervals from below. Let, almost without restriction,

[aj , aj+1]=[aj , aj+_]/_z& ,
z&+z&+1

2 &
be one of the subintervals and let, for simplicity, z&=0. Our interval
originates from a bisection of [aj&_, aj+_] or of [aj , aj+2_] such that
the uncertainty on one of these two intervals must be greater than *. This
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means at least that the estimate using the kth derivative is greater than *,
i.e.,

ck# } 2k+1 } _k+1 } (aj&;_)&k>*. (2)

=: L

Setting

aj+1&aj=kj } aj ,

inequality (2) is equivalent with

aj+1>aj {1+\ *
Laj

(1&;k j)
k+

1�(k+1)

= .

In the case kj>1�(;+1), we trivially have

aj+1>\1+
1

;+1+ aj . (3)

Otherwise, we obtain

aj+1>aj {1+\ *
L(1+;)k aj+

1�(k+1)

= . (4)

The right-hand side in (4) is less than that in (3) if and only if

aj>
(1+;) *

L
. (5)

Therefore, inequality (4) always holds under the assumption (5). Let now
[a0 , a1], [a1 , a2], ... be the consecutive subintervals to the right of
(1+;)*�L. Since the right-hand side of (4) is an increasing function of aj ,
we obtain

aj�Dj ,

where

D0 :=
(1+;) *

L

309COMPLEXITY OF SELF-VALIDATING INTEGRATION



and

Dj+1 :=Dj {1+
1

1+; \
D0

Dj +
1�(k+1)

=�q } ( j+1)k+1 } D0 .

The last inequality is an application of the lemma above, where we set
:=1�(1+;) and *=k+1. We therefore have

aj�
z&+z&+1

2
if j>\z&+z&+1

2qD0 +
1�(k+1)

=const } *&1�(k+1).

Suppose now that our algorithm has produced the subinterval [c, c+_].
This was done by a bisection of an interval of width 2_. The uncertainty
on this latter interval must have been greater than *. By assumption (i) of
the theorem,

_�
*

2M
or _�

$
2

,

where the constants M and $ are introduced in the theorem. Therefore, the
number of produced subintervals that intersect [0, (1+;) *�L] is at most
1+(1+;) *�(L } min[$�2, *�(2M)]), which is bounded from above by a
fixed constant if *�1.

In summary, we see that [z& , (z&+z&+1)�2] and thus also the whole
interval [a, b] is completely covered by O(*&1�(k+1)) produced subinter-
vals. We need O(*&1�(1+k)) calculations of function values and of ranges of
the function and its derivatives to obtain the accuracy * } *&1�(1+k). This is
exactly what had to be proved, since each subdivision costs two calcula-
tions of ranges. K

4. AN ALGORITHM FOR SELF-VALIDATING NUMERICAL
APPROXIMATION

The problem of approximating a given function uniformly on an interval
[a, b] has a more local character than numerical integration. This makes
the formulation of approximation algorithms principally easier. We stop
refining our approximation in a certain subinterval exactly if we have
obtained there the given precision. The results, however, require more
stringent assumptions. Boundedness of the given function by a constant M
is not sufficient, since it can only yield boundedness of the approximation
error by M. We need a smoothness assumption. Here, we choose
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Lipschitz continuity, i.e., boundedness of the first derivative, but this is only
exemplary.

Definition 1'. We say that a function f is in S� k[a, b] if its first
derivative is bounded on the interval [a, b] and if there is a subset
Z :=Z( f )=[z0 , ..., zr] of [a, b] and a constant c such that f has a k th
derivative on [a, b]"Z satisfying

| f (k)(x)|�c } dist([x], Z� )&k&1, where Z� :=Z _ [a&1].

Realistic range estimators for the class S� k[a, b] clearly have to satisfy
assumptions different from those for Sk[a, b].

Definition 2'. We say that the pair (E0 , Ek) is a realistic range
estimator for f # S� k[a, b] if the following conditions are satisfied.

(i) There are positive numbers $ and M such that
E0( f, [c, d ])#f ([c, d ]) is an interval, whose width is less than M(d&c)
whenever [c, d ]/[a, b] and d&c<$.

(ii) There are numbers ;�1 and # such that for each
[c, d ]/[a, b], Ek( f, [c, d ]) is an interval (possibly of infinite width),
which contains the set f (k)([c, d ]) and which satisfies

|Ek( f, [c, d ])|�# dist(;h[c, d ], Z)&k+1.

The intervals Ei ( f, [c, d ]), i=0, k, are again called realistic range
estimates.

In order to formulate our approximation algorithm, we first have to
choose a standard projection L: C[&1, 1] � Pk , for example, an inter-
polation operator using k+1 nodes. For the error

R[ f ]= f&L[ f ]

we have again R[Pk]=0. Transformed on the interval [c, d ], the corre-
sponding error R[c, d ] satisfies error estimates

&R[c, d ][ f ]&�cs } (d&c)s } max
x, y # [c, d ]

| f (s)(x)& f (s)( y)|,

where s=0, 1, ..., k. (6)

Analogously to the integration problem, we define the uncertainty of the
approximation operator on the interval [c, d ].
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Algorithm 2. Our initial (sub-)interval is [a, b].

(1) Estimate the uncertainties on each new subinterval.

(2) If the uncertainty on a subinterval is not less than the required
accuracy, subdivide this interval in two intervals of equal width and con-
tinue with step (1).

(3) Transform and ``apply'' L on each of the subintervals.

Remarks. (1) The application of L in step (3) of the algorithm can
mean, for example, that we calculate the coefficients of the approximation
in terms of a basis of polynomials (e.g., in terms of transformed Chebyshev
polynomials).

(2) One often requires some smoothness conditions for the
approximation. If we use an interpolation operator with nodes at the
boundary of each subinterval, we obtain continuity. We may, for example,
use interpolation at the extrema of the Chebyshev polynomials of the first
kind; this yields relatively small error constants cs . If we want to have a
higher degree of smoothness, we might use multiple nodes at the boundary.
However, then Eq. (6) is not always satisfied for small s.

Theorem 2. Let f # S� k[a, b] and let (E0 , Ek) be a realistic range
estimator for f in the sense of Definition 2'. Then, Algorithm 2 yields a
piecewise polynomial approximation with uniform error less than = after at
most O(=&1�k) range estimations and function evaluations.

The proof is almost the same as that of Theorem 1. Essentially the only
difference is that we have to replace * by = and to replace each occurrence
of k in an exponent by k&1. Then we obtain the accuracy = by a subdivi-
sion into O(=&1�k) intervals.

5. TOOLS FOR SELF-VALIDATING NUMERICAL
COMPUTATIONS

As indicated in the Introduction, interval arithmetic and automatic dif-
ferentiation may form efficient realistic range estimators. For convenience,
we list some basic facts about these techniques. Detailed descriptions may
be found in the books of Alefeld and Herzberger (1983) and Rall (1981).

Due to the fact that computers can only try to approximate the mathe-
matical reality and due to the necessity to guarantee that computed results
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are reliable, interval arithmetic was developed. It enables an automatic
error control. Interval arithmetic uses statements such as

if x # [a, b] and y # [c, d ], then x+ y # [a+c, b+d ]

(i.e., [a, b]+[c, d ]=[a+c, b+d ])

or

if x # [a, b] then ex # [ea, eb] (i.e., e[a, b]=[ea, eb])

to guarantee that the output of a calculation is in a certain interval
(possibly of infinite width) if the input values are in certain intervals. In
a realization on a computer, we have to round down the left end-point of
the resulting intervals and round up the right end-point in order to get
guaranteed inclusions.

For the formulation of the assumptions below, we have to introduce the
width

w([a, b])=b&a

of an interval. One should be aware of the fact that elementary rules of
calculus are not valid in each case. For example, denoting by sqr the
square function, we readily verify

sqr([&1, 2])=[0, 4] but [&1, 2] } [&1, 2]=[&2, 4].

Different ways of representing a function may yield different outputs of an
interval computation. This implies that we have to do mathematics not for
functions but for their representations. In order to control an expression
representing f, we replace the argument at each of its, say r, occurrences by
a separate variable, for example,

f (x)=
x

x+1
} cos x then ef (x, y, z)=

x
y+1

} cos z

and

f (x)=ef (x, x, x).

We see that there is no difference between using f or ef when dealing only
with numbers as arguments. For intervals X, interval arithmetic calculates
ef (X r) instead of f (X) and of course, we have f (X)/ef (X r). We may also

313COMPLEXITY OF SELF-VALIDATING INTEGRATION



consider f (X) as the range of ef on the main diagonal of X r. This illustrates
how interval arithmetic may increase the range. However, if ef is Lipschitz
continuous, then the increase is bounded by a constant times w(X) (see
Alefeld and Herzberger, 1981, Chap. 3).

In particular removable singularities, e.g., in a ratio, usually cause
trouble in interval computations since they cause output intervals of
infinite width. If f is continuous this does not have to be true for its expres-
sion ef . Using interval arithmetic we can therefore treat only subclasses of
continuous functions, namely those with an expression ef (x, y, z, ...) being
bounded on a certain region, which has the diagonal x= y=z=... in its
interior. On the other hand, suppose that there is one simple zero in the
numerator and one in the denominator of an expression. In order to apply
any numerical integration or approximation routine reasonably, we should
at least be able to decide whether both zeros coincide or not. This is not
possible in general. If the zeros coincide, the singularity is removable and
the numerical algorithm may yield a reasonable result. If they do not, the
integral does not exist but the algorithm may yield a number, which is of
course misleading. It is therefore not obvious that our restriction is a true
one for a general purpose integration algorithm.

Finally we note that ef ([a, b]r) _ ef ([b, c]r)/ef ([a, c]r) for a�b�c
and often, the difference between the two sides is considerable. A useful
way to estimate the range of f more accurately on an interval is therefore
successive subdivision of this interval. If ef is bounded by a fixed constant,
whenever its argument X r at least satisfies w(X)<$ with a fixed positive $,
then we can obtain a global bound on f after a finite number of sub-
divisions.

The errors of many numerical algorithms for calculating a functional on
Ck[a, b] may be estimated in terms of ranges of derivatives. If we have a
reasonable expression for derivatives, interval arithmetic may therefore
yield explicit error bounds. In order to obtain such an expression, we could
first start a computer algebra system and then differentiate the given
expression a certain number of times. This would take a lot of time and the
resulting expressions are often lengthy. A very effective alternative is the use
of automatic differentiation (AD). AD simply replaces each operation with
function values by an operation with vectors, which contain the numerical
values of Taylor coefficients, according to certain rules (see Rall, 1981).
Therefore we might use the same output of the compiler but a different
arithmetic afterwards, showing that we have no additional cost for com-
pilation. The cost for a calculation of the k th derivative is bounded by a
fixed constant dk=O(k2), which is independent of the given function, times
the cost for the evaluation of a function value.

Of course, AD implicitly also uses an expression, say ef (s) : Rrs � R, for
the derivative f (s) but usually a relatively economic one. Furthermore, it
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may easily be combined with interval arithmetic. This combination is thus
an effective way to calculate ranges of derivatives on intervals. Now, a
measure for the complexity is therefore the number of function calls,
no matter whether a function value, or a vector of estimates for Taylor
coefficients is desired.

6. THE PRACTICAL COMPUTATION OF REALISTIC RANGE
ESTIMATES AND ITS CONSEQUENCES

As indicated in the preceding section, for a given interval [c, d ], we may
apply interval arithmetic to get an estimate for f ([c, d ]) and we may
combine interval arithmetic and AD in order to estimate f (k)([c, d ]). From
Theorem 1, we readily obtain

Corollary 1. Let f # Sk[a, b], denote by ef : [a, b]r � R the used
expression for f, and by ef (k)([a, b]"Z)rk � R the used expression for f (k).
Furthermore, assume that

(i) ef is bounded in a neighbourhood of the main diagonal of [a, b]r,

(ii) there are constants ;�1 and # such that

|ef (k)(X rk)|�# dist(;hX, Z)&k,

for all intervals X satisfying (BhX) & Z=<.

Then, the pair (E0 , Ek) defined by

E0( f, X)=ef (X r) and Ek( f, X)=ef (k)(X rk) (7)

is a realistic range estimator and Algorithm 1 yields an =-approximation of
�b

a f (x) dx after at most O(=&1�k) arithmetic operations.

Remarks. (1) The assumption (ii) may be interpreted in such a way
that there is a region G/Rrk (see Fig. 1 for rk=2) on which ef (k)(x),
x=(!1 , ..., !rk) # Rrk is defined and bounded by const } dist([x], �G)&k,
where �G is the boundary of G. The region G is the intersection of nonempty
circular cones with vertices at the points (zi , ..., zi) and with the main
diagonal !1= } } } =!rk as symmetry axis.

(2) If we want to estimate f (k) via interval arithmetic and AD, we
obtain estimates for lower order derivatives automatically or with almost
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FIGURE 1

no additional costs. It may therefore improve the algorithm by operating
with a modified uncertainty

u~ (Qm , f, [c, d ])= min
0�s�k

cs(d&c)s+1 w(ef (s)([c, d ]rs)),

where r0=r and rs is defined analogously to rk .

(3) The algorithm is of course similar to many other proposals of
self-validating integration algorithms (see, e.g., Corliss, 1987, or Corliss and
Rall, 1987).

(4) Surprisingly, for the functions considered in Theorem 1, the
asymptotically most costly part of the algorithm is the search for the inter-
val with maximal uncertainty. For example, suppose we have a list of +
intervals ordered by uncertainty and we have to insert a produced subinter-
val. This takes tln + comparisons. Producing n subintervals takes tn
function evaluations but t�n

+=1 ln +tn ln n comparisons. We should
therefore modify the algorithm such that we collect the intervals with
uncertainty # [2k, 2k+1), k # Z in a class Jk and that we do not always
have to subdivide the interval with maximal uncertainty, but any interval
from Jk with maximal k. Since the uncertainty on an interval I is at least
twice the uncertainty on an interval produced by bisection of I, it can be
seen that the number of function evaluations of the modified algorithm is
at most twice that of the original algorithm.

Of course, we also obtain
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Corollary 2. Let f # S� k[a, b], denote by ef : [a, b]r � R the used
expression for f and by ef (k) : ([a, b]"Z)rk � R the used expression for f (k).
Furthermore, assume that

(i) ef is Lipschitz continuous in a neighbourhood of the main diagonal
of [a, b]r,

(ii) there are constants ;�1 and # such that

|ef (k)(X rk)|�# dist(;hX, Z)&k&1,

for all intervals X satisfying (;hX) & Z=<.

Then, the pair (E0 , Ek) defined by (7) is a realistic range estimator and
Algorithm 2 yields a piecewise polynomial approximation with uniform error
less than = after at most O(=&1�k) arithmetic operations.

Analogous remarks as above, except for Remark 3, also concern
Corollary 2.
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