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Abstract

In this paper the authors study generic covers ofC2 branched over{xn + ym} = 0 s.t. the total
space is a normal analytic surface.

They found a complete description of the monodromy of the cover in terms of the monodromy
graphs and an almost complete description of the local fundamental groups in case(n,m)= 1.

For the general case, they give explicit descriptions of base changes in terms of monodromy
graphs; they describe completely the embedded resolution graphs in the casen|m. Via these base
changes every cover is a quotient of such a cover. 2000 Elsevier Science B.V. All rights reserved.
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0. Introduction

In this paper we study normal singularities of complex analytic surfaces. Recall that
(see, e.g., [11]) the singularities of a normal analytic variety form an analytic subvariety
of codimension at least 2. So, a normal curve is automatically smooth, and a normal
surface is automatically a surface with isolated singularities. The converse holds only for
hypersurfaces (see [5]).

Then, in case of dimension 2, in order to study germs of normal analytic surfaces we
can consider analytic surfaces with just one singular point.

Recall that, by Weierstrass preparation theorem, in a suitable neighborhood of every
point of an analytic surface there exists a holomorphic function to a disc which is an
analytic cover branched over a curve (see [6]). Moreover, a generic function like this one is
a “generic” cover, i.e., a branched cover of degreed such that the fiber over a smooth point
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of the branching curve hasd−1 points (see [12]). Every element in the fundamental group
of the set of regular values of this map, induces a permutation of thed points of the fiber
over the base point, thus a homomorphism from this group toSd , called “the monodromy
of the cover”. The “generic” condition means that for each geometric loop (i.e., a loop
around a smooth point of the curve) its monodromy is a transposition.

This property can be usefully applied to study singularities; in fact, given a curve
C contained in a disc∆ (or in C2), and a homomorphismµ :π1(∆ − C) (respectively
π1(C2− C))→ Sd , s.t. the images of the geometric loops are transpositions, there exists
a unique normal surfaceS and a generic cover fromS to ∆ (respectivelyC2) with
C as branch locus andµ as monodromy (for an explicit construction see, e.g., [12];
unfortunately, this construction is quite involved, so it does not give directly a satisfying
description of normal singularities).

So, in order to classify generic coversπ :S→C2 of degreed , with S normal, branched
over some curveC, we need to classify only the generic monodromiesµ :π1(C2−C)→
Sd .

In this paper we restrict to the case where the branching curve has (up to analytic
equivalence) the equation{xn = ym}. This is a very particular case, but, by the
classification of singularities of plane curves given by Puiseux (see [4]), it seems to be
the natural starting point.

In Section 1 we state some well known expressions of the fundamental group of the disc
minus our curves, via generators and relations, and we give a combinatorial bound for the
degree of the cover.

In Section 2 we prove that our family of covers is stable under base change with maps
of typefa,b(x, y)= (xa, yb); we represent the monodromy of a generic cover of degreed

branched on the curve{xn = ym} by a graph withd vertices andn labeled edges and we
describe the action of a base change as above over these graphs.

In Section 3, we restrict ourselves to the case(n,m) = 1, and we give a complete
classification of the graphs associated to these covers. In particular, we prove the
following

Theorem 0.1. The monodromy graphs for generic coversπ :S → C2 of degreed > 3
branched over the curve{xn = ym}, with (n,m)= 1, are the following:

(1) “Polygons” with d vertices, valencen/d (or m/d) and incrementj , with (j, d)=
1, j < d/2, j (d − j)|m (respectivelyj (d − j)|n). Moreover,d must dividen
(respectivelym).

(2) “Double stars” of type(j, d − j) and valencen/j (d − j) (or m/j (d − j)), with
(j, d)= 1, j < d/2, j (d − j)|n (respectivelyj (d − j)|m). Moreover,d must divide
m (respectivelyn).

The base change induced by the mapf (x, y) = (y, x) in C2 takes graphs of type1 in
graphs of type2, and vice versa.

For the definition of “polygons” and “double stars” see Definitions 3.2 and 3.3.
So, in order to classify generic covers, we get the following
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Corollary 0.2. If (n,m)= 1 then the generic coversπ : S→C2 of degree greater than3
branched over{xn = ym}, S normal surface, are classified by the disjoint union of the sets{

(j, d)|d > 3, d|n, (j, d)= 1, j < 1
2d, j (d − j)|m

}
and {

(j, d)|d > 3, d|m, (j, d)= 1, j < 1
2d, j (d − j)|n

}
.

In both cases,d is the degree of the cover.

All these graphs correspond to some cover also if(n,m) > 1, but they do not give a
complete classification. We found also explicit equations for the singularities ofS in the
casej = 1.

In Section 4 we compute the local fundamental group of the surfaces associated to some
of the graphs constructed in Section 3. This gives partial answer to the smoothness problem
(is S smooth?); moreover it provides an useful tool in the proof of Theorem 0.3.

In Section 5 we describe completely the embedded resolution graphs of all the possible
singularities in casem = bn for someb, using, to simplify the calculations, the equation
{xn+ ybn = 0} for the branching locus; we prove the following

Theorem 0.3. Let π :S → C2 be a d-sheeted generic cover branched over the curve
{xn+ ybn = 0}, S normal.
S has a resolution which is the plumbing variety of the following normal crossing

configuration of smooth curves:

where the vertexEb has genus(n− d − ν + 2)/2 and self-intersection−ν.
Moreover,S is smooth⇔ the monodromy graph is a tree; this can occur only ifd

dividesb.

Remark that by the results about base change of Section 2, all the possible surfaces under
consideration are the quotient of one of these singularities by the action of a finite group.

1. Fundamental groups and maps

LetCn,m be the curve inC2 defined by the equationxn = ym.
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The aim of this section is to compute some useful presentations for the fundamental
group ofC2 \ Cn,m and derive the first necessary conditions for the existence of generic
covers of given degree branched overCn,m.

Letβ , µ̄j be the pathsβ(t)= (1, tε+(1− t)(1−ε)), µ̄j (t)= (1, εe2π itj/m) for t ∈ [0,1]
and if z ∈C∗ andλ= (λ1, λ2) is a path inC2 let z(λ)= (λ1, zλ2).

Let µ1, . . . ,µm be the geometric basis ofπ1({x = 1} \ Cn,m) with (1,1− ε) (0< ε <
1/2) as base point given by

µ1=
(
1, εei(2πt+π)+ 1

)
t∈[0,1],

µj = β · µ̄j ·ωj−1(β−1 ·µ1 · β
) · µ̄−1

j · β−1

for j = 2, . . . ,m, whereω = e2π i/m.

Proposition 1.1. The fundamental group ofC2 \ Cn,m admits the three equivalent
presentations

(1) π1(C2 \ Cn,m) = 〈µ1, . . . ,µm | µi = Mµi+nM−1, i = 1, . . . ,m〉, whereM =
µ1 · · ·µn and the indices are taken to be cyclical(modm);

(2) π1(C2 \Cn,m)= 〈γ1, . . . , γn | γi = Γ γi+mΓ −1
, i = 1, . . . , n〉, whereΓ = γ1 · · ·γm

and all indices are taken to be cyclical(modn);
(3) π1(C2 \ Cn,m) = 〈γ1, . . . , γn | Γ = γi · · ·γm+i−1, i = 2, . . . , n〉, where all indices

are taken to be cyclical(modn).

Proof. Applying Zariski–Van Kampen theorem (see [14,13,9]) to the projectionφx :C2→
{y = 1}, (x, y) 7→ (x,1), we get the first presentation.

Let Mj = µ1 · · ·µj (with cyclical indices(mod m) andM0 = 1) and defineγi =
Mi−1µ

−1
i M−1

i−1 for i = 1, . . . , n.

Sinceµi = Γi−1γ
−1
i Γ −1

i−1 for i = 1, . . . ,m, whereΓh = γ1 · · ·γh (with cyclical indices
(modn) andΓ0= 1), γ1, . . . , γn are a new set of generators and rewriting the relations of
the first presentation in terms of theγ ’s we get the second one.

The third presentation is easily obtained from the second one.2
Call µ1, . . . ,µm the standard generators ofπ1(C2 \ Cn,m) andγ1, . . . , γn the minimal

standard generators ofπ1(C2 \Cn,m).
From these presentations it is immediate to verify that, settingΓ = γ1 · · ·γn
Γ =M−1 and Γ m/(n,m) = Γ n/(n,m)

is in the center.
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Observe that if we apply Zariski–Van Kampen theorem to the projectionφy :C2→ {x =
1}, φy(x, y) = (1, y), and proceed as in Proposition 1.1, we may take as generators of
π1(C2 \Cn,m) a geometric basis̃µ1, . . . , µ̃n of π1({y = 1} \Cn,m) with relations

µ̃i = µ̃1 · · · µ̃mµ̃i+m(µ̃1 · · · µ̃m)−1

for i = 1, . . . , n and cyclical indices (modn).
Note also that this is the same as calculating the fundamental group of the complement

of Cm,n = {xm = yn} via φx .

Proposition 1.2. With the above notations

µ̃i = γi.

Proof. Let fn,m :C2
x,y→C2

ξ,η be the map(ξ, η)= fn,m(x, y)= (xn, ym).
fn,m|C2\({xy=0}∪Cn,m) :C

2 \ ({xy = 0} ∪Cn,m
)→C2 \ {ξη(ξ − η)= 0

}
is a covering.

Take (1,1 − ε) as base point inC2 \ ({xy = 0} ∪ Cn,m) and take as generators of
π1(C2 \ ({xy = 0} ∪ Cn,m)) the standard generators ofπ1(C2 \ Cn,m) µ1, . . . ,µm, µx =
µ̄m = (1, (1− ε)e2π it ) (loop around thex-axes) andµy = (e2π it ,1− ε) (loop around the
y-axes) fort ∈ [0,1].

Observe that if we quotientπ1(C2 \ ({xy = 0} ∪ Cn,m)) by the subgroup normally
generated byµx andµy we obtainπ1(C2 \ Cn,m) and that we can do the same thing
with theµ̃’s as generators.

In the planeξ+η = 1+(1−ε)m = 2−ε′ take as generators ofπ1(C2\{ξη(ξ −η)= 0})
γ , γξ , γη as shown in the figure below where the lineξ + η = 2− ε′ is identified withC
via theη coordinate andp = (1,1− ε′).

γ, γξ , γη are related by the equationsγξγηγ = γ γξγη = γηγ γξ .
Since(fn,m)∗ is injective, we can identifyπ1(C2 \ ({xy = 0} ∪ Cn,m)) with its image

obtaining:

µj = γ j−1
ξ γ γ

−j+1
ξ for j = 1, . . . ,m,

µx = γmξ ,
µy = γ nη ,
µ̃j = γ−j+1

η γ−1γ j−1
η for j = 1, . . . , n,

µ̃x = γ−mξ ,

µ̃y = γ−nη .
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Note now that

γ−1
η γ−1γη = γ γξγ−1γ−1

ξ γ−1= µ1µ
−1
2 µ−1

1 ,

thus

µ̃j = γ−j+1
η γ−1γ j−1

η

= (γ γξ )j−1γ−1(γ γξ )
−j+1

=µ1 · · ·µj−1µ
−1
j (µ1 · · ·µj−1)

−1

as we wanted. 2
Now we look for which d > 3 there exists a surjective homomorphismρ from

the fundamental group ofC2 \ {xn = ym} in Sd sending the geometric generators in
transpositions, i.e., a normal surfaceS and ad-sheeted generic coveringπ :S → C2

branched over{xn = ym}.
For everyσ ∈ Sd call ν(σ ) the number of orbits ofσ , ν the value of this function for

ρ(Γ ). ν is the number of cycles of a permutation constructed multiplyingn transpositions
in Sd , son+ d + ν is even.

Call a1, . . . , aν the length of theν cycles of the monodromy ofΓ . Being Γ m/(m,n)

central andd > 3, the order ofρ(Γ ) dividesm/(m,n); then everyai does.
LetDmn ⊂N, be the set of (positive) divisors ofm/(m,n), and consider all the possible

ways to writed as sum of elements of this set.
Let Kdmn be the set of all the possible “lengths” of this sums, where the “length” of a

sum, is the number of integers we are adding.
Now define the function

Λ(m,n,d)= inf
{
ν ∈Kdmn | n+ d + ν is even

}
.

Λ gives a lower bound for the number of orbits ofρ(Γ ); in fact it is the minimal number
of orbits for permutations with order that dividesm/(m,n) (ν ∈Kdmn) and with the same
parity ofρ(Γ ) (product ofn transpositions).

Now define

χ(m,n, d)= n+ 2− d −Λ(m,n,d).
We have the following

Proposition 1.3. Let (S,ϕ) be a generic cover branched on{xn = ym} of degreed > 2.
Thenχ(m,n, d)> 0.

Moreover, ifn dividesm, the converse holds.

Proof. For the first part of the proposition we prove, by induction onn, that for the product
of a transitive set ofn transpositions inSd , the number of orbitsν must beν 6 n+ 2− d .
In fact, if n= 1 thend = 2 andν = 1, and there is nothing to prove.

If n > 1, consider the firstn− 1 transpositionsρ(γi), and letν′ be the number of orbits
of their product;ν′ = ν + 1 orν′ = ν − 1.



S. Manfredini, R. Pignatelli / Topology and its Applications 103 (2000) 1–31 7

If thesen−1 transpositions generateSd thenν 6 ν′ +16 n−1+2−d+1= n+2−d .
Otherwise they generateSd−k × Sk , and the last transposition “connects” two diffe-

rent orbits of their product. Suppose that inSk there are exactlyg among the firstn− 1
transpositions, then their product has by inductionν′′ 6 g + 2− k orbits and the product
of the othern− 1− g transpositions hasν′ − ν′′ 6 n− 1− g + 2− (d − k) orbits.

Soν = ν′ − 16 g + 2− k + n− 1− g + 2− (d − k)− 1= n+ 2− d .
By definitionΛ(m,n,d)6 ν and we get the result.
For the converse, remark that in this case the fundamental group is generated by

γ1, . . . , γn with the only relation thatΓ is central. So it is sufficient to exhibit a set of
n transpositionsσ1, . . . , σn s.t. their product is the identity ofSd .

Now assumeχ(m,n, d)> 0, i.e.,Λ(m,n,d)6 n− d + 2.
Then there exista1, . . . , aΛ(m,n,d) ∈N such that:
(1)

∑
ai = d ,

(2) ∀ i ai dividesm/(m,n),
(3) n+ d +Λ(m,n,d) is an even number.

Choose the following transpositions:

σi =



(1, i + 1), 16 i 6 d − 1,(
1, d + 1−

i−d+1∑
1

ak

)
, d 6 i 6 d +Λ− 2,

(1,2), d +Λ− 16 i 6 n.

Of course this choice verifies our condition, then it describes ad-sheeted generic cover
branched on the curve{xn = ym}. 2

In general these functions are not so simple to compute. The following holds:

Remark 1.4.

χ(m,n, d + 1)> χ(m,n, d)− 2.

Proof. Let Λ = Λ(m,n,d). If Λ = +∞ there is nothing to prove. Otherwise, let
a1, . . . , aΛ ∈Dmn realizing the minimum as in the definition ofΛ.

Thena1, . . . , aΛ, aΛ+1= 1∈Dmn, with n+ d + 1+Λ+ 1 even and
∑Λ+1

1 ai = d + 1
which impliesΛ(m,n,d + 1)6Λ(m,n,d)+ 1.

But then

χ(m,n, d + 1)= n+ 2− d − 1−Λ(m,n,d + 1)

> n− d −Λ(m,n,d)= χ(m,n, d)− 2. 2
Remark that ifm = n, m even,Λ(m,m,d) = d , i.e., there exist generic covers if and

only if m+ 2− 2d > 0, i.e.,d 6m/2+ 1 (if m= n,m odd, there are no generic covers for
d > 2; in fact this is true for everyn,m s.t.mn is odd, see next section for details).
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2. Fiber products, monodromies and graphs

Let π :S → C2 be a d-sheeted generic cover branched over{xn = ym} with S

an irreducible surface with an isolated singularity inP = π−1(0,0) and let ρ be its
monodromy.

Consider the mapfa,b :C2→C2 and letS = S ×C2 C2 be the fiber product.
We get the following commutative diagram:

S

π̄

ψ
S

π

C2
fa,b

C2

Proposition 2.1. S as above is an analytic surface with an isolated singularity inP =
π−1(0,0).
π is a d-sheeted generic cover branched over{xan = ybm} and its monodromȳρ is the

compositionρ ◦ (fa,b)∗.

Proof. By definition of fiber product we get immediately thatS is analytic, andπ a d-
sheeted generic cover branched over{xan = ybm}.

The two mapsπ andfa,b are coverings ofC2 whose branching loci intersect just in the
origin. This easily implies thatS is smooth outsideP .

Now consider the homomorphism(fa,b)∗ :π1(C2 \ {xan = ybm})→ π1(C2 \ {xn =
ym}). Of course

(fa,b)∗(γi)= γ[i] 0< i 6 an,

where[i] is the remainder class ofi mod n, and if we choose the correct enumeration
for the points in the fibers over the two base points, we have that∀0< i 6 an, γi and
(fa,b)∗(γi) act in the same way and this holds for anyγ ∈ π1(C2 \ {xan = ybm}). This
proves the second part of the theorem.2
Theorem 2.2. In the above hypotheses, if moreoverS is a normal surface, thenS is normal
too.

Proof. First note that we can assumeb= 1. Define

A=C(S)= C{x
′, y, z1, . . . , zn}

I
, A=C(S)= C{x, y, z1, . . . , zn}

ψ∗I
and denote the quotient fields by

Q=Quot(A), Q=Quot(A).

ψ∗ injectsA in A andQ in Q (ψ∗(x ′)= xa); so, we can considerA andQ as extensions
of A andQ, respectively.
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Recall that, by definition,S normal means thatA is integrally closed inQ, i.e., for any
f ∈Q such that∃p ∈A[t] monic withp(f )= 0⇒ f ∈ A. We must check that the same
property holds forA in Q.

Let f ∈Q, p = tn + an−1t
n−1+ · · · + a0 ∈A[t] monic such thatp(f )= 0.

ω = e2π i/a acts onA (respectivelyQ) via the natural map

ω
(
f (x, y, z1, . . . , zn)

)= f (ωx,y, z1, . . . , zn)

and we have that Fix(ω)=A (respectivelyQ).
For everyl such that 06 l < a define

fl =
∑

06i<a
ωi(f )ωil .

Remark that

ω(fl)= ω
( ∑

06i<a
ωi(f )ωil

)
=

∑
06i<a

ωi+1(f )ωil = fl

ωl
.

In particular, ifgl = flxl , gl ∈Q.
∀06 i, l < a definepil = tn +ωi(an−1)ω

il tn−1+ · · · +ωi(a0)ω
nil ; pil (ω

i(f )ωil)= 0.
Let ql = ∏pil , h

l
1, . . . , h

l
an its roots in some suitable extension ofQ and let rl =∏

16i1<···<ia6an(t − hli1 − · · ·− hlia ). By the fundamental theorem of symmetric functions

rl ∈A[t] andrl(fl)= 0.
If rl = tN + bN−1t

N−1+ · · · + bN , let sl = tN + xlbN−1t
N−1+ · · · + xlNbN ; we have

sl(gl)= 0, andsl ∈A[t]; up to multiplyingsl by some suitable polynomial, we can assume
sl ∈A[t], sogl ∈A.

Butfl is a weakly holomorphic function onS, sofl is holomorphic in the smooth points
of S. If l = 0,f0= g0 andf0 ∈A⊂ A. If l > 0,gl is 0 inS ∩ {x = 0}, i.e., is 0 as function
in S ∩ {x ′ = 0}. Thus,gl/x ′ is a holomorphic function onS \ Sing(S), thengl/x ′ is a
holomorphic function onS (see [11, Chapter 6, Proposition 4]), i.e.,gl/xa ∈A.

So

fl = gl
xl
= gl

xa
xa−l ∈A.

We conclude the proof noting that

f = 1

a

∑
06l<a

fl . 2

Corollary 2.3. If π :S→C2 is a d-sheeted generic cover branched over{xn = ym} with
S a normal surface singular inP = π−1(0,0), ρ is its monodromy, andfa,b :C2→C2 is
the map defined above thenπ :S = S×C2 C2→C2 is the normald-sheeted generic cover
associated to the monodromyρ = ρ ◦ (fa,b)∗.

Remark that base change viafa,b induces a partial ordering among generic covers; call
a generic cover minimal if it cannot be induced by other covers via one of these base
changes.
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Proposition 2.4. (fa,b)∗ :π1(C2 \ {xan = ybm})→ π1(C2 \ {xn = ym}) andψ∗ :π1(S \
{P })→ π1(S \ {P }) are surjective.

Proof. (fa,b)∗ is surjective since(fa,b)∗(γi)= γ[i] for 0< i 6 an, so it sends the minimal
standard generators onto the minimal standard generators.

CallR = π−1(Cn,m), R = π−1(Can,bm); π1(S \R) is the subgroup ofπ1(C2 \Cn,m) of
thoseγ such thatρ(γ )(1)= 1, and the same holds forπ1(S \ R) in π1(C2 \Can,bm) and
ρ. Since(fa,b)∗ is surjective andρ = ρ ◦ (fa,b)∗, ψ∗ :π1(S \R)→ π1(S \R) is surjective
too.

Considering the following commutative diagram

π1(S \R) ψ∗
π1(S \R)

π1(S \ {P }) ψ∗
π1(S \ {P })

we obtain thatψ∗ :π1(S \ {P })→ π1(S \ {P }) is surjective. 2
Our aim is to classify all homomorphismsρ :π1(C2 \ Cn,m) → Sd (up to inner

automorphisms) whose image is transitive and such thatτi = ρ(γi) is a transposition (i.e.,
homomorphisms representing normal surfaces, see Section 0). Observe that if the second
condition holds, the image ofρ is transitive if and only ifρ is surjective.

The cased = 2 is trivial sinceρ is unique and gives the double cover ofC2 branched
overCn,m obtained projecting on{z= 0} the surface inC3

z2= xn − ym

(note that a hypersurface with isolated singularities is normal (see [5])), so supposed > 3.
Since

γi = Γ nγiΓ −n

for all i (actuallyΓ
n/(n,m)

), it follows thatρ(Γ
n
) must be in the center ofSd which is

trivial if d > 3, so it must beρ(Γ
n
)= 1.

Now, if n andm are both odd,ρ(Γ
n
) is an odd permutation and thus it cannot be equal

to 1, sonm must be even.
A surjective homomorphismρ′ :Fr → Sd from a free groupFr with r generatorsg1,

. . . , gr such that the image of each generator is a transposition, can be represented by a
connected graph withd labeled vertices andr labeled edges in the following way: take a
vertex for everyl = 1, . . . , d and ifρ′(gh)= (i, j) connect the vertexi to the vertexj with
the edge labeledh. Note that the same graph with the numeration of the vertices suppressed
representsρ′ up to inner automorphisms ofSd .

A permutationσ ∈ Sd acts on the set of graphs withd labeled vertices andr labeled
edges in the following way: ifN is such a graph then if the edge labeledl in N connects
the verticesh andk then the edge labeledl in σ(N) connects the verticesσ(h) andσ(k).
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Since our presentations have the peculiar forms

γi = Γ γi+mΓ −1
, µi =Mµi+nM−1

we can interpret our monodromyρ as a mapρ′ :Fn (respectivelyFm)→ Sd such that

τi = ρ′(Γ )τi+mρ′(Γ )−1 (respectivelyτi = ρ′(M)τi+nρ′(M)−1),

i.e., by a connected graphN with d vertices andn (respectivelym) labeled edges such that
if we act onN by ρ′(Γ ) (respectivelyρ′(M)) for a (fixed) numeration of the vertices, then
the edge labeled byj is transformed into the edge labeled byj +m with cyclical indices
(modn) (respectivelyj + n with cyclical indices (modm)).

By sake of simplicity, from now on we consider only the presentation ofπ1(C2 \Cn,m)
in terms of minimal standard generators and so graphs withn edges.

Observe that in order to have a connected graph it must bed 6 n+ 1.
So, a generic cover branched over{xn = ym} is defined by a graph withd vertices and

n labeled edges, and an integerm.
Remark that we have proved that(fa,b)∗ acts on the graphs substituting the edge labeled

j with a edges labeledj + sn for 06 s < a, and multiplyingm by b. So we restrict
ourselves to “minimal” monodromy graphs, i.e., graphs associated to minimal covers.

Note that we are interested in graphs with labeled edges up to a cyclical permutation of
the edges as we can see from the third presentation in Proposition 1.1.

3. Generic covers branched over{xn = ym} with n,m relatively prime

The aim of this section is to classify all edge labeled graphs corresponding to generic
monodromiesρ :π1(C2 \Cn,m)→ Sd in the casen andm are relatively prime andd > 3.

Definition 3.1. Given a graphN , p a vertex ofN andL an edge ofN , let the valence of
p be the number of edges ofN havingp as an end point, and let the valence ofL be the
number of edges ofN with the same end points asL.

Definition 3.2 (Polygons). Let a polygon withd vertices, valencea and incrementj , with
j andd relatively prime, be a graph withn= ad labeled edges of valencea, d vertices of
valence 2a and such that∀s, t the edges labeleds andt have

(1) two vertices in common if and only ifs − t = λd ,
(2) one vertex in common if and only ifs − t = λd + j or s − t = λd − j ,
(3) no vertices in common otherwise.

Definition 3.3 (Double stars). Let a double star of type(j, k), with j and k relatively
prime, and valencea be a graph withn = ajk labeled edges of valencea, d = j + k
vertices of whichj of valenceak andk of valenceaj and such that∀s, t the edges labeled
s andt have

(1) two vertices in common if and only ifs − t = λjk,
(2) one vertex in common if and only ifs − t = λjk +µj or s − t = λjk +µk,
(3) no vertices in common otherwise.
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Fig. 1. A polygon with 5 vertices, valence 3 and increment 2.

Fig. 2. A double star of type(3,4) and valence 1.

Observe that between each vertex of valenceaj and each vertex of valenceak there are
exactlya edges and that there are no edges between vertices of the same valence.

Recall that, in both cases, the labeling of the edges is cyclical (modn).
The main result of this section is the following

Theorem 3.4. The graphs which correspond to generic monodromiesρ :π1(C2\Cn,m)→
Sd for d > 3 with (n,m)= 1, are the following:

(1) Polygons withd vertices, valencen/d (or valencem/d) and incrementj , with
(j, d)= 1, j < d/2, j (d − j)|m (respectivelyj (d − j)|n). Moreover,d must divide
n (respectivelym).

(2) Double stars of type(j, d − j) and valencen/j (d − j) (or valencem/j (d − j)),
with (j, d)= 1, j < d/2, j (d − j)|n (respectivelyj (d − j)|m). Moreover,d must
dividem (respectivelyn).

The base change induced by the mapf (x, y) = (y, x) in C2 takes graphs of type1 in
graphs of type2, and vice versa.

LetN be the graph representing the monodromyρ. N hasn edges andd vertices.
Sincen andm are relatively prime, the inner action of the subgroup generated byΓ on

theγi is transitive, and so is the action ofρ(Γ ) (and its powers) on the edges ofN .
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Thus all edges have the same valencev andv|n.
Call a petal the set of all edges between two fixed vertices. Ifv > 2 then choose two

edges, sayi andi+h, in the same petal. With a suitable power ofΓ you can send the edge
i in the edgei+ h, but if so, since then the set of the vertices of the petal is fixed, the petal
remain fixed (as a set), so the edgesi + 2h (image of the edgei + h), i + 3h, . . . , are in
the petal.

If another edge, sayi + k, is in the same petal buth6 | k, then all edgesi + (h, k),
i + 2(h, k), . . . , are in the petal.

Thus, in general, thev edges in a petal are labeledi, i + n/v, i + 2n/v, . . . , i + (v −
1)n/v.

Observe that you can retrieve the numeration of the whole graph once you know a
suitable numeration for the case of edges of valence 1, so assumev = 1. (This corresponds
to studying minimal covers in the sense of Section 2.)

Sinceρ′(Γ ) acts by conjugation, it transforms relations between theρ′(γi)’s in relations
of the same form between theρ′(Γ )ρ′(γi)ρ′(Γ )−1’s, thus intersecting edges go to
intersecting edges and non intersecting edges go to non intersecting edges. Moreover, the
valence of a vertex is maintained, thus there are only two possible valences for the vertices
(possibly equal) and each edge has vertices of both valences.

Call an end a vertex of valence 1, and a leaf an edge with an end as vertex.

Lemma 3.5. If N has a leaf thenN is a double star of type(1, d − 1) and valence1;
moreoverd|m.

Proof. If N has a leaf then every other edge is a leaf. In this cased = n + 1, there is a
vertex of valencen and there is only one possible numeration of the edges, i.e.,N is a
double star of type(1, n) and valence 1.

In order to calculatem we must constructΓ . Let Γr,s = (γ1 · · ·γn)rγ1 · · ·γs for r > 0,
0 6 s < n and act on the vertices of the edge labeled 1 first byΓ0,1 = γ1, then by
Γ0,2 = γ1γ2, . . . ,Γ1,0 = γ1 · · ·γn,Γ1,1 = γ1 · · ·γnγ1 and so on until forΓr̄,s̄ the two
vertices coincide with the vertices of another edge, say the edge 1+ k. Then check if
k = s̄ and if ρ′(Γr̄,s̄ ) sends the edgei in the edgei + s̄. If this is the case thenΓ = Γ αr̄,s̄
andm= α(nr̄ + s̄).

It is easy to see that in this caser̄ = 1, s̄ = 1, soΓ = (γ1 · · ·γnγ1)
α , d|m, andN gives a

homomorphismρ :π1(C2 \Cd−1,αd)→ Sd . 2
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Fig. 3.

Fig. 4.

So you get ad-sheeted covering ofC2 ramified onxa(d−1) = ybd and it can be realized
as the projection on{z= 0} of the normal surface inC3

zd − dybz+ (d − 1)xa = 0.

Note that this surface is smooth⇔ a = 1.
We may now assume thatN has no ends (no leaves) and edges of valence 1.
Consider two edges ofN , sayi andi + j , with a (single) vertex in common and label

their vertices as in Fig. 3.
Suppose that the power ofρ′(Γ ) that takes the edgei to the edgei + j acts on the

vertices sendinga 7→ b 7→ c.

Lemma 3.6. In the above caseN is a polygon withd vertices, valence1 and increment
j ; moreoverj (d − j)|m.

Proof. With the same power ofρ′(Γ ) that takes the edgei to the edgei+ j , the edgei+ j
is sent to the edgei + 2j and this must contain the vertexc (Fig. 4).

Proceeding in this way we obtain a sequence of edges labeledi+ kj such that two edges
have in common (only) one vertex if and only if they are labeledi + hj andi + (h+ 1)j
for someh. Eventually one of these edges must have a vertex in common with the edge
i and this must be the vertexa, thus closing the circle (if not there would be an edge of
valence at least 2, see Fig. 5). This last edge must have the labeli − j .

Observe that every edge must belong to a circle like this one with the samej .
Suppose now that there is another edge, say with the labeli + l, containing the vertices

b andd (Fig. 6).
Again a suitable power ofρ′(Γ ) takes the edgei to the edgei + l and supposeb 7→ d .
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Fig. 5.

Fig. 6.

Fig. 7.

Then the power ofρ′(Γ ) which sends the edgei to the edgei + j + l must send the
vertexa in both the verticesc andd , a contradiction.

Otherwise, supposeb fixed for the power ofρ′(Γ ) which sends the edgei in the edge
i + l; then the edgei+ j is sent to the edgei+ j + l which must contain the vertexb too.
Moreover the edgei+ j + l must contain the vertexc as one can see acting with the power
of ρ′(Γ ) that takes the edgei to the edgei+ j (and so the edgei+ l to the edgei+ l+ j ).
This contradicts our assumption that all edges have valence 1 (Fig. 7).
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So the only possibility is that there is only one circle withn = d edges labeled
consecutively 1,1+ j, . . . ,1+ hj, . . . ,1+ d − j with 16 j < d/2 and(j, d) = 1, i.e.,
a polygon withd vertices, valence 1 and incrementj .

To calculatem, observe that one of the vertices of the edge 1 moves once everyj steps,
i.e., moves once applyingγ1, twice applyingγ1 · · ·γ1+j and so on, while the other vertex
moves once everyn− j steps in the opposite direction. Under this condition they will be
again consecutive vertices everyl steps with[

l − 1

j

]
+
[
l − 1

d − j
]
+ 2≡ 0 (modd),

and they are the vertices of the edge labeled

1+
([
l − 1

j

]
+ 1

)
j = 1+

([
l − 1

d − j
]
+ 1

)
(d − j).

We require this edge to be the edge labeledl + 1, so

l =
([
l − 1

j

]
+ 1

)
j + kd

with k > 0, thus

kd = 1+
{
l − 1

j

}
j − j < 1

and it must bek = 0.
Thus,j |l and the same argument shows that(d − j)|l.
The minimall verifies[

l − 1

j

]
+
[
l − 1

d − j
]
+ 2= d,

thusl = j (d − j).
Now j (d − j)|m.
In fact, since the graph does not change if we cyclically permute the edges, we have that

acting on the edge labeled 2 byγ2 · · ·γl+1 we obtain the edge labeled 2+ l.
If j 6= 1 we get the same result if we act byγ1 · · ·γl (the edge labeled 1 (respectively

l + 1) does not intersect the edge labeled 2 (respectively 2+ l)), thus the edge labeledi is
sent to the edge labeledl + i.

If j = 1 it is immediate to verify that∀ i, acting on the edge labeledi by γ1 · · ·γl we
obtain the edge labeledi − 1. 2

So, as before, we get (allowing edges of valencea) a d-sheeted cover branched over

xad = ybj (d−j)

with (j, d)= 1.
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Fig. 8.

We may now assume that for any couple of intersecting edges, sayi and i + j , the
suitable power ofρ′(Γ ) that sends the edgei to the edgei + j leaves the common vertex
b fixed.

Lemma 3.7. Under this assumption,N is a double star af type(j, d − j) and valence1;
moreoverd|m.

Proof. In this case, all edges labeledi + hj pass through the vertexb (or, they generate a
star with incrementj and vertexb).

As in the case of petals, if the edgei + k contains the vertexb andj6 | k then all edges
in the formi + h(j, k) are in the star, so if a star containsl edges, then they are numbered
i + h(n/l) and every edge of the graph is in such a star with the samel.

Observe that all edges that have a vertexb in common generate a star with an increment
that dividesn and vertexb (see Fig. 8).

Since we assume that the graph has no leaves, thenj 6= 1 and there must be another edge
containing the vertexa.

This edge is labeled, say,i + k with (k, j)= 1, and, since we assume edges of valence
1, it does not contain the vertexb.

Its other vertexA cannot be in common with the edgei + hj otherwise the power of
ρ′(Γ ) that sendsi to i+hj would send the edgei+ k to the edgei+hj + k not fixing the
common vertex (Fig. 9).

Thus, also the edges containing the vertexa generate a star and we may suppose that it
has incrementk, i.e., that its edges are labeledi + h′k with h′ = 0,1, . . . , n/k − 1.

The same happens at the vertices of the edgesi + hj other thanb, while in the vertexA
there is a star with incrementj (edges labeledi + k + hj with h= 0,1, . . . , n/j − 1).

The free vertices of this star coincide with the free vertices of the star with vertexb. The
same happens with all the other edges of the star with vertexa (Fig. 10).

Comparing the edges we come tokj edges andk + j vertices formingj stars with
incrementj andk edges, andk stars with incrementk andj edges. Since there is only
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Fig. 9.

Fig. 10.

one way to number a star when the label of a single edge is known (as for petals), there
is only one possible numeration of the edges, i.e., we get a double star of type(j, k) and
valence 1.

We can immediately see thatj + k|m. 2
Allowing petals of valencea and choosingj < k, we get ad-sheeted cover branched

over

xaj (d−j)= ybd

with 26 j 6 d/2 and(j, d)= 1.

Proof of Theorem 3.4. The three lemmas give the complete classification of the graphs
as in the statement; so we have only to understand the action off :C2→ C2 defined by
f (x, y)= (y, x) on these graphs.

This map sends the minimal standard generators (γi) for π1(C2\Cn,m) into the standard
generators (µi ) for π1(C2 \Cm,n), and vice versa.
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Being (see the proof of the Propositions 1.1 and 1.2)µi = Γi−1γ
−1
i Γ −1

i−1, this
isomorphism can be seen on the graphs in this way: act on the edgei by ρ(γi−1 · · ·γ1)

(the edge 1 remains fixed).
If you do this onm= aj (d− j) consecutive edges of a polygon withd vertices, valence

a and incrementj you get a double star of type(j, d − j) and valencea and if you do this
on n = ad consecutive edges of a double star of type(j, d − j) and valencea you get a
polygon withd vertices, valencea and incrementj . 2

By the bijection between monodromy graphs and generic covers, we get Corollary 0.2.

4. Local fundamental groups

Letπ :S→C2 be the cover branched overCn,m constructed in the previous section from
the polygon withn vertices, valence 1 and incrementα. In order to see ifS is singular (note
that away fromP = π−1((0,0)) S is smooth) we must check whetherπ1(S \ {P }) is trivial
or not (see [10]), so we must calculateπ1(S \ {P }).

Let β = n− α, b = αβ/m. Recall that(α,β) = 1, b is an integer and we may assume
α < β .

Let

Ri = γiγi+1 · · ·γi+m−1,

where all indices are taken cyclical (modn).
Then the relations definingπ1(C2 \ {xn = ym}) may be written as

Ri =Ri+1

for i = 1, . . . , n− 1.
In order to computeπ1(S \ {P }) considerπ |S\R :S \ R → C2 \ Cn,m, whereR =

π−1(Cn,m). This is an unramified cover, and we can identifyπ1(S \R) with the subgroup
of π1(C2 \Cn,m) given by those elementsγ such thatρ(γ )(1)= 1.

We apply the Reidemeister–Shreier method (see [8]) to the Shreier set of left cosets

Lj = γ1γ1+αγ1+2α · · ·γ1+(j−1)α

for j = 0, . . . , n− 1 (L0= e).
A set of generators forπ1(S \R) is given by the following elements

Ai = γ1γ1+α · · ·γ1+(i−2)αγ
2
1+(i−1)αγ

−1
1+(i−2)α · · ·γ−1

1+αγ
−1
1

for i = 1, . . . , n− 1;

Bj,i = Ljγ1+iαL−1
j

for i 6= j − 1, j , andj = 0, . . . , n− 1.

C = γ1γ1+α · · ·γ1+(n−2)αγ1+(n−1)α,

D = γ1+(n−1)αγ
−1
1+(n−2)α · · ·γ−1

1+αγ
−1
1
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while a set of defining relators is given by rewriting in terms of the above generators the
following

LjRiR
−1
i+1L

−1
j

for all choices ofi andj .
Observe thatπ1(S \ {P }) is obtained fromπ1(S \R) by adding the relations

Ai = Bi,j = CD = e
for all choices ofi andj (they represent loops around all the components ofR).

Thusπ1(S \ {P }) is generated byC and to determine its order we have to go through
the rewriting process for the relations.

Theorem 4.1. With the above notations ifα > 1, π1(S \ {P })= Z/bZ.

Proof. First observe thatα > 1⇒ α + β < αβ .
ConsiderLjRi and writeRi = γi · · ·γi+m−1= λ1 · · ·λnR′i whereλl = γi+l−1.
Let h, k be integers such thatλh = γ1+(j−1)α, λk = γ1+jα .
Since ifi 6= 1+ β

Ljγi =


Bj,iLj if i 6= 1+ (j − 1)α,1+ jα,
AjLj−1 if i = 1+ (j − 1)α,

Lj+1 if i = 1+ jα,
while

Ljγ1+β =


Bj,1+βLj if j 6= 0, n− 1,

CL0 if j = n− 1,

DLn−1 if j = 0,

then ifh > k

LjRi =
HLj+1λk+1 · · ·λnR′i if j 6= n− 1,

HCL0λk+1 · · ·λnR′i if j = n− 1

while if h < k;

LjRi =
HLj−1λh+1 · · ·λnR′i if j 6= 0,

HDLn−1λh+1 · · ·λnR′i if j = 0

with H a word in theA’s andB ’s.
Observe that in the first case we pass first fromLj toLj+1 and then toLj+2, Lj+3 and

so on (cyclic indices (modn)) everyα steps, i.e.,
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LjRi =K1Lj+1λ
′
1 · · ·λ′s

=K1K2Lj+2λ
′
1+α · · ·λ′s

=K1K2K3Lj+3λ
′
1+2α · · ·λ′s

...

whereKh is a word in theA’s, B ’s andC andKh containsC if and only if j + h ≡ 0
(modn). If this happens we say that rewritingLjRi the coset index increases.

Analogously, in the second case we pass first fromLj to Lj−1 and then toLj−2, Lj−3

and so on everyβ steps and the correspondingKh is a word in theA’s, B ’s andD andKh
containsD⇔ j − h≡ n− 1 (modn). In this case we say that the coset index decreases.

Note that for a fixedi there are onlyα indicesj for which the coset index increases,
namely those indices such that 1+ jα = i, i + 1, . . . , i + α − 1.

Suppose that rewritingLjRi the coset index increases and write 1+ jα = i+ c−1 with
0< c6 α. Then deleting all the words in theA’s andB ’s

LjRi =Lj+1γi+c · · ·γi+m−1

=Lj+2γi+c+α · · ·γi+m−1

...

=CL0γi+c+(n−j−1)α · · ·γi+m−1

=C2L0γi+c+(2n−j−1)α · · ·γi+m−1

=CtLlγi+c+m−α · · ·γi+m−1= CtLl
(if c= α there are noγ ’s in the last line) for a suitablel and where

t =
[
m− α − (n− j − 1)α

αn

]
+ 1=

[
bβ − (α + β)+ j

α + β
]
+ 1=

[
bβ + j
α+ β

]
.

On the other hand, suppose that rewritingLjRi the coset index decreases and write
1+ ja = i + c′ − 1 with α < c′ 6 n. Then again

LjRi =Lj−1γi+c′−α · · ·γi+m−1

=Lj−2γi+c′−α+β · · ·γi+m−1

...

=DL0γi+c′−α+jβ · · ·γi+m−1

=D2L0γi+c′−α+(n+j)β · · ·γi+m−1

=Dt ′Ll′γi+c′+m−α−β · · ·γi+m−1=Dt ′Ll′
(if c′ = n there are noγ ’s in the last line) for a suitablel′ and where

t ′ =
[
m− β − jβ

βn

]
+ 1=

[
bα− j − 1

α + β
]
+ 1.

Observe that if the coset index increases rewriting bothLjRi andLjRi+1 then 1< c6 α
and
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LjRi+1= Lj+1γi+c · · ·γi+m
= Lj+2γi+c+α · · ·γi+m
...

= CL0γi+c+(n−j−1)α · · ·γi+m
= C2L0γi+c+(2n−j−1)α · · ·γi+m
= CtLlγi+c+m−α · · ·γi+m = CtLl,

that is rewriting a relationLjRiR
−1
i+1L

−1
j for which the coset index increases for bothLjRi

andLjRi+1 yields the trivial relationCt = Ct .
The same thing happens if the coset index decreases rewriting bothLjRi andLjRi+1,

i.e., if α < c′ 6 n and we getDt
′ =Dt ′ .

In the casec = 1, (respectivelyc′ = α + 1) rewritingLjRi the coset index increases
(respectively decreases) and rewritingLjRi+1 the coset index decreases (respectively
increases) so we getCt =Dt ′ , i.e.,Ct+t ′ = 1.

Observe thatt + t ′ = b, in fact write

bβ = r(α+ β)+ s,
bα= r ′(α + β)+ s′,

with 06 s, s′ < α + β . Adding the above equations we get

b(α+ β)= (r + r ′)(α + β)+ s + s′,
i.e.,(α + β)|(s + s′) which impliess + s′ = 0 or s + s′ = α+ β .

In the first case we haves = s′ = 0 (this is true if and only if(α + β)|b) andbβ + j =
r(α+ β)+ j , bα− j − 1= r ′(α + β)− j − 1 which impliest = r, t ′ = r ′ − 1+ 1 ∀ j so
that t + t ′ = r + r ′ = b.

In the other case (s, s′ 6= 0) we have

bβ + j = r(α + β)+ s + j, bα− j − 1= r ′(α + β)+ s′ − j − 1

ands+ j > α+β⇔ s′ − j −1= α+β− s− j −1< 0 so we have only two possibilities
t + t ′ = r + r ′ + 1 or t + t ′ = r + 1+ r ′ − 1+ 1 that ist + t ′ = b.

Summing upπ1(S \ {P })= 〈C | Cb = 1〉 ≡ Z/bZ. 2
Consider now then = α + β-sheeted generic coverπ :S → C2 branched over

Ca(α+β),bαβ corresponding to the polygon withα+β vertices, valencea and incrementα.
This surface is obtained fromS via fiber product withfa,1 (see Section 2).

Corollary 4.2. If a = b= 1 S is smooth. Ifb 6= 1 S is singular.

Proof. If αβ < α + β , i.e.,α = 1 the result follows observing that in this caseS ⊂C3 has
equation

zn+1− (n+ 1)xaz+ nyb = 0,

so supposeα + β < αβ .
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If a = 1 then, by the above proposition,π1(S \ {P }) is trivial if and only if b= 1.
If a > 1 thenπ1(S \ {P }) 6= 0, so, by Proposition 2.4,π1(S \ {P }) 6= 0, andS is

singular. 2

5. Generic covers branched on{xn + ybn = 0}

In this sectionS is a normal surface,π :S → C2 a d-sheeted (d > 3) generic cover
branched over the curveC = {xn+ ybn = 0}. In particular,b andn cannot be both odd, so
bn is even.

Let S̃ be a resolution of the (isolated) singularity ofS obtained fromπ using the standard
algorithm (see, e.g., [7]).

We get the following diagram:

S̃

π̃

π ′′
S

π

T
π ′ C2

with π ′ a sequence of ordinary blow-up’s,π̃ proper,π ′′ a resolution ofS. S̃ is the
plumbing variety of a normal crossing configuration of smooth curves, i.e., of the compact
components of̃C = π̃−1(π ′−1

(C)). We look for the dual graph of this configuration (see,
e.g., [7]).

Recall that, as in the previous sections,

π1(C2 \C)= 〈γ1, . . . , γn | Γ bγiΓ −bγ−1
i

〉
,

whereΓ = γ1 · · ·γn, with γi geometric loops aroundC supported on the line{y = 1} such
thatΓ is a loop around all the points ofC on this line.

Consider the monodromyρ :π1(C2 \ C)→ Sd , and letν be the number of orbits of
σ = ρ(Γ ), k1, . . . , kν the cardinalities of these orbits.

Remark that every labeled graph withd vertices andn edges represents the monodromy
of a cover branched over{xn + ybn = 0} for a suitableb; more precisely for everyb
multiple of the order of the permutation corresponding to the ordered product of the edges.

Definition 5.1 (Strings). Call a string the dual graph of a normal crossing configuration
of curves which is a tree and such that no vertex is contained in more than two edges, i.e.,
a graph like the following:

• • · · · · · · · · · · · · · · ·• •

Call a string of typeAk a string withk vertices such that every vertex corresponds to a
smooth rational curve with self-intersection−2.

In this section we prove the following result:
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Theorem 5.2. In the above hypothesis and notations,S has a(minimal) resolution which
is the plumbing variety of the following normal crossing configuration of smooth curves:

where the vertexEb has genus(n− d − ν + 2)/2 and self-intersection−ν. Moreover,S
is smooth⇔ the monodromy graph is a tree; this can occur only ifσ is a d-cycle, sod
dividesb.

First, we need the embedded resolution graph ofC ⊂ C2, i.e., the dual graph of
C′ = π ′−1

(C), and the geometric loops around the irreducible components of this curve.

Lemma 5.3. The embedded resolution graph of{xn+ ybn = 0} in C2 is the following:

where the vertices correspond to exceptional divisors, the number over each vertex is
its self-intersection and the numbers(jn) are the multiplicities of zero of the function
f ′ = π ′∗f , f = xn+ ybn; the arrowhead vertices are exactlyn, the number of irreducible
components ofC.

LetEj be the irreducible curve inT corresponding to the vertex of multiplicityjn in
our graph. Letpj =Ej ∩Ej+1, P = (1,1) ∈C2.
∀ j there exists a neighborhoodUj of pj in T , and local coordinates(ξ, η) in Uj ,

such thatC′ ∩Uj = (Ej ∩Uj) ∪ (Ej+1 ∩Uj)= {ξη = 0}, andP ′ = π ′−1
(P ) ∈ Uj with

coordinates(1,1). ChoosingP ′ as base point forπ1(T \C′), the natural geometric loops
in Uj \C′ aroundEj ({(eiθ ,1)}) and andEj+1 ({(1,eiθ )}) are respectivelyΓ i andΓ i+1

under the isomorphismπ ′∗ :π1(T \C′)→ π1(C2 \C).
Proof. We are looking forC′ and the monodromy around one of its irreducible
components. Choose as base point the pointP = (1,1) which is not contained inC for
all b andn.

Consider the following lines inC2:

Π ′ = {y = 1},
Π = {x = y}, (1)

Π ′′ = {x = 1}.
Remark that the intersection of these lines is exactly the pointP .



S. Manfredini, R. Pignatelli / Topology and its Applications 103 (2000) 1–31 25

Fig. 11.

Let γ ′ = Γ (respectivelyγ̄ , γ̄ ′′) be a loop inΠ ′ (respectivelyΠ ,Π ′′) around all points
of C and letγ be a loop inΠ around(0,0) as in Fig. 11.
C ∩ Π is given by the equations{x = y, xn(1+ x(b−1)n) = 0}, i.e., the origin (with

multiplicity n) and(b− 1)n distinct points on the unitary circle.
The pencil of linesΠλ = {x = 1−λ+λy}, for 06 λ6 1 defines an homotopy inC2\C

betweenγ̄ ′′ ∈Π ′′ andγ̄ ∈Π (observe that∀λ C cuts onΠλ n points (with multiplicity)
andP ∈Πλ).

Now consider the linesΠλ = {y = λ}, for ε 6 λ6 1, with 06 ε 6 1.

C ∩Πλ =
{
(λbe(2r+1)iπ/n, λ), 06 r 6 n− 1

}
.

Thus, considering the pathsα = {(1− t,1− t)}t∈[0,1−ε], βl = {(ε, ε+ (l−1)εt)}t∈[0,1] and
τ = {(εeit ,0)}t∈[0,2π], ∀0< ε < 1, γ ′ is homotopic inC2 \C to αβ0τβ

−1
0 α−1.

βλ(εeit , λεeit )t∈[0,2π]β−1
λ for 06 λ6 1 defines an homotopy inC2\C betweenβ0τβ

−1
0

and(εeit , εeit )t∈[0,2π], soγ ′ = γ in π1(C2 \C).
C′ is obtained by blowing up recursivelyC2 in points of our curves (and his complete

transform). So, the complementary of the complete transform does not change after every
blow-up. With a slight abuse of notation, we do not change name to paths after every blow-
up.

The first step is to blow upC2 in the origin. Recall that we get a complex manifold
obtained pasting two charts biholomorphic toC2, respectivelyV1 andU1, with projections
onC2 given (in coordinates) respectively by:

(V1) (x, y) 7→ (xy, y),

(U1) (x, y) 7→ (x, xy).

The complete transform ofC in these two charts is, in(V1), yn(xn + y(b−1)n)= 0, and in
(U1), {xn(1+ x(b−1)nybn)= 0}. Remark that the last one is smooth (after reduction). Then
the singularities of the complete transform of our curve are in(V1).
V1 ∼= C2, so we can compute the linesΠ ′1, Π1, Π ′′1 (i.e., the lines in(V1) given by the

Eq. (1)). Note that the inverse image ofP in (V1) has coordinates(1,1).
We claim that in(V1) we have the following situation (see Fig. 12).
In fact, from the explicit equation of the projection,Π ′1 is exactlyΠ ′, while Π ′′1 is

exactlyΠ . Rewriting the homotopies we find that the loop around the points cut byC1, the
strict transform ofC, onΠ1 is γ . We have to find the homotopy class of the loop around
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Fig. 12.

the origin inΠ1, that is ofη= α(εeit , εeit )t∈[0,2π]α−1 whereα is a real positive path (i.e.,
α = (α1, α2) with αi(t) ∈R+) from (1,1) to (ε, ε), as a loop inC2 \ (C1 ∪ {y = 0}).

Since|y|6 1⇒ |x|6 1 and|x|6 |y| then, by the homotopy(λεeit , εeit )t∈[0,2π], with
16 λ 6 2, η ∼ η′ = β(2εeit , εeit )t∈[0,2π]β−1 with β a real positive path from(1,1) to
(2ε, ε).

Now(
2εei(1+λ)t, εe(1−λ)t

)
t∈[0,π] ∪

(
2εei(2πλ+(1−λ)t), εei((2t−2π)λ+(1−λ)t))

t∈[π,2π]
for 06 λ6 1 defines a homotopyη′ ∼ β(2εeit , ε)t∈[0,2π](2ε, εeit )t∈[0,2π]β−1.

Moreover((
2ε+ λ(1− ε))eit , ε + λ(1− ε))

t∈[0,2π] for 06 λ6 1

givesβ(2εeit , ε)t∈[0,2π]β−1 ∼ β ′((1+ ε)eit ,1)t∈[0,2π]β ′−1 with β ′ a real positive path in
{y = 1} from (1,1) to (1+ ε,1) and(

λ+ (1− λ)2ε, εeit)
t∈[0,2π] for 06 λ6 1

gives β(2ε, εeit )t∈[0,2π]β−1 ∼ β ′′(1, εeit )t∈[0,2π]β ′′−1 with β ′′ a real positive path in
{x = 1} from (1,1) to (1, ε).

Thus the loop around the origin inΠ1 is justγ 2.
Now we conclude the proof by induction.
The inductive hypothesis is that afterk blow-up’s in the origin (of theV -charts), the

complete transform ofC has equations,ykn(xn + y(b−k)n)= 0 in Vk , andxkny(k−1)n(1+
x(b−k)ny(b−k+1)n) = 0 in Uk; moreover the complete transform ofC in Uck has as dual
graph a string of typeAk−1. One extremal component of this configuration intersects
(transversally in the origin ofUk) the new exceptional divisor, and onVk our lines are
as in Fig. 13.

Call El the exceptional curve of thelth blow-up, or, with abuse of notation, its strict
transform in every other blow-up.

Remark that we have proven the inductive hypotheses fork = 1.
Blow up the origin ofVk . Π ′k+1 andΠ ′′k+1 are the same asΠ ′k andΠk and the paths

in Πk can be computed as in the previous step. The new equations inVk+1 and in
Uk+1 are obtained simply from the old equations inVk (and the equations of the blow-
up). MoreoverEk is contained inV ck+1; we are blowing up a pointqk ∈ Ek so the
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Fig. 13.

self-intersection ofEk pass from−1 to −2, and it intersects transversallyEk−1, since
qk /∈⋃k−1

j=1Ej .
⋃k
j=1Ej is a normal crossing configuration of typeAk andEk+1 intersects

transverselyEk .
Remark thatUk (with the given coordinates) is the chart we are looking for around

pk =Ek ∩Ek+1. 2
The dual graph of the standard resolution of the singularity ofS depends only onb,

n, d and the conjugacy class ofσ = ρ(Γ ) in Sd (this follows easily from the explicit
construction ofS fromC andρ, see, e.g., [7,12]).

From now on, we call multiplicity of a curve iñS the multiplicity of f ′ ◦ π̃ ; ∀i,
Ei = π̃−1(Ei).

Lemma 5.4. Eb is an irreducible compact connected curve of multiplicitybn and genus
(n− d − ν + 2)/2. Moreover,π̃ |Eb has degreed .

Proof. {σi} = {ρ(γi)} is a family of transpositions generatingSd , and ifd > 3, σb = 1.
We have remarked before thatσb is the monodromy of a geometric loop aroundEb, then

for a small neighborhoodV of a generic point ofEb, π̃−1(V ) hasd connected components,
andπ̃ |π̃−1(V ) is a cover of degreed .
π̃ |Eb is a branched cover of degreed (a priori non connected), and the multiplicity

of f ′ ◦ π̃ on Eb is exactly the multiplicity off on Eb, i.e., bn. The branching points
are the intersection points ofEb with the other branches of the configuration, i.e., every
branch ofC

′
, the strict transform ofC by π ′, andEb−1, so we must considern + 1

points.
A geometric loopλ in Eb around such a point, acts on thed sheets in the same way as

a small perturbationλ′ of λ (λ′ a loop inT \C′ ∼=C2 \C).
The geometric loops around the points of intersection ofEb with C

′
are theγi ’s, which

act transitively on the fiber, soEb is irreducible.
Sinceσi is a transposition, the branching index ofπ̃ |Eb in these points is 1.
On the other hand, a geometric loop aroundpb−1 = Eb ∩ Eb−1, has monodromy

ρ(Γ b−1)= σ−1, which is in the same conjugacy class asσ in Sd , so the branching index
in this point is exactlyd − ν.

Thus, by Hurwitz formula,χ(Eb)= dχ(Eb)− n− (d − ν)= d + ν − n. 2
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Lemma 5.5. Eb−1 has ν connected components, irreducible of genus0, E
i

b−1, of
multiplicity (b− 1)nki . π̃−1(pb−1) is a set ofν distinct points. Moreover,(Eb)2=−d .

Proof. A geometric loop aroundEb−1 is Γ b−1.
Thus,π̃ |Eb−1

is a branched cover of degreeν. Now, we have just two branching points;

but a small perturbation of a geometric loop aroundpb−1 in Eb−1 acts as the identity,
and a small perturbation of a geometric loop aroundpb−2 in Eb−1 acts asρ(Γ b−2) =
σ−2 = (σ−1)2, and they both do not connect the orbits ofσ−1. Thus π̃ |Eb−1

is a cover

(unramified) of degreeν with ν connected components, i.e.,Eb−1 is the disjoint union of

ν curves,E
i

b−1, biholomorphic toEb−1 (and thus of genus 0). Moreoverπ̃ is ramified of

indexki − 1 overE
i

b−1, and this gives us the multiplicities.
Let U be a neighborhood ofpb−1 with local coordinates(ξ, η) such that the curve

(Eb ∪ Eb−1) ∩ U has equationξη = 0. Then the fundamental group of the complement
of this curve inU is Z2, generated byΓ b andΓ b−1.

The connected analytic covers ofU \ (Eb ∪Eb−1), are then classified by the subgroups
of Z2. π̃−1(U) hasν connected componentsVi , each associated to an orbitΛi of σ , and
π̃ |Vi is a cover of degree exactly the cardinalityki of Λi associated to the lattice inZ2

generated by(0, ki) and(1,0).
Thus, locally the cover is(ξ, η) 7→ (ξki , η), and (see [7]),̃π−1(Eb ∩Eb−1) is formed by

ν points,E
i

b−1∩Eb.
In order to compute(Eb)2 we need only to note that the intersection productEb · (f ′ ◦

π̃)= 0. Then(
Eb
)2=−dn+∑(b− 1)nki

bn
=−dbn

bn
=−d. 2

Lemma 5.6. The resolution graph ofS is:

where thẽSbki are strings which depend only onb andki .

Proof. ∀ i 6 b − 1, considerEi . As in the previous lemmas, the connected components
of Ei are in canonical bijection with the orbits of the subgroup ofSn generated by
σ i, σ i−1, σ i+1. But these are the orbits ofσ , then Ei has ν components, and each
component ofEi intersects only the components ofEi−1 andEi+1 associated to the same
orbit (or an extremal vertex of a string dominatingpi orpi−1, see [7]). In particular theSbki
are strings, and by construction they depend only onb andki . 2
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Call nowT̃i a tubular neighborhood of̃Sbki in S̃, Sbki the string obtained bỹSbki recursively
contracting all the possible exceptional curves of the first kind (smooth rational curves with
self-intersection−1), lbki = (Eb)2S̃bki

− (Eb)2
Sbki

(i.e., how many times in this contraction we

contract a vertex nearEb), sbki the number of vertices ofSbki .

Lemma 5.7.
(1) Sbki are strings of typeAsbki

;
(2) lbki = ki − 1;
(3) sbki = (b/ki)(s

ki
ki
+ 1)− 1;

(4) sb1 = b− 1.

Proof. First we prove (4). In this caseki = 1 andE
i

j → Ej is 1 : 1 ∀ j , so S̃b1 is a string

isomorphic to the string it dominates, i.e., a string of typeAb−1 andSb1 = S̃b1.
Observe thatki dividesb ∀ i, sinceσb = 1, and that forki fixed, we must only prove the

parts (1) and (2) forb= ki ; in fact we can compute theki -string for anyb starting from the
string forb= ki , by the following argument.

First we considerE
i

λki
.

A geometric loop aroundEλki acts as the identity oñTi , soE
i

λki
dominatesEλki as a

ki-sheeted cover totally ramified over two branching points, namely, the intersections of
Eλki with Eλki+1 andEλki−1.

So,E
i

λki
is rational by Hurwitz formula and the multiplicities ofE

i

λki
, E

i

λki+1, E
i

λki−1
are respectivelynλki , nλki(ki + 1), nλki(ki − 1).

In a neighborhood ofEλki ∩Eλki±1, the cover restricted tõTi is associated to the lattice
(0, ki), (1,0), so (see [7]) the fibers over these points are made up of a finite number of
points, and the part of the string that dominatesEλki is only a vertex, corresponding to a
rational curve. Its self-intersection (iñSbki ) can be computed using multiplicities, and we
obtain

−nλki(ki + 1)+ nλki(ki − 1)

nλki
=−2ki.

The other part of the string, i.e., the parts that dominate the substrings betweenEλki+1

andE(λ+1)ki−1, are exactly thẽSkiki .

In fact, the irreducible components ofπ̃−1(C′)which dominate theEλki+j andEλki+j ∩
Eλki+j+1 (and the normal bundles iñS) in this substrings are constructed in the same way
as the components that dominateEj ,Ej ∩Ej+1 for b= ki , except forEλki+1. In this case
the construction is different from the one forE1 (E0 is not defined), but a generic loop
aroundEλki , acts as the identity, and the result follows.

Thus we getb/ki strings connected byb/ki − 1 rational vertices with self-intersection
−2ki . All the substrings̃Skiki contract toSkiki .
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Remark that, by construction, the strings̃Sbki are symmetric (becauseσ e σ−1 are

conjugate). Then after the contractions the self-intersection ofEλki becomes−2k1+2lkiki =−2ki + 2(ki − 1)=−2, lki does not depends onb and

sbki =
b

ki
s
ki
ki
+ b

ki
− 1

(in particular, ifb > ki , sbki > 0).
Thus we prove (1) and (2) in the caseb = ki by induction onb.
Forb = 1 thenki = 1 and the result follows by (4).
Now assume (1) and (2) true ifb̄ < b. We know that∀b there exists a smooth cover of

degreeb generically branched on the curve{xb−1+ yb(b−1) = 0}, i.e., on a curve of the
class under consideration (n= b− 1).

In this case we can easily check thatσ is anb-cycle, i.e.,ν = 1. In fact, otherwise by the
inductive hypothesis we would have a tree with at least two non empty branches without
exceptional curves, and then the graph cannot be contracted (i.e., the surface cannot be
smooth).

Now, using the previous considerations, we find that the resolution graph of this surface
has the form:

where all the vertices without decoration (if they exist) are non contractible.
We know a priori that this graph must be contractible. In particular the last vertex must

have self-intersection−1 (no other vertex can), i.e.,lki = ki − 1, and it must be rational.
Moreover the string must have only smooth rational curves with self-intersection−2. 2
Proof of Theorem 5.2. By Lemmas 5.7 and 5.6, we must only check that, ifb = ki then
s
ki
ki
= 0, i.e.,Skiki is empty.

Recall that by Theorem 4.1 we knowπ1(S \ {p}) for some special monodromy graphs.
In that theorem, the branching curves were{xα+β = yl(αβ)}, for fixedα,β , with (α,β)= 1;
in that case we haved = α + β , ν = 2, k1= α, k2= β , π1(S \ {p})= Z/lZ.

Assume nowα = n− 1,β = 1, l = n. We get one of our curves, withb= n− 1.
By the previous lemmas, the configuration is a string ofk = sn−1

n−1 + sn−1
1 + 1 rational

curves with self-intersection−2. SoS has a singularity of typeAk (see [1]).
The local fundamental group of such a singularity is a cyclic group of order equal to the

number of the vertices plus 1. We know that this order isl = n, then we haven−1 vertices
and by Lemma 5.7,sn−1

1 = n− 2, sosn−1
n−1 = l − sn−1

1 − 2= 0.
Moreover, ifσ hasν > 1 orbits then the graph has no−1 curves andS cannot be smooth.
So, ifS is smooth,σ is ad-cycle andσb = 1⇒ d|b. Moreover, ifS is smooth, the genus

of Eb must be 0, i.e.,n− d + ν = 0, n= d − ν = d − 1.
Conversely, ifn= d − 1 the genus ofEb is 0 and the monodromy graph hasd vertices

andn= d − 1 edges, i.e., it is a tree. Thusσ is transitive,ν = 1, and the resolution graph
is a string of rational curves with self-intersection−2 except for the last one which has
self-intersection−1. SoS is smooth. 2
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