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ABSTRACT 

In an earlier paper, formulae for det A as a ratio of products of principal minors of 
A were exhibited, for any given symmetric zero-pattern of A-‘. These formulae may 
be presented in terms of a spanning tree of the intersection graph of certain index sets 
associated with the zero pattern of A-‘. However, just as the determinant of a 
diagonal and of a triangular matrix are both the product of the diagonal entries, the 
symmetry of the zero pattern is not essential for these formulae. We describe here how 
analogous formulae for det A may be obtained in the asymmetric-zero-pattern case by 
introducing a directed spanning tree. We also examine the converse question of 
determining all possible zero patterns of A ’ which guarantee that a certain de- 
terminantal formula holds. 
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1. INTRODUCTION 

Let A = (a ij) be an n-by-n nonsingular matrix. It is well known that if 
APi is diagonal, then 

detA= fiaii. 
i=l 

(14 

If A ~ ’ happens to be tridiagonal, it is known [l] that 

“i?det[ uy::;:,] 
d&A= i=1 

n-l (1.2) 

However, if A-’ is triangular (upper, lower, or essentially), it is a familiar fact 
that the formula for det A is the same as it is when A ~’ is diagonal, and it is 
known [l] that if A- ’ is (upper or lower) Hessenberg, then the formula for 
det A is the same as it is when A- ’ is tridiagonal. In [2] a broad class of 
determinantal formulae, generalizing the tridiagonal-inverse case, is demon- 
strated for various symmetric zero patterns in A - ‘. As the triangular and 
Hessenberg cases indicate, symmetry of the inverse zero pattern is an 
unnecessary assumption for the same sort of determinantal formulae to hold. 
However, the determination of where nonzeros may asymmetrically occur for 
similar formulae to hold is not so simple as placing them all to one side of the 
diagonal. Generally, more complicated placements are possible, and only in 
certain circumstances is it possible to allow all entries on one side of the 
diagonal to be nonzero. We will describe the determinantal formulae in the 
spirit of [2] which are possible for various general asymmetric zero patterns in 
A - ‘, and then make a detailed examination of the converse question of 
determining all possible zero patterns in A- ’ which guarantee that a given 
determinantal formula holds. 

2. NOTATION, DEFINITIONS, AND PRIOR RESULTS 

Throughout, we let N= { 1,2,. . . , n}, and let A =(ai.) be an n-by-n 
matrix. For nonempty index sets a, p c N, we denote b y A(cx, p) that 
submatrix of A lying in the rows indicated by (Y and the columns indicated by 



DETERMINANTAL FORMULAE 239 

p. When (Y and /l have the same number of elements we set A,, p = 
det A(a, /3) and A, = A,,,. 

We rely heavily upon some of the ideas of [2]; however, it is useful to 
restate the main result of [2] from a somewhat different point of view. Let 
V i,. . . , V,,, be distinct subsets of N, and let G, be the intersection graph of 
{V,,...,v,,,}. 

DEFINITION. A subgraph G of G, is said to satisfy the intersection 
property if 

V, n Vi c V, whenever V, lies on a path from V to Vi in G, 
and 

V. CT Vi = + whenever V, and Vi he in distinct connected 
components of G. 

We also assume 

t,, 
u V,=N 

k=l 

and 

G, is connected. 

Op) 

(24 

(2.2) 

THEOREM. Let A be an n-by-n matrix with inverse B = ( bij). Let 
V i, . . . , V,, c N be ind ex sets satisfying (2.1) and (2.2) and let T be a 
spanning tree of G, satisfying (IP). Zf bii = bji = 0 whenever {i, j} is 
contained in none of the index sets V,, . . . , V,,, then 

(2.3) 

(E(T) denotes the edge set of T) provided the terms in the denominator are 
nonzero. 

REMARKS. It follows immediately that Equation (2.3) also holds if T is 
replaced by a spanning forest F, because then det A = llr C FAT, where the 
product is over all trees in F. 
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We also note that in equation (2.3) and throughout this paper, the entries 
of A may be elements of any field. 

3. EXAMPLES 

We first consider two examples to illustrate certain ideas in our theorem 
concerning asymmetric zero patterns. 

EXAMPLE 1. Let A be a 6by-6 matrix with tridiagonal inverse B. The 
formula for det A mentioned in the introduction is 

det A = 
A(,,2)A(2,3)A(3,4)*(4,5)*(5,6) 

(3.1) 
a 22a 33a 44a 55 

A proof [2] ( w ic h h uses Jacobi’s formula for minors of the inverse matrix 
B) is: 

B~3,4,5,6~B~~,4,5,6)B(~,2,5,6}B(~~2.3~6)B~~~2~3~4l 

= (det B)B {1,3,4,5,6)B~1,2,4,5,6~B(l,2,3,5.6)B(l.2.3.4.6) 

Bp,4,5,qB{q Bpi,5,6) B{~,z) B{s.~~BW.31 BW BWJ,4) det A 

=B B (1) (3,4,5,6~B~1,~~B~4,5.6~B~~.2.3~B(5,6)B(l,2,3,4)B(6) 

=detA. 

The second equality holds due to the tridiagonality of B. However, for this 
equality to hold, it suffices that one of each of the following pairs of matrices 
be the zero matrix: 

(i) B({ I}, (3,456)) or B({3,4,56], {I}), 
(ii) B({ 1,2}, {4,5,6}) or B({45,6}, { L2}), 
(iii) B({1,2,3},{5,6)) or B((5,6},{1,2,3}), 
(iv) B({ 1,2,3,4}, (6)) or W(6), { 1,2,3,4}). 
In light of this, we note four of sixteen possible less sparse and nonsym- 
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metric zero patterns for B for which the second equality also holds: 
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0 
0 
X 

x ’ 

X 

X 1 
0 
0 
0 
0 . 
X 

X 1 
Let A be a 6-by6 matrix whose inverse B has the undi- 

This B has the symmetric zero pattern 

x x x 0 0 
x x x x x 

B= ; ; ; 0 ; 
X 

0 x x x x 
-0 0 x 0 x 

0 
0 
X 
0 . 
X 
X 1 

(Diagonal entries are conventionally allowed to be nonzero [2]. Thus we draw 
no loops in the graph.) The following determinantal identity holds for A: 

det A = A(,.2.3)A(2,3,5)A(2.4,5)A(3,5,6) 

A (2,3)A (2S) A (3.5) 
(3.2) 
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We proved this in [2] as follows: 

A(~,~,3)A(2,3,5)A(2,4,5)A{3.5,6) 

A (2,3)A (2,5}A (3.5) 

B(~,5,~)B(l,~,~)B(l.3,6]E(l.2,~) 

= (detB)B (1,4,5,~)B(l,3,4.6)B(l.2,4,6) 

B(~,5,G)B(l)B(~)B(6)~(l,3.~)~(~.2.~) 

=B B (1) (4,5,6) ‘(4) B(l,3.6) B(lA4) B(6) 

=detA. 

det A 

The second equality is again due to the zero pattern of B. However, for 
the equality to hold it suffices that one of each of the following pairs of 
matrices be the zero matrix: 

6) ~({I},{4,5,6]) or B({4,5,6}, {I}), 
(ii) B({4},{1,3,6}) or &{I,3,6},{4}), 
(iii) B@}, { I,2,4}) or B({ I,2,4}, (6)). 
We note three of eight possible less sparse and nonsymmetric zero 

patterns for B for which the second equality also holds: 

xxx000 
x x x x x x 

xxx000 
x x x x x 0 

23: ; “x ; ; “x ; . 

I I 

x x x x x x 
x x x 0 x x 

This is an example, as mentioned in the introduction, for which it is not 
possible to allow all entries on one side of the diagonal to be nonzero. In fact, 
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more than half (at least seven) of the original symmetrically placed twelve 
zeros must remain. 

4. DIRECTED TREES 

We now introduce certain notions which will enable us to graphically 
identify zero patterns of the inverse of a nonsingular matrix A for which a 
determinantal formula of the type given by Equation (2.3) holds. 

As in Section 2, let Vi,. . . , V, c N be index sets satisfying (2.1) and (2.2), 
and let T be a spanning tree of G, satisfying the intersection property (IP). 

DEFINITION 4.1. Let D be a directed tree on { Vi,. . . , V, } with a 
directed edge from V to Vi [denoted (vi, V,)] in D only when {V, vi} E e(T). 

(Note that there are 2”-’ such D for each T.) We call such a D a directed 
tree related to T. 

DEFINITION 4.2. Let B = (hi .) be an n-by-n matrix. We say that B has a 
nonzero pattern allowed by a re ated pair (T, D) if whenever b,, # 0, then i 
either 

(i) {r,s}CVkforsomek=l ,..., m,or 
(ii) there is a (directed) path (Vi,, V&. . . , Vi,) in D such that r E V, and 

s E v,,. 

We now illustrate these definitions with the examples of Section 3. 

EXAMPLE 1. Taking V,={1,2}, V,= {2,3}, V,={3,4}, V,= {4,5}, 
V,s = {5,6}, the intersection graph of Vi,. . . , V, is already a spanning tree 
satisfying the intersection property (IP), namely 

and Equation (2.3) becomes Equation (3.1) in this case. We list four of the 
sixteen possible directed trees D related to T: 

D,: 

D,: 

D3: 

D4: 
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On applying Definition 4.2, as the reader may check, the nonzero patterns 
allowed by (T, Dk), k = 1,. . . , 4, are Zl, 22, 23, and 24, respectively, of 
Example 1, Section 3. 

EXAMPLE 2. Taking V,= {1,2,3}, V,= {2,3,5}, V,={2,4,5}, V,= 
{3,5,6}, the intersection graph of V,, V,, V,, V, is the complete graph K,. A 
spanning tree T of K, satisfying the intersection property (IP) is 

and for this tree, Equation (2.3) becomes Equation (3.2). Three of eight 
possible directed trees D related to T are 

Applying definition 4.2 and comparing with example 2 of section 3, one 
sees that the nonzero patterns allowed by (T, Dk), k = 1,2,3, are Zl, 22, and 
23, respectively. 

5. MAIN RESULTS 

THEOREM 5.1. Let V,,. . . , V,,, c N be index sets satisfying (2.1) and 
(2.2), let T be a spanning tree of the intersection graph of V,,. . . , V,,, 
satisfying the intersection property (IP), and let D be a directed tree related 
to T. If A is a nonsingulm n-by-n matrix whose inverse has a nonzero pattern 
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allowed by (T, D), then 

111 

n A, 
det A = 

k=l 

r-I A”,,“, 
CY!,v,) SF(T) 

(5.1) 

provided the terms in the denominator are nonzero. 

Proof. By Jacobi’s formula for minors of the inverse matrix, 

where B = A ’ and C, = Vi’, i = 1,. . . , m. We have used the fact that the 
number of edges in E(T) is m - 1 because T is a tree. Since det A = (det B)-‘, 
we will be done if we show that 

l!i Bc, 
k=l 

I-I %,“C, =l* 
(Y,V,) EdT) 

(5.2) 

For each node y and any incident edge { V, Vi} E E(T), let T( i/j) be the 
component of the graph T - {V;, Vj} containing V, [note that T(i/j) is a 
tree], let V(i/j) be the node set of T(i/j), and let 

(5.3) 

We have simply split the tree T into two trees by removing the edge 
connecting V, to Vj. C(i/j) is the complement of the union of all node sets in 
that tree containing Vi. The idea of the proof is to decompose the minors in 
the denominator and numerator of (5.2) into smaller minors indexed by sets 
C( i/ j) to produce cancellation. 

We first show that for all {Vi, Vi} E E(T), C, U Cj can be written 

CiUCj=C(i/j)UC(j/i). (5.4) 
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Since Ci 1 C(i/j) by definition, it is clear that Ci U Cj I C(i/j) U C(j/i). 
Suppose that r E Ci U Cj and that r 4 C(i/j)U C( j/i). Then r @ C,, for 
some Vk, E V(i/j) and r P CkZ for some Vk, E V( j/i). Then r E Vk, n Vk,. 
Let [ Vk,, V] be the path connecting Vk, and V in T(i/j), and let [Vi, Vk2] be 
the path connecting Vi and V,., in T( j/i). Then [V,,, VJ U {vi, Vj } U [Vj, Vk2] 
is a path in T connecting Vk, and Vk,. Since V, and Vi lie on this path, by the 
intersection property Vk, n Vk, c Vi and Vk, n V,_, c Vi. This implies that 
T E V n Vi contradicting r E Ci U Cj = (Vi n Vi)“. This establishes the equality 
of the sets in (5.4). 

The sets C(i/j) and C( j/i) are disjoint because 

= fi Ckj ~lvk)‘=“~=c#a 
k=l 

Corresponding to any edge { V , !$ } in T, there is a directed edge, either 
(v<, vi> or <Vj, vii), in D. Suppose the directed edge is (q:., Vi). Let T E C( i/j) 
and s E C( j/i). We claim that b,, = 0. To see why, observe: 

(1) r G Vk for any V, E V(i/j) and s 4 V, for any V, E V(j/i), which 
implies that { r, s } Q V, for k = 1,. . . , m. 

(2) if there were a directed path (V;,, . . . , V,,) in D with r E V, and 
s E Vi,, then Vi, E V( j/i) and Vi, E V(i/j). But the path from Vi, to Vj, in T 
must contain the edge { Vi,Vj}, so the directed path from V, to Vi, must 
contain the directed edge (Vi, Vi). This is impossible by supposition. 

Since B = A _ ’ must have a nonzero pattern allowed by (T, D), b,, = 0 for 
r E C(i/j) and s E C( j/i). Interchanging the roles of i and j, if the directed 
edge was (Vi, Vi), gives b,, = 0 for r E C( j/i) and s E C( i/ j). In either case, 
it follows by Laplace’s expansion that 

B C# ” c, = BC(i/j)UC(j/i)= BCCi/j)BC(j/il 

for all {V;., Vi} E e(T). Hence the denominator in Equation (5.2) may be 
written 

(5.5) 

We next show that for each node set V, Ci can be written as the disjoint 
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union 
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The containment Ci 1 lJ{ C(i/k): {vi, V,} E E(T)} is clear from the defi- 
nition of C(i/k). Suppose that r E Ci. Then for some j f i, r E Vi. Let 
[Vi, V] be the (unique) path connecting Vi and V, in T, and let V,, be the 
vertex in [Vi, Vi] adjacent to Vi. We claim that r E C( i/p). For if not, then 
r P C, for some V, E V(i/p). Thus r E Vi n V,, and since Vi is on the path 
[Vi, V,] u {VP, 4) u [y, V,], by (IP) r E V, contradicting r E C,. This estab- 

lishes Equation (5.6). 
To show that the union is disjoint, assume that {v]., Vk, } and {V, Vkz } are 

in E(T) with k, f k, [if {y, V,} E E(T) for only one k, there is nothmg to 
show] and that r E C(i/k,)n C(i/k,). For some j # i, r E Vi. Let [V,,V,] be 

the path connecting Vi and y in T. Then either Vk, 4 [Vi, vi] or Vk, E [Vi, V,]. 

Say V,., G [Vi, V,]. Then [Vi, vi] is a path in T(i/k,), so Vi E V(i/k,). But 
then, since r E C(i/k,), we have r E Cj, contradicting r E Vj. Thus C(i/k,) 
f~ C(i/k,) = +. Hence the union in Equation (5.6) is disjoint. 

We will now show that 

B, = I-I 
’ (k:(V,,V,l E’(T)) 

BC(i/k)* (5.7) 

Let V,,,..., Vk, be the nodes adjacent to V in T. We prove Equation (5.7) by 
showing that for t = 2,. . . , 2, 

B Ui_,C(i/k,) = BC(i/k,~BU:;:C(i/k,)’ (5.8) 

Then, by induction, Equation (5.7) follows from Equations (5.6) and (5.8). 
Corresponding to the edge { V,, V,, } in T, there is a directed edge, either 

( Vj, V,,) or ( Vk,, Vi), in D. Suppose the directed edge is (Vi, V,,). Let 
r E C(i/k,) and s E Ui,:C(i/kj). Then: 

(1) T E Vi, for vi, E V(i/k,) and s @ viz for Vjp E V(i/k,). Thus {r, s} 
cVj for Vj~V(i/k,)uV(i/k,). But V(i/k,)uV(i/k,)= {V,,...,V,,}, so 
{r,s}d:Vj for j=l,..., m. 

(2) Since T 4 Vi for any Vj6V(i/k,), r E VP for some V, E V(k,/i). 
Since s E C(i/k,) for some u = l,..., t - 1, s G Vi for any Vi E V(i/k,). 
Therefore s E V, for some V, E V( k,/i). Let [VP, V,,] be the path from VP to 
Vk, in T(k,/i), and [Vkt,, V,] be the path from V,,, to V, in T( k,/i). Then 
[V,,V,,]U{V,,,Vi}U{Vi,Vk,,}U[Vk,,,V4]istheuniquepathfromV, toV, in 
T. Thus if there were a directed path from V, to V, in T, it would have to 
contain the directed edge ( Vk,, Vi), which is impossible by supposition. 
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Since B must have a nonzero pattern allowed by (T, D), we have b,, = 0 
if r E C(i/k,) and s E Ui~$(i/k~). Thus, an application of Laplace’s 
expansion yields Equation (5.8). Similarly, if the directed edge is (V,,, Vi), one 
can show that b,, = 0 for r E U;,iC(i/k j) and s E C(i/k,), and likewise 
arrive at Equation (5.8). This completes the verification of Equation (5.7). 

Hence the numerator in Equation (5.2) may be written 

iQ’~, = I? II 
i=l (k:{V,,V,)Ee(T)) 

%(i/k). (5.9) 

The right-hand side of Equation (5.9) equals the right-hand side of Equation 
(5.5). Hence the left-hand sides of these equations are equal, which yields 
Equation (5.2) completing the proof of the theorem. n 

If any of the terms in the denominator of Equation (5.1) are zero, a trivial 
modification of the beginning of the proof yields the more general formula 

WL 

I-I A,= VetA) n 
k=l {Y,V,) EC(T) 

A,,“,. (5.10) 

When A - ’ is (upper or lower) Hessenberg, Equation (1.2) of the intro- 
duction follows from Theorem 5.1 as a very special case. The examples in 
Section 3 are a small sample of the great variety of zero patterns A-’ can 
have in the setting of Theorem 5.1. One can mechanically generate further 
examples by choosing appropriate index sets VI,. . . , V,,, and tree pair (T, D) 
and seeing what formulae for det A and zero patterns for A - ’ result. 

We conclude this section by briefly noting that for any of the formulae 
(5.1) there are many corresponding formulae involving nonprincipal minors 
obtained simply by permuting rows and columns of the matrix A. For 
example, let 

and assume that b, = 0. Since b,, is a diagonal element of A - ‘, Theorem 
5.1 implies directly no formula for det A. However, let 
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so that 
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If a,,#O, let V,={1,2}, V,={1,3}, and let D be the directed tree 

@d. V Since b, = 0, B’ has a nonzero pattern allowed by D. Thus 

by Theorem 5.1, 

det A = - det A’ = - 
A’(i,Z)A’(i,,) 

a;, 

Of course, any permutation which moves b,, off the diagonal results in a 
similar formula. 

6. THE CONVERSE QUESTION 

We wish to address the question of a converse to Theorem 5.1. Specifi- 
cally, does Theorem 5.1 essentially give all the zero patterns of A- ’ for which 
the determinantal formula (5.1) holds? 

Before pursuing this question it is helpful to consider the case of index sets 

V,,V‘.,..., V,, c N for which 

;lj V=N (64 
i=l 

and 

ynvj=q.a for i#j, (6.2) 

Since our preliminary observations are well understood, the proofs will be 
brief. 

DEFINITION 6.1. Let Vi,. . . , V,, c N be index sets satisfying (6.1) and 
(6.2), and let (I be a permutation of { 1,. . . , m }. Zf A is an n-by-n matrix, we 
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say that A has a nonzero pattern allowed by u if whenever ars f 0, then 
either 

(i) { r, s } c V, for some k = 1,. . . , m, or 
(ii) for some i and j with u(i) > a(j), we have r E VotiJ and s E VGCj,. 

For example, if a(i) = i, i = l,..., m, A is a block lower triangular matrix, 
and if, in addition, each Vi has one element, then A is lower triangular. 

THEOREM 6.2. If A has a rwnzero pattern allowed by (I, then 

nt 

detA= nA,. 
k=l 

(6.3) 

by 

Proof. Laplace’s expansion. n 

LEMMA 6.3. lf A is nonsingular, then A has a nonzero pattern allowed 
u if and only if A -’ has a rumzero pattern allowed by u. 

Proof. Permute to block triangular form. The result follows from the fact 
that the inverse of a block triangular matrix with respect to a given partition is 
block triangular with respect to the same partition. n 

THEOREM 6.4. If A-’ has a rwnzero pattern allowed by u, then 

det A = fi A,. 
k=l 

Proof. This is a corollary of Lemma 6.3 and Theorem 6.2. n 

We now establish a converse to Theorem 6.2 (and hence 6.4 also). Of 
course, the identity (6.3) may hold for a particular matrix A but have no 
implication for the zero pattern of A. For if aij is any element outside the 
principal submatrices A( Vi, Vi), . . . , A(V,, V,) whose cofactor is nonzero, one 
can vary the value of a i j to make Equation (6.3) hold. Thus, a natural idea for 
a converse to Theorem 6.2 is to hypothesize that the identity (6.3) holds for 
all matrices whose inverse has some fixed zero pattern. To examine this idea, 
it is helpful to consider the case m = 2. Then Theorem 6.2 reduces to the 
statement: 

If A(V,, V,) or A(V,, Vi) is the zero matrix, then det A = A,,Av9. 
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However, a little reflection shows that there are other zero patterns for which 
the conclusion follows. 

EXAMPLE 1 . Let 

A= 

Then 

a11 0 0 

I 1 a21 a22 a23 , Vi= {1,2} and V,= (3). 

a31 0 a33 

det A = (a,,a,,)a, = &A,. 

In fact, the identity (6.3) will hold whenever det A is the product of the 
diagonal elements of A. To avoid trivial cases such as these, we make the 
following definitions. 

DEFINITION 6.5. If Vi,. . . , V,, C N are any index sets satisfying (6.1) we 
define the profile P( V,, . . . , V,,,) of Vi,. . . , V,,z to be the set UT= 1( V, X V,). If 
Z c N X N, we say that Z lies outside the profile of Vi,.. . , V,, if Z n 
P(V,,...,v,,,)=$. 

DEFINITION 6.6. If Z c N X N, we say that the n-by-n matrix A has a 
nonzero pattern allowed by Z if ars = 0 for all (r, s) in Z. We let &‘z be the 
set of all n-by-n matrices A with nonzero pattern allowed by Z. 

The following theorem shows that if the principal submatrices A(V,, V,), 
k = l,... , m, are allowed to be arbitrary, then the identity (6.3) can only hold 
generically provided that there is a permutation u such that A has a nonzero 
pattern allowed by u. 

THEOREM 6.7. Let Vi,. . . , V, c N be index sets satisfying (6.1) and (6.2), 
let Z C N X N lie outside the profile of Vi,. . . , V,,, and assume that det A = 
ll;-“=iAvk for all AE~$Z. Then there is a permutation cr of {l,...,m} such 
that Vocij X VOcj, c Z whenever a(i) < a(j). 

Proof. The key step is to show that the hypotheses imply that for some 
i E {I..., m}, Vi x ~cZ. Suppose not. Pick ii~ (l,..., m}. There is an 
i, f i 1 such that Vi, x Vi, Qr Z. Next, there is an i, Z i, such that Vi, X Vi, K Z. 
Continue this process until some ij occurs twice. Without loss of generality 
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we may take this to be ii. (Otherwise just delete i,, i,,... until the first and 
last ii are equal.) Thus we have a chain of sets V,, X Vi,, V, X V l,. . . , V,, X v,, 
with i,, i,, . . . , i, distinct, none of which is contained in 2. Pick (ri, cs) E Vi, 
X V9/Z, (rs, cs) E vi, X x3/Z ,..., (rk, cl) E qkX V,/Z. Since ri ,..., rk are 

distinct, as are ci,. .., ck, and since (rS,cS) E yvi,x Vi,, s = l,..., k, we may 
select a permutation matrix P such that p,,,? = P,*~,~ = . . * = prLc, = 1 and all 
remaining ones in P occur in the submatrices P(x: Vi), i = 1,. . . , m. Since the 
P( y, vi) are generally block matrices, it may be necessary to add ones to 
each. Then P E sYz and det P = f 1. But P, = . . . = P, = 0, so Fir= ,P, 

= 0, contradicting the hypothesis. Thus Z 3 $‘X V’ for some i E { 1,. . . , m }. 

We now complete the proof of Theorem 6.7. If m = 2, either Vi X V, = Vi 
x V[ c Z or V, x V, = V, X Vi c Z, which is the assertion. 

Proceeding by induction, assume the theorem is true for m - 1 and that 
det A = nlLIAvA for all A E zZz. For convenience take Vi to be the set for 
which V, x V{ c Z. Let V = lJ;l=,V,. For any A E ._Gs?~, let A be the matrix 
defined by 

iqV,,V)=O, 

fqv,v,) =o, 

@,V)= A(V,V). 

Then A” E dz also. Hence, by hypothesis, det A = n;l=,A’,. But det A = 
Av,A, = A, by Laplace’s expansion, and n;l= rA”vk = nr=,A,. Therefore 
A, = rIk”‘&A,. Letting Z = Z n (V X V ), and noting that &T = 
{ A(V,V): A E dz}, we may apply the induction hypothesis to assert that 
there is a permutation u’ of (2,. . . , m } such that V0,(i) X VO,( j, C 2 whenever 
u’(i) < a’(j). Define u by 

u(i) = ( 1, i = 1, 

o’(i), 2giQm. 

Then Voci) x Vocj, c Z c Z whenever u(i) < u(j), 2 < i, j < m, and V,,,, X 
V,,,,=V,XV,,,,CV,XV,“CZ for i=2,...,m. Combining these, we see 
that Voci) x Vacj, c Z whenever u(i) < u(j), which completes the proof of the 
theorem. n 

The assertion of Theorem 6.7 is, of course, equivalent to the statement 
that there is a permutation u of { 1,. . . , m } such that A has a nonzero pattern 
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allowed by u (and in the nonsingular case, such that A ~’ has a nonzero 
pattern allowed by a). 

We now return to the question of a converse to Theorem 5.1. In this case 
we have a conjecture which we have not been able to prove. But we wish to 
describe some partial results. Several of the following ideas resemble those 
found in [3], where we established converses to some inequalities for positive 
definite matrices. We first establish the preliminary result: 

Observation (Cancellation of indices). Let V,, . . . , V,,, c N be index sets 
satisfying (6.1), and let G be a spanning subgraph of the intersection graph 

of v,,..., V,,,. For each p E N, let aP be the number of node sets V, 

containing p, and let & be the number of edges {V,, V,} E E(G) for which 
V, n Vj contains p. Let Z c N X N lie outside the profile of V,, . . . , V,,, and 
assume that 

(6.4) 

for all nonsingulur matrices A fw which A- ’ E dz (compnre with (5.40)). 
Then a,-&-1, p-l ,..., n. 

Proof. Let A, be the diagonal matrix with X # 0 in the pth position and 
ones in the remaining diagoual positions. Then Ai ’ E dz, so by (6.4) 

from which the conclusion follows. c 

Note from the proof that it is only necessary to assume that Equation (6.4) 
holds for all diagonal matrices. The following definition will make it conveni- 
ent to state our conjecture. 

DEFINITION 6.8. Given a related pair T, D, as in Section 4, let Z(T, D) 
be the set of all (r, s) E N X N satisfying neither (i) nor (ii) of definition 4.2; 
i.e., Z(T, D) is the set of mandatory zeros if the matrix A has a nonzero 
pattern allowed by (T, II). 

We must also deal with the possibility of identical determinantal formulae 
for distinct spanning trees associated with the ncxk sets V,,. . ., V,,, and 
satisfying the intersection property (IP), before stating our conjecture. As an 
example, let, A be a 4-by-4 matrix and let V1= {1,2}, V,- {1,3}, and 
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Vr = { 1,4). Then the formula (2.3) becomes 

det A = AMA{1*s~A{r,,) 
2 

a11 

(6.4’) 

for each of the three trees 

where there are four directed trees and accompanying matrices for each I;. If 
A- ’ has the zero pattern 

x x x x 
x x 0 0 

[ I x x x 0’ 
x x x x 

and a,, # 0, then equation (6.4’) holds because this zero pattern corresponds 
to Z(T,, I),), where D, is the directed tree 

However, this zero pattern does not correspond to any of the Z(T, D) when T 
is T, or T3. This motivates: 

DEFINITION 6.8’. Let Vi,. . . , V,, c N be index sets satisfying (6.1), and 
let Tl and T, be distinct spanning trees of the intersection graph of 
V l,. . . , V,,,. We say T, and T, are equivalent if the two collections {V, n 
Vj:{V;,Vj} EE(T~)} and {VnV,:{V,vj} EE(T~)} are identical. 

We conjecture the following converse to Theorem 5.1. 

CONJECTURE 6.9. Let V,, . . . , V,,, C N be index sets satisfying (6.1) and 
let T be a spanning tree of the intersection graph of V,, . . . , V,. Let 
Z C N X N lie outside the profile of Vi,. . . , V,,, and assume that 

fi Avk= (det A) n 
k=l {V,V,) GE(T) 

Av,nv, (6.5) 
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for all nonsingular matrices A for which A-’ E .x@‘~. Then T satisfies the 
intersection property (IP). Furthermore there is a spanning tree T’ equivalent 
to T and a directed tree D related to T’ such that Z 1 Z(T’, D). 

There is often no other spanning tree T’ of the intersection graph G, 
which is equivalent to T. This is the case in our subsequent examples, and 
hence we make no further mention of this issue. 

Conjecture 6.9 says that the identity (6.5) can hold generically only under 
the hypotheses of Theorem 5.1. 

Purtial proof. 

(i) We first prove that T satisfies the intersection property (IP) by 
showing that if (IP) fails, then (Ye - &, >, 2 for some p E N, violating the 
cancellation-of-indices observation made above. If (IP) fails, there are node 
sets V., Vi, and V,, with V, between V. and Vi and with V. n Vig V,. Pick 
p E N such that p E V, n Vi but p 4 V,. 

Remove from T the node set V, and all edges incident with the node V, 
(i.e., of the form {V,, V,}). Thus, p FE V, n V, for any edge (V,, V,} which is 
removed. This leaves two or more subtrees. Let T, be the subtree containing 
V, T, the one containing Vi, and T3,. . . , T, any remaining subtrees. For each 
of these trees Tk, let Fk be the forest whose vertex set is the collection of all 
node sets V, in Tk which contain p and whose edge set is the collection of all 
edges {V,, V,} for which p E V, f’ VS. For each nonempty forest Fk, 

in which V( Fk) is the vertex set and E( Fk) is the edge set of Fk. In particular, 
F, contains V, and F, contains Vi, so that this inequality holds at least for 
k = 1,2. Thus, we have 

which contradicts the cancellation-of-indices observation. Thus T satisfies 

(IP). 
(ii) Secondly, we show the conjecture is true for m = 2. In this case, 

Equation (6.5) becomes 

Av,AvS = (det A)Av, o vs. (6.6) 
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Letting B = A -’ and Ci = Vi’, i = 1,2, on application of Jacobi’s formula for 
minors of the inverse matrix, we have 

B Cl Bc, 1 %,“C, 
-.-=-- 
det B det B det B det B ’ 

or 

B Cl”CZ = Bc,Bc,. (6.7) 

We now wish to use Equation (6.7) in the context of Theorem 6.7. Let 
2,=Zn[(C,uC,)x(C,uC,)], and let &g be the set of all matrices of 
order IC, U C,\ with nonzero pattern allowed by 2. For each B E dz, let 
B = B(C, U C,, C, U C,). Then { B: B E dz} = &A. Since Equation (6.6) 
holds for all A with B = A-’ E dz, Equation (6.7) holds for all B E dz. 
Therefore 

forall BE&~. 
Now, suppose (r, s) E 2. Since 2 n P(V,, V,) = +, Z n P(V,, V,) = 9. If 

(~,s)EC,XC,, then r,s4Vi, implying r, s E V, or (r, s) E V, X V, C 
I’( Vi, V,), which is contradictory. Likewise (r, s) E C, X C, is impossible. 
Thus if (r, s) E Z then (r, s) $ P(C,, Cs). Take N = C, U C, in Theorem 6.7. 
Since C, n C, = (Vi U Vs)” = N’ = Cp, and Z c N x N lies outside the profile 
of C,, C,, all the hypotheses of Theorem 6.7 are satisfied for the case m = 2. 
We may therefore conclude that either C, x C, c 2 or C, X C, c 2, and 
hence that either C, X C, C Z or C, X C, C 2. 

In the first case, let D be the directed tree on (Vi, V,} with directed edge 
(Vi, V,). Then (7, s) E Z(T, D) if and only if T 4 Vi and s @ V., i.e. (r, s) E 
C, X C,. Thus Z(T, D) = C, X C, C 2 as claimed. In the case C, X C, C Z 
choose the directed edge to be (V,, V,). I 

Although we have been unable to find a general proof for the conjecture, 
we wish to consider two elementary examples for m = 3. The first is a case 
where the proof can be successfully carried out. The second illusttates how a 
slight change can radically alter the complexity. 

EXAMPLE 2. Let N= {1,2,3,4}, Vi- {1,2}, V,= {2,3},andV,= {3,4}. 
Let Z lie outside the profile of Vi, V,, V,, and assume A (i,s) A (s s1 A (3,4j = 
(det A)a,a, whenever A-’ E JBz. By Jacobi’s identity, B = Ami satisfies 
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for all B E dz. Now replace b,, by 1 and all other entries in the second row 
and column of B by 0. The modified B is still in .&z, and Equation (6.8) then 
reduces to 

which must hold for all B E SB,. This illustrates a general principle which can 
be applied to prove Conjecture 6.9. In an equation such as (6.8) any subscript 
or set of subscripts may be deleted from all index sets. Dividing Equation 
(6.9) by B{,,, } yields 

b&a,,) = B{W,‘r) (6.10) 

for all B E dz. [Note that if B(,,,) were zero, one could simply perturb B in 
(6.8) by EZ staying within &z, reduce to (6.9), and then let E -+ 0.1 By 
Theorem 6.7 (m = 2) either 

{l}X{3,4} CZ or {3,4)X(l) CZ. (6.11) 

Deleting (3) from (6.8) gives 

so that 

for alI B E dz. Thus, again by Theorem 6.7, 

{1,2)X(4} CZ or {4)X(1,2} CZ. (6.12) 

Combining (6.11) and (6.12) shows that Z contains one of the zero patterns 
represented by the four matrices 
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In other words, 2 1 Z(T, D) for one of the four directed trees 

EXAMPLE 3. Now let N= {1,2,3,4,5}, Vi= {1,2}, V,= {2,3,4}, and 
V, = {4,5}. Let Z lie outside the profile of Vi, V,, and V,, and assume that 

*{Lz)*(z.3.41*{4,5) = (det A)a,,a,, 

whenever A - i E SS?~. By Jacobi’s identity 

forall BE.x@~. 

We apply the same strategy as before by deleting (2). Then 

but there is no cancellation. Deleting (3) in addition gives 

which reduces to 

w$4,5) = B(L4.5) 

on division by Bc,,,Sj. Thus 

{l}X{4,5}CZ or {4,5)X(l) CZ. 

Deleting (3,4} from (6.13) gives the conclusion 

{1,2}~{5} CZ or {5)x(1,2} CZ. 

(6.13) 

(6.14) 

(6.15) 

Deleting {l} gives 
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on division by Bc3,4,5). Thus 

{2,3)x(5} CZ or {5)x(2,3} cZ. 

Deleting (5) yields the conclusion 

(6.16) 

{l}X{3,4} CZ or {3,4)X(l) CZ. (6.17) 

Deleting (3) alone gives no conclusion. Thus it seems we have drawn all the 
conclusions we can from straightforward deletions. To illustrate a bad case, 
we take the first two alternatives in (6.14) and (6.15) and the second two in 
(6.16) and (6.17). This gives the zero pattern 

(6.18) 

and we have not yet shown that Z contains one of the four zero patterns 
predicted by Conjecture 6.9. These are 

! 
X 
X 
0 
0 
0 

0 
0 
0 , 
X 
X 1 

I 
X 
X 
0 
0 
0 

I 
X 
X 
X 
X 
0 

x x 
x x 
x x 
x x 
0 0 

x 0 
x x 
x x 
x x 
0 0 

X 

X 

X 

X 

X 

0 
X 

X 

X 

X 

I> 
0 
X 
x . 
X 

X 1 
However, there is great power in the hypothesis that (6.13) must hold for 

all B E -Pa,. A further tedious analysis shows that (6.18) must indeed reduce 
to one of these four zero patterns. It is most disappointing that Example 3, 
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which is only slightly different from Example 2, is so much more difficult to 
prove, and it is almost certain that this method is far too limited to prove 
Conjecture 6.9 if it is true. This example makes a proof even for m = 3 seem 
far out of reach. Ideally, in Example 3, one should prove that either 

{l}X{3,4,5} CZ or {3,4,5)X(l) CZ (6.19) 

and 

{5)X(1,2,3} CZ or {1,2,3)x(5} cZ, (6.20) 

and the conclusion would immediately follow as in Example 2. Unfortunately, 
we can%ee no way to do this in one step. 

The following lemma shows that the problem of establishing (6.19) and 
(6.20) accurately represents the difficulty in the general case. 

LEMMA 6.10. Let V,, . . . . V, c N be index sets satisfying (6.1), and let T 

be a spanning tree of the intersection graph of V,, . . . , V,,,. Let Z c N X N lie 

outside the profile of Vi,. . . , V,, and assume that for each {q, vj} E E(T) 

either C(i/j) X C(j/i) c Z M C(j/i) X C(i/j) c Z (see Definition 5.3). 
Then there is a directed tree D related to T such that Z 1 Z(T, 0). 

Proof. Define the directed tree D as follows. For each {V, vj} E E(T), if 
C(i/j)x C(j/i) c Z, let (V,Vi) be a directed edge in D, and if C(j/i)X 
C(i/j) c Z, let (Vi, Vi> be a directed edge in D. 

Suppose (r, s) E Z(T, 0). Then {T, s} c V,, k = l,..., m. Let [VI ,..., V,,] 
be a path in T with r E V, and s E V,. Then for some k, 1 < k < I, (Vi,, qk_ ,) 

is a directed edge in D. This means that C(i,/i,_,)X C(i,_,/i,) c Z. We 
claim that (r, s) E C(i,/i,_,)x C(i,_,/i,). For if T @ C(i,/i,_,), then 
r E Vj for every j E V(i,/i,_,). In particular r E V,,, so that {r, s} C Vi,, a 
contradiction. Likewise, if s P C(i,_ l/ik), then {r, s} C Vi,, a contradiction. 
Therefore (r, s) E C(i,/i,_,)X C(i,_,/i,) C Z. Thus Z(T, D) C Z. w 

One can easily check that, in Example 3, C(2/1) = {1} and C(1/2) = 
{3,4,5}, while C(2/3) = (5) and C(3/2) = { 1,2,3}. 

Starting with the identity (6.5), 
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and applying Jacobi’s formula gives 

Applying the same reasoning as used in Theorem 5.1 yields 

Using the fact that this holds for all B E dz, it only (!) remains to show that 

for all {V,, Vi } E e(T). For then Theorem 6.7 (m = 2) and Lemma 6.10 imply 
Conjecture 6.9. 

The hypothesis (6.5) in Conjecture 6.9 is a curious sort. It seems un- 
manageable enough to make the conjecture difficult to verify, while it is 
strong enough to make a potential counterexample nontrivial. 
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