
Comput. Math. Applic. Vol. 13, No. 5/6, pp. 519-536, 1987 0097-4943/87 $3.00+0.00 
Printed in Great Britain. All rights reserved Copyright © 1987 Pergamon Journals Ltd 

T E S T  S C H E D U L E S  F O R  V L S I  C I R C U I T S  

H A V I N G  B U I L T - I N  T E S T  H A R D W A R E t  

M. S. ABADIR~ and M. A. BREUER 
Department of  Electrical Engineering, University of  Southern California, Los Angeles, 

CA 90089-078 I, 
U.S.A. 

A~t rae t - -Numerous  built-in test techniques exist for testing structures within a VLSI chip. In general 
these techniques deal with a repeated application of  the following steps: (1) generate a test vector; 
(2) transmit it to the structure being tested; (3) process the test through the structure; (4) obtain the 
response from the structure; and (5) process the response. These steps constitute a test schema. Because 
these steps must be repeated for each test vector, it is possible that steps in processing one test vector can 
overlap those used in processing another vector. The manner of overlapping this testing process leads to 
the concept of  a test schedule. In this paper we first present a model for built-in test techniques and for 
describing test schemas and schedules. We introduce the new concept of an I-path which is used to transfer 
data from one place in a circuit to another, without modifying the data. Finally results are presented 
describing how to create test schedules that minimizes the total testing time. Lower bounds on the minimal 
test time are also derived. 

1. I N T R O D U C T I O N  

The emergence of  VLSI has led to significant problems of chip and system testing. One approach 
to addressing this problem is to adopt testable design methodologies (TDMs)[1, 2, 3] during the 
early stages of  chip design. A TDM deals with the complete process of (1) designing an easily 
testable structure, and (2) testing the structure using external and/or built-in test hardware. 
Examples of well known TDMs are scan-path, LSSD, scan/set, BILBO, syndrome testing, and 
autonomous testing [4]. Over 20 TDMs exist for PLAs alone [5]. 

A test schema specifies how a test methodology is to execute. The main aspects specified by a 
test schema are: (1) the generation of  a test vector; (2) the transfer of the test vectors to the circuit 
structure, referred to as the kernel, to be tested; (3) the propagation of the test vectors through 
that structure; (4) the transfer of  response data to some response analysis circuit; and (5) the 
processing of  the response data. 

When a test methodology is employed in an actual circuit, many transformations may occur to 
a test schema. For example, there may be many ways to transfer the test vectors from the vector 
generator to the kernel and from the kernel to the response evaluator. These transfer paths are 
called identity paths, or 1-paths, since the data does not get transformed. The result of this mapping 
or embedding of  a test methodology into an actual circuit produces what we call a test plan for 
the circuit. A test plan specifies how the test methodology is to be executed in the given circuit. 

In most cases the processing of test vectors can be pipelined through a circuit, thus reducing the 
total test time. The manner of overlapping the processing of test vectors leads to the concept of 
a test schedule. Clearly, it is of interest to construct test schedules that optimizes total test time. 

This paper deals with the following subjects: (1) modeling TDMs and their test schemas; (2) 
embedding a TDM into a circuit containing a structure to be tested and generating an appropriate 
test plan; and (3) creating a schedule for the given test plan which minimizes the total time required 
to test the structure. The later concept is similar to that used in optimizing static pipelines [6]. Yet, 
there are key differences between the two problems, and hence our approach and results are tailored 
to the problem in hand. Those differences will be discussed at the end of the paper. 
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2. T E S T A B L E  DESIG N  M E T H O D O L O G I E S  

In this section we will introduce a framework for a methodology that incorporates structural, 
behavioral, quantitative, and qualitative aspects of  known design-for-test techniques, and can 
support a systematic design for testability synthesis process [1, 2]. 

A testable design methodology (TDM) deals with the complete process of designing and testing 
an easily testable circuit structure. There are three major components that form a TDM. The first 
deals with the structural aspect of the methodology and how the structures involved are 
interconnected. The second deals with the operational aspect of the TDM. The last component 
deals with measures and criteria that reflect the various costs associated with the TDM and its 
merits. In the next three subsections we will discuss the TDM components in more detail. 

2.1. The TDM structural template 

The template of a TDM describes its structural architecture. It conveys information about the 
type, design style, and size of a circuit structure to which the TD M is applicable. This structure 
is referred to as the kernel of  the TDM. The template of a TDM also describes the built-in-test 
(BIT) structures needed by the methodology and the connection paths that must exist between them 
and the kernel. These BIT structures are employed by a TD M to carry out one or more of the 
following tasks: (1) generate the test stimuli for the kernel; (2) process the test responses; (3) gain 
access to the kernel input and/or  output ports; (4) control the testing process; (5) modify or add 
features to the kernel to make it easily testable. 

As an example, consider the structural template of the BILBO TDM [7] shown in Fig. 1. The 
labels associated with the kernel indicate that the BILBO TDM is applicable to PLAs or random 
combinational logic. The template also indicates that the BILBO TDM employs two linear 
feedback shift registers B1 and B2, the first acts as a pseudo random number generator and the 
second as a signature analyzer. 

It it important to note that an arc between two structures in a TDM template has a broader 
meaning than just a wire or a set of wires. It represents a data transfer path between the two 
structures. Such a path can be as simple as a wire, or a complex path through a number of  busses, 
registers and MUXs. This simple yet powerful concept represents an important departure from 
previous descriptions of TDMs. 

2.2. The TDM test schema 

A test schema describes how a test methodology is to execute. In general, a test schema consists 
of  three sections: a head, a body, and a tail. The body of a test schema describes the on-chip actions 
and constitutes the life cycle of a single test vector from the time it is generated until its effects 

Signature 

Fig. 1. The BILBO structural template. Register B1---Clear; pseudo random number generator (RNG). 
Kernel---Combinational structure; n inputs and m outputs; design style: PLA or random logic. Register 

B2--Clear; signature analyzer (SA). 
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on the kernel have been captured and processed. The main aspects specified in the body of  a test 
schema have been previously defined. In addition to the actions in the body of a schema which 
must be executed once for every test vector, a test schema often has a head (tail) section in which 
initialization (closing) actions are specified. 

There are two kinds of  actions within a test schema: data transfer actions and data processing 
action. A data transfer action calls for transferring data (without modifying it) between two 
structures. The format of  a data transfer action is as follows: 

Transfer (source --* destination) 

A data processing action calls for propagating data through a structure. If that structure has 
different modes of  operation, one of these modes is specified in the action. The format of a data 
processing action is as follows: 

Structure (mode of operation) 

As an example consider the BILBO test schema shown below: 

HEAD 
BI (clear) 
B2 (clear) 

BODY 
Execute T times: 

B1 (random number generation) 
Transfer (B1 output-*kernel input) 
Kernel (-) 
Transfer (kernel output~B2 input) 
B2 (signature analysis) 

TAIL 
Transfer (B2 output~scan-out output pin) 

The body of  the schema has to be executed T times, where T is the number of test vectors to 
be used. First, the input BILBO register, BI, is clocked while in the random number generation 
(RNG) mode to produce a new test vector. Next the output of B 1 is transferred to the kernel inputs, 
the test vector then propagates through the kernel logic, and finally the response is transferred to 
the second BILBO register, B2, which is clocked while in the signature analysis (SA) mode. The 
head and tail sections are both self explanatory. 

2.3. The TDM measures 

The TDM measures reflects the various cost of implementing the methodology as well as its 
merits. Examples of these measures are area overhead, test time, effects on circuit speed, number 
of  extra I/O pins required, and fault coverage. These measures can be used to evaluate and compare 
different methodologies. 

The values of many of these measures are often functions of the circuit to be made testable. For  
example, the number of  random test vectors T required by the BILBO TDM to get 95% single 
stuck-at fault coverage is a function of  the kernel. Moreover there are usually several ways of 
implementing a TDM, each with a different set of values of  the measures. The latter concept is 
discussed further in the next section. 

In this paper we will focus on techniques for calculating and optimizing the value of  one of the 
key measures associated with a TDM, namely the test time. For  further details on the different 
kinds of  measures associated with TDMs and how they can be computed and used in a system 
that assists designers in producing testable VLSI chips refer to [2]. 

3. E M B E D D I N G  TDMs INTO VLSI C I R C U I T S  

Let us assume that we are interested in one of the TDMs to a given structure within a circuit 
under consideration (C). We will refer to this structure as the kernel. The circuit C is assumed to 
be complex, consisting of  registers, RAMs, ROMs, PLAs, busses, and random combinational 
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Fig. 2. Examples of structures with various I-modes. (a) P/P 1-mode M(MUX: X0 ~ Y)--actn,ation plan: 
MUX(select 0); P/P 1-mode M(MUX: X I ~ Y)--activation plan: MUX(select 1). (b) S/S 1-mode M(SR: 
Si,~Sout)--activation plan: SR(Shift) . . . . .  SR(Shift)~(n times). (c) P/S l-mode M(SR: X~Sout)-- 
activation plan: SR(Latch)--,,SR(Shift)--,, . . . .  SR(Shift)~(w-1 times). (d) SIP 1-mode M(SR: 

Si, --* Y)~activation plan: SR(Shift) . . . . .  SR(Shift) (w times). 

logic. Often, structures in the neighborhood of a kernel can be used--possible after simple 
modifications--to aid in the testing of the kernel. For example, a register connected to the kernel 
inputs can be used to gain access to the kernel, or it can be modified to become a BILBO register 
which can be used to supply test patterns to the kernel. The same statement still applies if the 
register is connected to the kernel input through a multiplexer. This concept of passing data 
unchanged through circuit structures is very important and plays a major role in the process of 
designing testable circuits. In the next subsection this concept will be formally defined. 

3. I. Data transfer paths 

Definition. A structure S with an input port X and an output port Y is said to have an identity 
mode (1-mode), denoted by M(S: X ~ Y), if the data on port X can be transferred, possibly after 
clocking one or more times, to port Y. A time tag t and an activation plan p are associated with 
every I-mode, where t is the time, in clock cycles and gate delays, for the data to be transferred 
from X to Y, and p indicates the sequence of data processing actions that have to be carried out 
by structure S in order to activate the mode. The format for these data processing actions is the 
same as the one used in Section 2.2 for describing test schemas. 

There are 4 different types of I-modes depending on the size of ports involved and the scheme 
used for transferring the data. Let w denote the width of the data being transferred, measured in 
units of  bits, and let x and y denote the width of ports X and Y, respectively. 

(1) Parallel to parallel 1-mode (P/P I-mode): In this mode x = y = w, and the data at X is 
transferred in parallel to Y. An example of a structure with parallel I-modes is a 2-to-1 multiplexer 
as shown in Fig. 2a. 

(2) Serial to serial 1-mode (S/S I-mode): In this mode x = y  = 1, and the w data bits are 
transferred serially from X to Y. The time tag t associated with an S/S 1-mode indicates the time 
for one of the data bits to travel from X to Y. A shift register with an S/S I-mode is shown in 
Fig. 2b. 

(3). Parallel to serial 1-mode (P/S I-mode): In this mode x = w and y = 1. Only structures with 
internal memory elements, such as registers, can have such a mode. The data is first entered in 
parallel via X and latched, than it is transferred serially to Y. The time tag of a P/S I-mode indicates 
the time for the last data bit to appear at Y. A register with a P/S I-mode is shown in Fig. 2c. 
The arrows ( ~ )  in the activation plan of the I-mode indicate the appearance of the data bits on 
the serial output port. 
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(4) Serial to parallel I-mode (S/P I-mode): In this mode x = 1 and y = w. Again only structures 
with internal memory elements, such as registers, can have such a mode. The data is entered serially 
via X and held within the structure, then it is made available in parallel on port Y. A register with 
an S/P I-mode is shown in Fig. 2d. 

Definition. There exists an identity transfer path (I-path) from output port X of  structure S1 to 
input port Y of  structure $2, denoted by P(S1 :X-~S2 :Y) if the data at port X can be transferred 
unchanged to port Y. Every I-path has a time tag and an activation plan. The time tag specifies 
the time, in clock cycles, for the data to be transferred from X and Y, while the activation plan 
indicates the sequence of actions which must take place to establish the I-path. Again the format 
used for describing activation plans is the same as the one used for describing data processing 
actions of  TDM test schemas. 

Similar to the way we classified I-modes, there are also 4 types of I-paths depending on the width 
of the ports involved and the scheme of transferring the data. Let w denote the width of the data 
being transferred, and let x and y denote the width of ports X and Y, respectively. 

(1) Parallel to parallel I-path (P/P I-path): x = y = w. 
(2) Serial to serial I-path (S/S I-path): x = y = 1. 
(3) Parallel to serial I-path (P/S I-path): x = w and y = 1. 
(4) Serial to parallel I-path (S/P I-path): x = 1 and y = w. 

Let W(SI :X ~ S2:Y) denote a physical connection between output port X of  structure S I and 
input port Y of structure $2. Clearly, X and Y should have the same width. 

We formally define an c¢//~ I-path, where c¢ and /~ • {P, S}, as follows. 
Definition. There exist and c¢//~ I-path P(S1 :X --. S2:Y), where c¢ and/~ • {P, S} if either (I) ~ =/~ 

and W(S 1 : X --* $2: Y), or (2) W(S 1 : X ~ $3 : Z), ~/7 I-mode M(S3 : Z --* Q) where 7 • { P, S}, and ?//~ 
I-path P(S3 : Q ~ $2 : Y). 

Figure 3 illustrates the above definition. 
The activation plan of  an I-path can be formed by concatenating the activation plans of  all the 

I-modes encountered along the path. t  As an example of I-paths, consider the circuit of Fig. 4. There 
is a P/P I-path between port X of K and port Y of  R2. There is also an S/S I-path P(R2: Z ~ R3 : Q). 
Linking these two I-paths with the P/S I-mode of R2 produces a P/S I-path P(K: X --* R3 : Q) whose 
activation plan is given in Fig. 4. The symbol --* R3 : Q indicates the arrival of  the data bits at the 
serial port of R3. R3 might be a signature analyzer that is processing the test responses of  K. 

The I-mode concept can be generalized to incorporate transformation modes (T-modes) in which 
there is a one-to-one correspondence between the inputs and the outputs of  a structure. The 

_____..__ Direct connection W (S 1 : X .-e,- $2 : Y ) 
¢=/aI-poth P (S I :X  " -~S2:Y)  

X [ ~ j  Direct connection W(S1 : X -'~ $3 : Z ) 

Q 

¥ 

P 

~ - a ly I- tootle M (S3 : Z "-e,'- Q ) 

~ y/~' I -  pOth P 1S3 : Q "-I" $2 : Y ) 
/ 

(a) (b) 

Fig. 3. ~//~ I-path P(SI:X--, S2:Y). (a) The trivial case; (b) the recursive case. 

tWe assume that an I-path exists only if its activation plan is feasible, that is the plan does not call for actions in the same 
clock cycle that require conflicting control signals. 
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R2 (Shift) - -~ I I 

R2 (Shift) --~ i 

-I 
S/SI-path(RZ:Z ~ R3:Q) 

Fig. 4. A P/S l-path P(K:X--*R3:Q). The activation plan of P(K:X~R3:Q) is as follows: 

MUX1 (select 1 ), R1 (Latch). 
Bus(select R1), R2 (Latch). 
R2(Shift), MUX2 (select 0),--, R3:O. 
R2(Shift), MUX2 (select 0),--, R3:Q. 
FI2(Shift), MUX2 (select 0), ~ R3: Q. 
MUX2(select 0), --, R3: O. 

simplest structure with a T-mode is an inverter. Having an inverter in the path between a BILBO 
register and a kernel does not violate the applicability of  the BILBO TDM.  The same argument 
is true for scan path TDMs,  were a complemented version of the test vectors can be scanned in. 
It is interesting to note that paths which incorporate I and T-modes can be regarded as generalized 
forms of sensitization paths. In the rest of  our discussion we restrict our attention to 1-modes and 
l-paths. 

3.3. The embedding process 

The process of  applying a given T D M  to a kernel in a circuit C is equivalent to that of  embedding 
the T D M  structural template into C. Usually this embedding process requires modifying and/or 
adding structures to C. Clearly, there might be more than one way of embedding a T D M  into C. 
A feasible embedding should, by definition, satisfy the following two conditions: 
(1) for every structure in the T D M  template there is a matching structure in C; and (2) for every 
connection between structures in the T D M  template there is an I-path between the corresponding 
circuit structures. 

The test schema of  a T D M  can be customized to a given embedding producing a test plan for 
the kernel under consideration. The process of  generating a test plan from a test schema can be 
simply described as follows: (1) replace the names of the T D M  template structures with the 
corresponding circuit structures; (2) replace every data transfer action in the schema with the 
activation plan of the corresponding I-path. 

Clearly, a test plan has the same general form as a test schema, i.e. it has a head, a tail, and 
a body. However, the actions in a test plan are all data processing actions since the data transfer 
actions are replaced by activation plans that in turn consists of  data processing actions (structures 
operating in their I-modes). The actions that form the body of a test plan can be organized in a 
natural way into a number  of  steps, such that the actions in one step can all be executed in one 
clock period. The steps are numbered 1, 2 . . . . .  S where S is the total number of  steps. 



Test schedules for VLSI circuits 525 

Reg : Latch, cLear~ 
hold, RNG 

Reg : cLear~ RNG ~ / / / / "  Bus - 

~ ( a r c )  
• m 

~N~ CombinationoL PLA 
neL) or 
~ ~ ~ ~ _ ~ o _ %  ~gi__¢ . . . . .  

Reg t Latch t clear 
hold 

Reg : hold, Latch ~161R~ 

. . . . . . . .  

combinational 
tooic ] 

Reg : clear, SA . . . . .  ~ ~ 

~ Reg: hold, Latch [ R4 ~ / ' /  

(o) (b) 

Fig. 5. BILBO structural template (a) and a circuit (b). Matching results are as follows: 

This concept maps into this real object 
Kernel = K 
n ~ 16 
m ~ 8 
B1 ~ R1 
B2 ~ R2 Modified (+SA) 
P(B1 - ,  Kernel) ~ P(R1 --, K) - Bus(select R1 ), R3(Latch). 
P(Kernel--* B2) ~ P(K-, R2) =- MUX(select K), R4(Latch). 

Bus(select R4). 

A test plan for K is generated as follows: 

(1) RI(RNG). 
(2) Bus(select R1), R3(Latch). 
(3) K(-), MUX(select K), R4(Latch). 
(4) Bus(select R4), R2(SA). 

t execute T times 

We assume that we are dealing with synchronous circuits, and that registers are triggered by the 
trailing edge of  every clock pulse. We also assume that all registers are in a hold state unless 
otherwise specified in the test plan. 

Example 1 illustrates the embedding process and how to generate a test plan for a circuit kernel. 
E x a m p l e  1. Assume we want to apply the BILBO TD M that has the structural template as shown 

in Fig. 5a to structure K of the circuit shown in Fig. 5b. The labels associated with the structures 
in both figures indicate their key attributes and modes of operation. 

The first step is to match K with the TDM kernel to make sure that the methodology is 
applicable. The next step is to find a match for Bl. Any register in the circuit with a P/P I-path 
to the kernel is a candidate. R1, R3, and R4 qualify, but only Rl has all the functional capabilities 
required of  B1. Three registers R2, R3 and R4 are candidates for matching B2. Both R3 and R4 
lack the SA and clear modes, while R2 is only missing the SA mode. To minimize area overhead, 
assume R2 is selected. The matching results are shown in the caption to Fig. 5. Note that the arcs 
of  the TDM template are mapped into I-paths in the circuit. The activation plans for the two 
I-paths are also shown in the caption to Fig. 5. By doing the necessary substitution in the BILBO 
test schema, a test plan for K is generated as described in Fig. 5. The period (.) between actions 
signals the end of  one clock period. 
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4. E X P L O R I N G  P A R A L L E L I S M  IN TEST PLANS 

Let T be the number of  test patterns to be used. To test the kernel, the S steps of the test plan 
body have to be executed (iterated) T times, and in addition the actions in the head and tail section 
have to be executed once. These initialization and closing actions play a very minor role in 
determining the total execution time of a test plan, and hence they will be ignored. Unless explicitly 
stated otherwise, in the rest of  our discussion we will use the term test plan to refer to the body 
of a test plan. 

The simplest way to execute a test plan is in a sequential manner,  hence requiring S x T clock 
cycles. On the other hand, it is often possible to overlap the execution of  consecutive iterations, 
hence reducing the overall test time. In other words, it might be possible to start the execution of 
one iteration before the end of the previous one. 

Let D (stands for initiation delay) be the number of  clock periods between the initiation of two 
consecutive iterations. D = 1 indicates maximum overlapping, while D = S means sequential 
execution. Figure 6 displays all possible executions schedules for a generic five steps test plan. The 
numbers in the leftmost column represent the time in clock cycles, while the other numbers 
represent the steps. The third line of  Fig. 6a indicates that during the 3rd clock cycle, step 3 of  
the 1st iteration, step 2 of  the 2nd iteration, and step 1 of  the 3rd iteration will be executing in 
parallel. 

4. I. Cyclic behavior o f  the execution schedules o f  test plans 

By analyzing execution schedules of  test plans with different values of  D, one can observe the 
following cyclic behavior of  test plans. Assuming T is greater than S, after the first L S / D 3  × D 
clock periods every schedule starts to cycle with a period equal to D. We will refer to the D time 
slots of  one cycle as the D phases of the schedule. For example, consider the execution schedule 
shown in Fig. 7. The schedule has a cycle with two phases. 

Note that every step of the plan is executed once every D clock period. Thus, one can consider 
D as being the effectire length of the test plan. 

Let t~(c) indicate the execution time of step i of  iteration c, for c = 1, 2 . . . . .  T. Assume ti(l) = i, 
for i = 1, 2 . . . . .  S. Hence ti(c) = i + (c - 1) x D, and the total test time is t s (T ) = S + ( T  - 1) × D. 

Since T is usually large compared to S, the total test time is much more sensitive to D than 
to S. Clearly, it might not be possible to realize an execution schedule with an arbitrary value 
of D due to resource sharing conflicts. Thus, to explore the feasibility of  these schedules, it is 
necessary to identify those steps in the test plan that cannot  run in parallel either because they 

Time 
'1 '1 

2 2 

3 3 

4 4 

5 5 

6 

7 

Toto L 
test 
time 

P _ _  1 _ _  

2;24  r T I 2 D=2 2 2 / / 2 

t D=3 
2 1 3 I - -  - 3 | 3 D : 4  3 

1 -  ~ -  - 4 3 2 '1 4 2 4 4 

4 3 2 'i 5 5 '1 5 2 5 l -  5 

5 4 3 2 '1 4 2 3 2 '1 - 

5 4 3 2 5 3 5 4 '1 3 2 

• T + 4  2 T + 3  3 T + 2  4 T + I  5T 

(o)  (b)  (c)  (d)  (e)  

Fig. 6. Various execution schedules for a generic 5 step test plan. 
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Fig. 7. An execution schedule with 2-phase schedule cycle. 

use the same hardware or they require conflicting control signals. For  instance, in the test plan 
of  Fig. 5 both steps 2 and 4 utilize the bus, hence they cannot be executed concurrently. This 
eliminates the applicability of the schedules with D = 1 or D = 2. 

4.2. The conflict graph 

Clearly, knowledge about conflicts that exist between the steps of  a test plan is essential in order 
to analyze the potential of  different execution schedules. One way of  representing such knowledge 
is to construct a conflict graph (CG). 

The CG of a test plan consists of S nodes, one for every step in the plan. An edge between two 
nodes i and j in the CG, denoted by c(i , j) ,  exists if and only if steps i and j of  the plan utilize 
a common resource, or they call for actions that require conflicting control signals. For example, 
the CG of  the test plan of Fig. 5 has an edge c(2,4) since steps 2 and 4 utilize the bus. 

If  a structure in the circuit is used in q steps of a test plan, then the CG of the test plan has 
a clique of  size q between the nodes corresponding to those q steps. A simple mechanism to generate 
the CG of  a test plan is to form a clique for every structure used in at least two steps of the plan. 
Now by superimposing all these cliques we will get the CG. Note that if a structure is only used 
once in a test plan, its corresponding clique is of  size 1, which is a singular node. 

4.3. Finding feasible values for  D 

Clearly it is of interest to find the minimum value of  D that leads to a feasible execution schedule 
for a given test plan. The following lemma provides a simple rule that can quickly be used to solve 
this problem: 

LEMMA 1 
An execution schedule of  a test plan with an initiation delay D is feasible if D does not divide 

( j  - i) for all c(i , j )  in the CG of  the test plan, where j > i. 
Proof  By contradiction. Assume an execution schedule with an initiation delay D is feasible, such 

that D divides ( j  - i), where c(i , j )  is the CG of  the test plan a n d j  > i. Hence, ( j  - i) /D = k where 
k is an integer. Thus, j = i + D x k. Recall that the execution time of  steps s of iteration c is 
tile) = s + (c - 1) x D. Hence, ts(1 ) = ti(k + 1) which means that s tep j  of  iteration 1 is scheduled 
in parallel with step i of  iteration k + 1. Thus, the schedule is infeasible which leads to a 
contradiction. Q.E.D. 

COROLLARY 

D = 1 is void if any conflict exists since 1 divides all integers. Moreover, D -- S is always feasible 
as S doesn't divide (j  - i) for all possible steps i and j (1 ~< i, j ~< S). 

Example 2. Consider a test plan whose CG is shown in Fig. 8. Both D = 2 and D = 3 are 
infeasible due to c(6,4) and c(4,1), respectively. Also both D = 5 and D = 6 are infeasible due to 
c(7,2) and c(8,2), respectively. D = 4, D = 7 or D = 8 are feasible. 

Fig. 8. The CG for example 2. 

® 

® 
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5. L O W E R  B O U N D S  ON D 

THEOREM 1 
The size of  the largest clique in the CG of a test plan is a lower bound on any feasible value 

for D. 
Proof. Let Q be the size of  the largest clique in the CG, and let the steps that form that clique 

be denoted by x~, x2 . . . . .  x~, where x~ < x: < . . .  < x o. Assume that an execution schedule with 
an initiation delay D ~< Q - 1 is feasible. Using the rule derived earlier for selecting feasible values 
for D, this implies that D does not divide x i - x j ,  for all i, j = 1,2 . . . .  , Q and i > j .  Hence, 
(X~)modD ~ (X/)modD, for all i, j = 1, 2 . . . . .  Q and i > j .  But since there are only D possible values 
for Xmod O, the above inequality cannot hold for Q different steps. Hence a contradiction. Q.E.D. 

Even though finding the largest clique in a graph is a known NP-complete problem [8], the 
situation here is relatively simple. This is because of the one to one correspondence that exists 
between circuit structures and cliques in the CG. For example if register A is involved in actions 
in steps xl, x2 , . . . ,  x~ of the test plan, then there must be a clique in the CG between those steps. 
Thus, by identifying the structure used most often in a test plan, we can obtain a close estimate 
of  the size of  the largest clique in the CG. Clearly, this is a very fast way for obtaining a close 
lower bound on the optimal value of D. To find the largest clique, one has to check if the cliques 
that correspond to circuit structures combine producing larger cliques. Note  that Q + 1 cliques of  
size Q are needed to form a clique of  size Q + i. 

THEOREM 2 
The chromatic number of  a CG is a lower bound on the value of D of any feasible test plan 

execution schedule. 
Proof By contradiction. Assume the chromatic number of  the CG is X. Now assume that an 

execution schedule with D less than X is feasible. This implies the existence of  a schedule cycle with 
D phases, such that steps in the same phase are not connected in the CG. Hence the steps in each 
phase can be colored with one color. Thus, D colors are needed to color the CG, which leads to 
a contradiction. Q.E.D. 

The lower bound of Theorem 2 is stronger that the one of Theorem 1 [8]. Coloring the CG with 
X colors is equivalent to partitioning the steps of  a plan such that the members of  any partition 
do not conflict. The existence of such an X-way partition does not necessary imply the existence 
of a feasible execution schedule with D = X. For example, in order for a D = 2 schedule to be 
feasible for any test plan, all the old steps should be executed in one phase, and all the even steps 
in the other phase. Thus, even though there might be many feasible 2-way partitions, only one leads 
to a feasable schedule without changing the structure of  the original test plan. In the following 
section we will describe a technique to construct schedules that meet the lower bound of Theorem 2. 

6. I N S E R T I N G  No-Op STEPS 

In Section 4.3 we presented a lemma for checking the feasibility of  different values of  D. This, 
in general, leads to a minimal value of D which is far from the theoretical lower bounds. It will 
now be shown that the gap between the feasible value of  D and the theoretical lower bounds can 
be eliminated by introducing No-Op steps in the plan body. 

Definition. A No-Op step inserted after step i of  a test plan consists of  actions that call for holding 
the state of  all the register(s) used in step i for one clock period. 

The next example will help illustrate this idea. 
Example 3. Consider the test plan of Example 1. The smallest feasible value for D was 3, leading 

to a total test time of 3T + 1. By introducing a No-Op step after step 2 that calls for holding the 
state of  R3, the conflicting steps are now separated by 3 clock periods. Hence, D = 2 is possible, 
as illustrated in Fig. 9, leading to a total test time of 2T + 3. Note that the new value of  D equals 
both theoretical lower bounds, and hence is optimal. 

Before investigating the amount  of improvement  that can be reached using No-Op steps, it 
should be noted that a No-Op step may conflict with other steps of  a test plan. Such a case is rare 
and will be addressed in the next section. 
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2 
2' 
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2' 1 . . . . . . . . . . . .  Phase 1 
3 2 . . . . . . . . . .  Phose 2 
4 2' I 

2' ~ R3 (HoLd) 

Fig. 9. An optimal execution schedule (D = 2) obtained using No-Ops. 

THEOREM 3 
Assuming that No-Ops do not conflict with other steps of  a test plan, by adding No-Op steps 

it is always possible to find a schedule with D equal to the chromatic number of  the CG. 
Proof. Let X be the chromatic number  of  the CG associated with a test plan. It follows that one 

can partition the steps of  the plan into X groups, G), G2, . . . ,  Gx, such that the steps in one group 
do not conflict with each other. It is always possible to insert No-Op steps in the test plan such 
that if steps i and j belong to the same group, then the difference between the execution times of 
i and j in one iteration is X or a multiple of  X. Now by using an execution schedule with D = X, 
a one-to-one correspondence between the Gs and the schedule phases is created, i.e. the steps that 
belong to one group are all scheduled to execute in the same phase. This in turn implies that no 
conflicts will arise, and hence the execution schedule of  the new test plan with D equal to X is 
feasible. Q.E.D. 

Example 4. Consider the 8-step test plan of  Example 2. Without adding No-Ops, D = 4 was the 
best we could achieve. However, the chromatic number  of  the CG is 3. Assume that the steps are 
partit ioned as follows: G~ = {1, 3, 7}, G 2 - -  {2, 4, 5}, and G 3 = {6, 8}. Following the argument used 
in the p roof  of  Theorem 3, an optimal execution schedule with D = 3 is constructed as shown 
below. Four No-Op steps were added to the test plan. One can see the one-to-one correspondence 
between the phases of  the schedule cycle and the partitions. Given the schedule cycle, one can find 
the test plan by traversing the columns of  the cycle from right to left. 

Phase 1: 7 No-Op 3 1 
Phase 2: No-Op 5 4 2 
Phase 3: 8 6 No-Op No-Op 

The number  of  No-Op steps added depends on the distribution of the steps in the partitions 
supplied as input. Clearly these partitions are not unique, and some will result in adding more 
No-Ops  than others. For instance, in the previous example a test plan with only two No-Op steps 
added between steps 3 and 4 also supports a schedule with D = 3. However, every extra No-Op 
step added to the test plan increases the total test time by only one clock period. Such a small 
increase can usually be ignored when compared to the reduction due to the use of  an optimal value 
for D. 

The problem of coloring a graph (to partition the nodes of  the CG) is in general an NP-complete 
problem. [8] The following procedure avoids this expensive preprocessing step, and only assumes 
knowledge of  a lower bound for D, denoted by B, such as the size of  a large clique in the CG. 

Procedure 1 (CG, B) 

This procedure will a t tempt to construct an execution schedule with B phases. The procedure 
has a loop that cycles through the B phases. In each iteration either a step is added to the current 
phase if it does not create conflicts, or a No-Op is added. Adding B No-Ops in a row implies failure, 
and the procedure restarts using a larger value for B. Procedure 1 is a fast heuristic which in most 
cases generates optimal schedules.t 

tThe probability of not finding an optimal solution, when one exists, can be reduced significantly by employing a simple 
trick. Whenever the procedure fails to schedule the steps in B phases, it will try scheduling once more, but this time 
processing the steps in the reverse order. Only when that too fails, is the number of phases incremented. 
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s =1, p =0, No-Op-counter=0, Test-Plan=empty list. 

REPEAT WHILE s ~<S 
P = Pmoda + 1 
IF No-Op-counter = B 

THEN increment B by 1 and RESTART the procedure. 
IF c(s, x) exists in the CG, where x ~ Phase p 

THEN append a No-Op to Test-Plan and to Phase p, 
increment No-Op-counter by 1. 

ELSE append step s to Test-Plan and to Phase p, 
s = s + l ,  
No-Op-counter = 0. 

END REPEAT 

Example 5. Consider the 8-step test plan of Example 4. Let us assume that procedure 1 starts 
with B = 3. It will succeed in constructing an optimal schedule with 3 phases as shown below. 

Phase 1: 7 No-Op No-Op 1 
Phase 2: No-Op No-Op 4 2 
Phase 3: 8 6 5 3 

7. C O N F L I C T S  C A U S E D  BY No-Ops 

A No-Op  step inserted in a test plan calls for holding the state of  one or more registers one clock 
period. Such a hold mode can create a conflict with a step that calls for changing the state of  a 
register. To illustrate this concept, consider the following example. 

Example 6. Consider the circuit shown in Fig. 10a. Its BILBO test plan is given in the caption 
and its CG is shown in Fig. 10b. 

Without adding No-Op steps, D = 2 is not feasible due to the conflict between steps 2 and 4. 
Clearly, both steps write data into R2. If  a No-Op step is inserted after step 2, the new test plan 
cannot support  D = 2 because step 4 will be scheduled in parallel with the No-Op step causing a 
conflict as shown below. 

Phase 1: 4 No-Op 1 , Conflict 
Phase 2: 5 3 2 

That  is, step 4 will latch data in R2 which is supposed to hold its state due to the No-Op. 

7.1. Modifying the conflict graph 

Clearly, the conflict graph has to be modified to reflect the extra conflicts caused by the No-Ops. 
For  every conflict in the C G  involving two steps i and j that write data into the same register we 
add two nodes to the CG, labeled i '  and j ' ,  where node i'(j') represents a No-Op following i(j). 

RNG Q 

(a) (b) 

Fig. 10. An example with a potential for conflicting No-Ops. The BILBO test plan is as follows: 
(1) RI(RNG). 
(2) Bus(select R1), R2(Latch). 
(3) Kernel(-), R3(Latch). 
(4) Bus(select R3), R2(Latch). 
(5) R4(SA). 
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Q ~ Phase 1 : 4 3 1 

( (~  Phase 2 : 5  3' 2 

(a) (b} 

Fig. 11. (a) The extended CG; (b) a schedule with D = 2. 

Then we connect node i' to node j, and node j '  to node i. The resulting graph is called the extended 
CG. 

A modified version of Procedure 1 can be used to generate solutions for cases with conflicting 
No-Ops. Before adding a No-Op to one phase, the procedure refers to the extended CG to check 
if that No-Op conflicts with any of the steps already scheduled in that phase. If  it does, then the 
procedure backs up and restarts with more phases. 

Example 7. Again consider the circuit of Example 6. The extended CG is shown in Fig. 1 la. 
Using the modified version of Procedure 1, a new test plan has been found supporting D = 2 that 
involves adding a No-Op after step 3, as shown in Fig. l lb. Note that since a No-Op after step 
3 does not conflict with other steps, no node labeled 3' can be found in the extended CG. 

Theorem 3 does not hold for test plans where adding No-Ops may create conflicts. However, 
such cases arise when a register is used in the I-path that transfers tests to the kernel, and also 
in the I-path that transfers responses of the kernel. This case is unusual. Thus it is fair to claim 
that for all practical tests plans one can always reach the lower bound given by Theorem 2. 

8. T E S T  P L A N S  F O R  S C A N - T Y P E  T D M s  

Test schemas for scan-type TDMs (like LSSD and scan path) have unique characteristics. The 
serial shifting of data in scan-type TDMs limits the amount of possible overlapping. 

Consider the template of the scan-path TDM shown in Fig. 12. An S/P I-path is required between 
the scan-in pin of the circuit and the input port of the kernel. This S/P I-path consists of an S/S 
I-path from the scan-in pin to a shift register that has an S/P I-mode, and then a P/P I-path from 
that shift register to the kernel input port. Another P/S I-path is also required between the kernel 
output port and the scan-out pin of the circuit as shown in Fig. 12. 

Assume that the kernel has n inputs and m outputs. Any scan-type test plan for that kernel will 
contain n steps in which the input shift register is serially loaded with a test vector. Hence, there 
will always be a clique of size n in the CG of the test plan. Similarly, there will also be another 
clique of size m corresponding to the activation plan of the P/S I-mode of the output shift register. 

SIS I - path 
Scan-in / / S I P  I -  r r ~  

pin Shift re 9 

r e 
[] "q 12l • . / .  I . I  

n PIP 

I Combinational } 
kernel 

c1 121 • q , , , I  

pin P/S I - mode 
SIS I - path 

I -  path 

PIP I- path 

Fig. 12. The structural template of the scan/path TDM. 
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Theorem 1 implies that X = max(n,m) is lower bound on the value of D of any feasible execution 
schedule. 

In most practical scan-type TDM embeddings the number of steps in the test plan corresponding 
to the parallel I-paths between the shift registers and the kernel is less than X. In all such cases 
it is easy to show that it is always possible to construct an execution schedule with D = X. 
Moreover, even if the extra steps due to the parallel I-paths is larger than X, but no cliques of size 
X or larger are generated by these steps (it is very unlikely otherwise), then again a schedule with 
D = X is always feasible. Hence, it is fair to claim that for scan-type tests plans, test time is approx. 
T x X, where T is the number of test vectors in the test set. 

9. TEST PLANS FOR K E R N E L S  WITH M U L T I P L E  PORTS 

In Section 3 we described how to generate a test plan for a kernel with a single input and output 
port. In this section we will consider the general case of multiple I/O ports. Consider a kernel with 
n inputs ports and m output ports. There are n(m)  1-paths that drive data into (from) the kernel. 
Each one of these I-paths is completely specified by an activation plan. Some of these I-paths may 
share resources. Our goal is to generate a test plan for the circuit that will exercise those I-paths 
in a correct fashion without creating conflicts. 

Next, we will describe a procedure that can be used to combine the activation plans of n 1-paths 
into a single plan. 

Problem statement 

Given the activation plans of n I-paths P,,  P2 . . . . .  P~, generate a feasible plan to activate all 
the I-paths without causing any conflicts. We will refer to step s of Pt by ies .  A conflict graph 
CG is constructed to reflect resource sharing conflicts between steps of different 1-paths. Thus an 
edge exists between i e s~ and j •s2 if the two steps utilize the same resource. Note that we are only 
interested in conflicts that exist between steps of  different plans. In case conflicts occur due to 
sharing of registers, then as was done in a prevous section, nodes representing No-Ops are added 
to the CG. A No-Op step after step ies  is denoted by i e s ' ,  while a No-Op that precedes ie  1 is 
denoted by i • O'. 

Procedure: Combine-l-paths (P,, P : , . . .  , P,) 

The procedure employs two dynamic lists. The first one, called Frontier-Steps(t), contains all 
the steps that are candidates for scheduling during time t. Every I-path is represented by two steps 
in this list, the one on the frontier of  its activation plan (i.e. the step to be executed next), and 
a No-Op in case the first step cannot be scheduled due to conflicts. 

Frontier-Steps(t): { i e f ,  i e l -  1', for i = 1, 2 . . . . .  n If is the frontier step of P, at time t, while 
f -  1' is the No-Op step that precedes f } .  

The second list, called Scheduled-Steps(t), contains n steps, one for every I-path. These steps are 
scheduled during time slot t. Clearly, the steps of Scheduled-Steps(t) are selected from Frontier- 
Steps(t) subject to the condition that they do not conflict with each other. 

Scheduled-Steps(t):  { i • x  for i = 1, 2 . . . . .  n l i e x  ~ Frontier-Steps(t), and no two steps in this 
set conflict with each other} 

BEGIN 
t =0 ,  Frontier-Steps(I)  = { i e l ,  i e0 '  for i =  1,2 . . . . .  n}. 
REPEAT UNTIL all steps are scheduled 

t = t + l .  
Generate Scheduled-Steps(t)  using Frontier-Steps(t). 
Generate Frontier-Steps (t + 1). 
END REPEAT 

According to the definition given earlier, all the operations performed by the above procedure 
are staightforward except the one calling for selecting Scheduled-Steps(t) from Frontier-Steps(t). 
There are 2" - 1 possible selections; however, some of them may not be feasible due to conflicts. 
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Out I 

RNG RNG 

Fig. 13. BILBO imbedding with multiple I/O ports. 

Bus 1 

Bus 2 

Also it is desirable to generate a solution with a minimal number  of  No-Ops so as to minimize 
the total length of  the final plan. Even though the problem complexity is exponential, the value 
of  n is often small (in the order of  2-4). Hence, an exhaustive search is feasible. One should start 
by trying the combinations with smaller number  of  No-Ops first. Moreover,  the procedure can also 
be designed such that if two schedules are possible at a given point with the same number of  
No-Ops,  it selects the one that advances data along the longest I-paths. The procedure is 
guaranteed to terminate, as deadlocks can only mean that some of the l-paths to be combined are 
forming a loop, which is not allowed. 

Example 8. Consider the kernel structure in the circuit shown in Fig. 13, for which BILBO T D M  
is employed. Registers R1 and R2 assume the role of  the test generator BILBO, while R9 and RI0  
assume the role of  the signature BILBO. 

There are two input I-paths to be combined. The activation plans of  these two I-paths and their 
CG are given in Fig. 14 (isolated nodes are not shown). 

Q ® 

® ® 
Fig. 14. The CG of Example 8. The plans of the input I-paths are as follows: 

PI(R1 ~ Kernel:in1) --- 
(1) Bus1 (select R1 ), R3(Latch). 
(2) MUXl (select R3), R5(Latch). 
(3) Bus2(select R5), R6(Latch). 

p2 (R2 --. Kernel:in2) _-- 
(1) Bus1 (select R2), 
(2) MUX1 (select R4), 
(3) Bus2(select R5), 

R4(Latch). 
R5(Latch). 
R7(Latch). 

C,A.M W.A. 13,5-6~I 
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Fig. 15. Final 

The 4-phase 

i 

CG of Example 8. The final test plan is as follows: 
(1) RI(RNG), R2(RNG). 
(2) Bus1 (select R1 ), R3(Latch), R2(Hold). 
(3) MUXl (select R3), R5(Latch), Bus(select R2), R4(Latch). 
(4) Bus2(select R5), R6(Latch), MUXl (select R4), R5(Latch). 
(5) R6(Hold), Bus2(select R5), R7(Latch). 
(6) Kernel(-), MUX2(select out1), R8(Latch), R6(Hold), R7(Hold). 
(7) Bus1 (select R8), R9(SA), Kernel(-), MUX2(select out2), R8(Latch). 
(8) R9(Hold), Bus1 (select R8), R10(SA). 

schedule cycle is: 
Phase 1: 8 5 1 
Phase 2: - 6 2 
Phase 3: - 6' 3 
Phase 4: - 7 4. 

A trace of  the lists generated by Procedure "Combine-I -Paths"  while combining the two input 
I-paths is shown below: 

Time slot 
1 l e l ,  
2 l e 2 ,  
3 l e 3 ,  
4 l e3 ' ,  

Front ier -Steps Scheduled-Steps 
leO' ,  2 o l ,  2e0'  l e l ,  2o0'  
le1', 2 e l ,  2e0 '  l o 2 ,  2o l  
l e2 ' ,  2o2, 2o1'  1 e3, 2o2 
1 o3', 2o3, 2o2 '  1 o3' 2o3 

Similarly, the two output I-paths can be combined. Now by substituting the combined activation 
plans for the data transfer actions of  the test schema of the BILBO TDM,  the test plan shown 
in the caption to Fig. 15 is generated. Clearly, there is a clique of size 4 due to the sharing of Busl 
by steps 2, 3, 7, and 8. Using Procedure l, an execution schedule with D = 4 is found as described 
in Fig. 15. Only one No-Op has been added to the test plan after step 6. Note that 6' does not 
conflict with step 3. 

10. S C H E D U L I N G  TEST PLANS OF M U L T I P L E  K E R N E L S  

In the previous sections we described how to generate a test plan for one kernel structure and 
how to construct an optimal test schedule for it. In this section we will consider the problem of 
multiple kernels. Kime and Saluja [9] considered the same problem. In their representation of the 
problem, every kernel is associated with a set of  structures (called the resource set), which consists 
of  the kernel itself and the structures used for test generation and for response evaluation. The 
problem then becomes that of  scheduling the different kernel tests such that the overall test time 
is minimal. In such a schedule two tests can be scheduled in parallel only if their resource sets 
are disjoint. In the case where all tests have equal length, the problem is equivalent to the classical 
covering problem used in logic minimization. They also considered the case when tests have 
different lengths. No pipelining was considered in optimizing tests for single or multiple kernels. 

Their work can be applied directly to tests generated using our techniques. Moreover,  we will 
present two techniques that can further minimize the total test time. 
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10.1. Combining test schedules of  different kernels 

Assume that we have two kernels K1 and K2, and assume that we constructed optimal execution 
schedules for each kernel. Moreover assume that the initiation delay D of  both schedules is the 
same. Let Px ( j)  denote phase j of the schedule of  Kx. We can form a conflict graph for modeling 
conflicts between phases of  the two schedules. 

THEOREM 4 
The test schedules of  two kernels that have the same initiation delay D can be executed in parallel 

using a schedule with initiation delay D if there exists a positive integer k < D such that PI(i) does 
not conflict with P2[(i-I- k)modO q- 1] for all i = 1, 2 . . . . .  D. 

Proof. A combined test schedule with D phases can be constructed as follow: Phase i of  the new 
schedule consists of PI(i)  and P2[(i + k)mod D + 1], for all i = 1, 2 . . . . .  D. Clearly, the schedule is 
feasible and both kernels will get tested by the repeated execution of the D phases of the new 
schedule. Q.E.D. 

Note that even though the phases of  two test schedules may have conflicts, it is quite possible 
to find a k that satisfies the above theorem, and hence execute the two schedules in parallel. Clearly, 
this was impossible to do using the problem formulation of  [9]. 

10.2. Combining test plans of multiple kernels 

The technique described in the previous subsection can only be applied if we have schedules with 
the same initiation delay. In cases where schedules have different delays or when we cannot combine 
schedules because of  conflicts, we can try to combine the test plans of  the different kernels. The 
same procedure used in the previous section for combining activation plans of  different I-paths can 
be used here as well. Once a test plan for the combined kernels is produced, we can apply all the 
scheduling optimization techniques that we described earlier to generate a test schedule. 

In using this approach we can explore ways of scheduling tests in parallel, for kernels that have 
nondisjoint resource sets. 

I I .  R E M A R K S  ABOUT P I P E L I N E  O P T I M I Z A T I O N  

As mentioned previously, the problem of  generating optimal execution schedules for test plans 
is similar in concept to that of  optimizing static pipelines. Using pipeline terminology [6], a 
reservation table can be used to model the hardware utilization of a test plan. Every row in the 
reservation table corresponds to a circuit structure (called stages), while every column corresponds 
to a step in the plan. A mark in row i and column j indicates that structure i is used during step 
j. Davidson [10] developed a procedure for constructing what is known as the modified state 
diagram of a reservation table. The diagram can then be traversed to find its cycles. Every cycle 
conveys a feasible value or a set of alternating values for D to assume. For example, a (2, 4, 5) 
cycle indicates that the delay between two consecutive iterations follows the sequence 2, 4, 5, 2, 
4, 5 . . . . .  etc. 

Even though reservation tables are widely accepted for optimizing pipelines, they do not model 
conflicts explicitly as do conflict graphs. To determine if two steps i and j conflict using a reservation 
table, one has to check if columns i and j have marks in the same row. On the other hand, the 
explicit representation of  conflicts in the CG model has led to the derivation of lower bounds on 
D which are stronger than the one given by Shar [1 1], namely, the maximum number of  marks in 
one row of  a reservation table. 

Moreover, the lemma presented in Section 4.3 for finding feasible constant schedule cycles is 
much simpler to program and requires much less computation than the state diagram method of 
Davidson [10]. However, our approach cannot generate alternating value cycles. Such a disadvan- 
tage is not very severe, because such schedules require complex controlling mechanisms which are 
not desirable in the context of  built-in test. 

Patel and Davidson [12] described a technique for inserting delays in pipelines to increase their 
throughput. The concept appears similar to the one of  adding No-Op steps, yet there is a 
fundamental difference. To illustrate this, consider the reservation table shown in Fig. 16a. A delay, 
denoted by d, is inserted in the second row of  the table as shown in Fig 16b. 
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S t e p  S t e p  

1 2 3 4 I 2 3 4 

1 x x 1 x x 

8 , 2  x x 8 , 2  x @ x 
~ 3 x x ~ 3 x x 03 u3 

4 x 4 x 

( a )  ( b )  

Fig, 16. Inserting a delay, d, in a reservation table. 

The new table supports D = 2 while the first one does not. Note that the inserted delay has 
changed the structure of steps 3 and 4. Clearly, in the context of test plans such a transformation 
is not acceptable, without modifying the design, due to data dependencies. Recall that a No-Op 
step does not reorganize the actions performed in the steps of a test plan, it only introduces a step 
during which the data is held unchanged in some registers. Therefore, delay insertion 
techniques [12] are not generally applicable to test plans. Moreover, inserting delays in pipelines 
often requires the introduction of new registers. Such cost cannot be justified when attempting to 
optimize test plan schedules, and the delays may have some adverse effects on normal circuit 
operation. It is interesting to note that the use of special registers to implement delays alleviates 
the potential of creating conflicts as a result of inserting delays. 

Thus, in summary, it is clear that even though one can apply classical pipeline optimization 
techniques to the problem of optimizing test plans, the approach presented in this paper is more 
practical and effective and has led to many useful new results. 

12. C O N C L U D I N G  R E M A R K S  

In this paper we introduced the new concept of test schema, I-modes, I-paths, activation plans, 
test plans, and test schedules. We developed a model for describing the conflicts that may arise 
due to the parallelism in these schedules. Lower bounds on the time required to execute a test plan 
were derived, and algorithms for constructing optimal test schedules were presented. 

The results presented in this paper have been implemented as a part of a knowledge based system 
for designing testable VLSI chips [2]. The system is menu-driven with a user-friendly interface. The 
system explores all ways of embedding TDMs into a circuit for all its kernels as it guides the 
user in creating a modified design that meets testability goals and design constraints. Test plans 
for embedded TDMs are automatically produced together with their optimal execution schedules. 
The execution time of test schedules is used as one of the measures for evaluating embedding 
solutions. Other measures include area overhead and fault coverage. The system currently deals 
with three different TDMs, but others can be easily added. 
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