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The method of steepest descent, also known as the saddle-point method, is a natural
development of Laplace’s method applied to the asymptotic estimate of integrals of analytic
functions. Mathematicians have often attributed the method of steepest descent to the physicist
Peter Debye, who in 1909 worked it out in an asymptotic study of Bessel functions. Debye
himself remarked that he had borrowed the idea of the method from an 1863 paper of
Bernhard Riemann. The present article offers a detailed historical analysis of the creation of
the method of steepest descent. We show that the method dates back to Cauchy and that,
25 years before Debye, the Russian mathematician Pavel Alexeevich Nekrasov had already
used this technique and extended it to more general cases.  1997 Academic Press

La méthode de la descente la plus rapide, que l’on appelle actuellement méthode du col,
représente un développement naturel de la méthode de Laplace pour l’estimation asymptot-
ique des intégrales des fonctions analytiques. La méthode du col est généralement liée au
nom du physicien Peter Debye, qui a utilisé en 1909 les idées que Riemann a présentées dans
son article de 1863 afin de donner une analyse asymptotique des fonctions de Bessel. Le
présent travail donne une étude bien detaillée de la création de la méthode du col. Tout
d’abord nous montrons que la méthode du col remonte aux travaux de Cauchy et ensuite
que le mathématicien russe Pavel Alexeevich Nekrasov a appliqué cette méthode un quart
de siècle avant Debye et l’a étendue aux cas généraux.  1997 Academic Press
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1. INTRODUCTION

The method of steepest descent, also known as the saddle-point method, is a
natural development of Laplace’s method applied to the estimation of integrals of
analytic functions. Laplace estimated an integral of the form

In 5 Eb

a
f n(x)g(x) dx 5 Eb

a
e nu(x)g(x) dx, f(x) . 0, (1)

as n R y in the following way (cf., for example, [1]). Assume that the function
u(x) 5 ln f(x) attains its maximum value at the unique point c [ (a, b) and that
the conditions u9(c) 5 0, u0(c) , 0 hold at this point, while g(x) is a continuous
function with g(c) ? 0. Then as n R y, we obtain the estimate

In 5 Ec1«n

c2«n

e nu(x)g(x) dx 1 Ec2«n

a
e nu(x)g(x) dx 1 Eb

c1«n

e nu(x)g(x) dx

p e nu(c) ? g(c) Ec1«n

c2«n

e (nu0(c)/2)(x2c)2
dx

p e nu(c) ? g(c) Ey

2y
e n(u0(c)/2)(x2c)2

dx 5 ! 2f
2nu0(c)

g(c)e nu(c). (2)

Here, «n tends to 0 and is chosen so that, on the one hand, the integral over the
exterior of the neighborhood (c 2 «n , c 1 «n) is infinitely small in comparison with
the integral over the neighborhood itself and, on the other hand,

u(x) 2 u(c) 5
u0(c)

2
(x 2 c)2 1 R2(x) p

u0(c)
2

(x 2 c)2,

for all x [ [c 2 «n , c 1 «n]. The restrictions imposed above on the functions u(x)
and g(x) are not particularly important in the application of Laplace’s method—if
the maximum value of the function is attained at several points of the interval
(a, b), the estimate of the integral In can be provided by a suitable sum of estimates
of the form (2), and if the maximum value is attained at an endpoint of the interval
[a, b] and u9 5 0 at that endpoint, we obtain half of (2) as the estimate of the
integral In.1 Finally, if the first nonzero derivative at the point c is u(2k)(c) , 0, the
same method can be used to reduce the estimate to the integral

Ey

2y
e n(u(2k)(c)/(2k)!)(x 2 c)2k

dx,

which can easily be expressed in terms of the gamma function.
However, when the function u(x) in the integral (1) is complex valued, Laplace’s

method no longer works (as we shall show below in our analysis of the work of
Cauchy). Actually, the problem of estimating integrals of the form (1) with complex
integrands taken over some contour in the complex plane arose in the work of

1 When u9 ? 0 at the endpoint, the estimate is even simpler.
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Laplace and Cauchy. Examples of such problems are provided by the estimation
of the Taylor coefficients

1
2fi

E
C

w(z)
(z 2 a)n11 dz,

or the coefficients of the Lagrange series for the inverse function

1
2fi

E
C

w n(z)
nzn dz

as n R y. A similar problem arises when we estimate the inverse Laplace transform

1
2fi

Eh1iy

h2iy
e xzw(z) dz

as x R y.
The method of steepest descent was developed over several decades in order to

estimate integrals of the form

In 5 E
C

e nu(z)g(z) dz (3)

as n R y. The essence of this method is as follows: we deform the contour of
integration C in the domain of analyticity of the functions u(z) and g(z) without
changing its endpoints if it is nonclosed in such a way that the following condi-
tions hold:

(i) the contour C passes through a point z0 , called a saddle point, at which
u9(z0) 5 0;

(ii) the condition Im u(z) ; Im u(z0) holds on at least some neighborhood
of the point z0 on the contour C;

(iii) for points z ? z0 on the contour C the condition Re u(z) , Re u(z0) holds.

For ease of exposition we add the further condition

(iv) g(z0) ? 0, u0(z0) ? 0, and z0 is not an endpoint of the contour C.
Let C« be the portion of the contour in a neighborhood of the point z0 on which

condition (ii) holds. Then

In 5 E
C«

e nu(z)g(z) dz 1 E
C\C«

e nu(z)g(z) dz 5 I 9n 1 I 0n .

In the first integral, we introduce the natural arc-length parameter z 5 z(t),
t [ [2«, «], z(0) 5 z0 ; we then have

I 9n 5 e nu(z0)g(z0) E«

2«

e n[u(z(t))2u(z0)]g(z(t))
g(z0)

z9(t) dt.
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By condition (ii), we have Im hu[z(t)] 2 u(z0)j ; 0, and we can estimate the first
integral by Laplace’s method, which yields

I 9n p ! 2f
nuu0(z0)u

g(z0)e nu(z0)1ia,

where eia 5 z9(0). As for the second integral, the following expression gives a rough
estimate of it:

uI 0nu # Ae n[Reu(z0)2d], d . 0,

that is,

I 0n 5 o(I 9n) and I n p I 9n .

We remark further that the contour C (defined by the equation z 5 z(t)), since it
passes through the point z0 at which the condition Im u(z0) ; Im u(z) holds, has
the following property: if in three-dimensional space we construct the graph of the
absolute value u f(z)u 5 e Reu(z), and on that surface we consider the curve u f(z(t))u,
which projects to the contour C, this curve will have the property that, at each
point, it is directed along the line of fastest decrease of u f(z)u. In other words, a
fluid flowing over the surface of the absolute value from this point will follow
precisely the curve u f(z(t))u in both directions. This fact accounts for the name
‘‘method of steepest descent.’’ We note further that, by the maximum-modulus
principle, the surface u f(z)u has a saddle point at z0, which accounts for the terminol-
ogy ‘‘saddle-point method.’’

To conclude this section, we consider some modifications of the method of
steepest descent. If the first nonzero derivative at the saddle point z0 is of order
m, that is, u0(z0) 5 ??? 5 u(m21)(z0) 5 0 and u(m)(z0) ? 0, there will be m lines of
steepest descent instead of two (one ascending to z0 and one descending to it), and
the contour C must be drawn along two of these lines. In this case, as in the method
of Laplace, the estimate reduces in the final analysis to a gamma function. If the
largest value of Re u(z) is attained at an endpoint of the curve, the contour C must
again be drawn along a line of steepest descent, but the estimate will be simpler,
since it reduces to computing the integral

Ey

0
e 2nuu9(z0)ut dt.

For the following discussion, it is essential to remark that it is not necessary to
draw the contour precisely along a line of steepest descent (which may be technically
difficult) in order to obtain an asymptotic estimate of the integral In . When condition
(iv) holds for the contour, we obtain the same estimate if we draw the contour C
in a neighborhood of a saddle point z0 along a segment of the tangent to the curve
of steepest descent at the point z0 . Its parametric equation is z 2 z0 5 teia, and the
condition (u0(z0)/2) e2ia , 0 holds. Moreover, the contour C can in general be
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drawn along any segment of the line z 2 z0 5 teia, on which the condition
Re [u0(z0)e2ia] , 0 holds. In this last case, estimating In reduces to computing the
integral I 5 ey

2y e 2at2 dt, where a is not positive, as in Laplace’s method, but the
condition Re a . 0 holds. This integral equals I 5 Ïf/a, and its value had been
computed as early as the beginning of the 19th century.

In the literature [1–4] the method of steepest descent we have just discussed is
usually ascribed to Peter Debye, who applied it in 1909 (cf. [5]) to obtain an
asymptotic estimate of Bessel functions whose order tends to infinity simultaneously
with the argument. Debye himself notes at the beginning of the paper that he had
borrowed the idea of the method from Riemann [6]. In an unpublished paper of 1863,
Riemann applied the method of steepest descent to estimate the hypergeometric
function. Twelve years later, Hermann Amandus Schwarz published this paper
along with some supplementary annotations and computations.

In this study, we wish to supplement considerably the history of the origin of the
method of steepest descent by showing that certain elements of the method had
appeared earlier in the work of Cauchy and that 25 years before the work of Debye
the Russian mathematician P. A. Nekrasov had given a very general and detailed
exposition of the method. The latter fact has been observed by Eugene Seneta [7].

2. APPROACHES TO THE METHOD OF STEEPEST DESCENT IN THE
WORK OF CAUCHY

In his paper ‘‘Sur divers points d’analyse’’ [8], published in 1827, Cauchy estimated
integrals of the form (1). Here, he essentially repeated Laplace’s method, but in
the correct form. Breaking the integral (1) in two, one over a neighborhood of a
maximum point and the other over the exterior of this neighborhood, Cauchy took
a neighborhood of the form (c 2 a/Ïn , c 1 a/Ïn) and stated explicitly that a tends
to infinity, though more slowly than Ïn. To be sure, Cauchy did not show that the
remainder term in Taylor’s series in the integral over the neighborhood does not
affect the estimate, he simply discarded it. As a result he obtained the estimate (2).

For us, the second part of this paper is of more interest. In that part Cauchy finds
an estimate for the integral (1) for the case when the function f(x), and consequently
u(x), is complex-valued. In so doing, Cauchy assumes that u f(x)u 5 eReu(x) attains its
largest value at a unique interior point c of the interval (a, b), while at this point

u9(c) 5 0, Re u0(c) , 0. (4)

Under these conditions, the estimate is carried out just as in the real case, but the
last part of the estimate leads us to compute the integral

I 5 Ey

2y
e n(u0(c)/2)t2

dt,

where u0(c) is a complex quantity. As noted above, this integral equals
I 5 Ï2f/2nu0(c) . Here, the value of the square root in the right half-plane is taken.

In conditions (4), which Cauchy imposes on the function u(x), the reason for the
condition u9(c) 5 0 is at first incomprehensible. Indeed, if we want to find the
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largest value of Re u(x), we only need Re u9(c) 5 0 at the maximum point c.
However, it is not difficult to show that when this last condition holds, the integral
over the neighborhood of the point c no longer gives the principal part of the
integral (1) due to strong interference.

The meaning of conditions (4) is revealed in the second section of Cauchy’s
paper. There, he applies this method to find the radius of convergence of the
Lagrange series. As is known, if the function w(z) is analytic at the point a,
w(a) ? 0, and F(z) is analytic at the point z 5 0, then the equation z 5 w ? w(a 1 z)
has a unique solution z 5 z(w) in a neighborhood of the point w 5 0, and the
following expansion is valid:

F [z(w)] 5 F(0) 1 Oy
n51

anwn,

where

an 5
1

2fi
E

uzu5r

F9(z)wn(a 1 z)
nzn dz. (5)

To find the radius of convergence of this series, it is necessary to find an asymptotic
estimate for its coefficients an as n R y.

For that reason, Cauchy considered and estimated the integral

Sn 5
1

2f
Ef

2f
g(a 1 reis) Fw(a 1 reis)

reis Gn

ds, (6)

which differs only trivially from the integral an . (Actually Cauchy considered a
slightly more general integral, but this does not affect the present discussion.)
Cauchy found the largest absolute value of the function f(reis) 5 w(a 1 reis)/reis

with respect to s. If, as above, u(reis) 5 ln f(reis) 5 ln w(a 1 reis) 2 ln r 2 is, then
at the point s 5 s(r), where Re u(reis) attains a maximal value, the following
condition must hold:

Re
d
ds

u(reis)U
s5s(r)

5 0.

Cauchy then asserted that if the radius r is changed, there exists a point r 5 r0 at which

Im
d
ds

u(reis)Us5s0

r5r0

5 0, s0 5 s (r0).

This means that u9(z0) 5 0, where z0 5 r0e is0. In other words, Cauchy did the
following: first, he found the largest value of Re u(reis) on a circle of radius r; then
he chose r 5 r0 for which the quantity Re u(reis(r)) attains a minimum. We remark
that when this is done, the condition

d2

ds2 Re u(reis)Ur5r0

s5s0

, 0 (7)
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holds at the point z0 5 r0eis0 since a maximum over the angle s is attained at this
point. Therefore, with such a choice of the radius r, the integral (5) can be estimated
in accordance with the method of Cauchy discussed above.

If we compare Cauchy’s reasoning with the saddle-point method considered
above, we can say that Cauchy found a saddle point z0 , where u9(z0) 5 0, and drew
a contour (a circle) through this point which, by condition (7), traverses the required
sector (recall Section 1 above), yielding the required estimate. However, in so doing,
Cauchy, without realizing it, made a crude error. Let us consider this question in
more detail. Since the classical mathematicians rarely made fundamental mistakes,
it is both important and instructive from an historical point of view to analyze such
errors. The fact that Cauchy’s method cannot in general yield an asymptotic estimate
of the integral (5) can be seen from the following simple considerations: the function
f(z) can always be taken so as to have two saddle points z1 and z2 lying at different
distances from the origin and to have the same absolute value u f(z1)u 5 u f(z2)u at
these points. Then, to estimate the integral (5) by the saddle-point method, one
must draw a contour through both of these points, yet no circle with center at the
origin can pass through both points.

Cauchy’s reasoning lapsed relative to the case where the radius r of the circle
varies; there, the imaginary part Im u9(reis(r)) does not necessarily vanish at any r.
At first glance, it seems that this imaginary part must vanish when the circle passes
through a saddle point. This is not the case, however, since at the time when the
circle passes through the saddle point z1 5 r1eis1, the maximal value of Re u(r1eis)
may be attained not at s 5 s1 , but at some other value s 5 s1(r1). A specific example
shows this most clearly. Consider the integral

E
uzu5r

S e az

z2 1 2zDn

dz,

where As , a , 1. It can be shown that, for any r . 0, the largest value of u f(z)u 5
e Re[az2ln(z2

12z)] on the circle uzu 5 r is attained either at z 5 r or at z 5 2r. Let
u(z) 5 ln f(z) 5 az 2 ln(z2 1 2z). The equation u9(z) 5 0 has exactly two roots

z1 5
1 2 a 1 Ï1 1 a2

a
and z2 5

1 2 a 2 Ï1 1 a2

a
,

and z1 . 0 and 22 , z2 , 0. If a 5 a0 is taken as a root of the equation

e Ï11a2

5
1 1 Ï1 1 a2

a
,

it is easy to show that this root satisfies the inequality As , a0 , 1 and
u f(z1)u 5 u f(z2)u. Figure 1 shows the graph of the function u f(x)u for a 5 a0.

Let us see what happens to the angle s 5 s(r) as r varies from 0 to y. For small
r, we have s(r) 5 0. When r reaches the value r1 , the angle s(r) makes a jump and
becomes s(r) 5 f. Therefore, the derivative f 9(reis(r)) never vanishes, and Cauchy’s
method does not apply in this case.
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FIGURE 1

It follows from what has been said above that Cauchy had only approaches to
the saddle-point method; the problem of choosing the contour did not arise with
him, and he always took the contour to be a circle, thus depriving his method of
the necessary generality.2

3. THE SADDLE-POINT METHOD IN THE WORK OF RIEMANN

In the second part of his paper [6], written in Italian in 1863, Riemann discussed
the saddle-point method. As we have already mentioned, this paper was published
by Schwarz with necessary annotations to the fragments left behind by Riemann
at his death.

In this work, Riemann found an asymptotic estimate of the integral

In 5 E1

0
sa1n(1 2 s)b1n(1 2 xs)c2n ds (8)

as n R y. When x , 1 is real, the estimate of this integral is easily found by
Laplace’s method. However, Riemann estimated it for an arbitrary complex value
of x, as he particularly emphasized. To obtain the desired estimate, Riemann wrote
the integral (8) in the form

In 5 E1

0
Fs(1 2 s)

1 2 xs Gn

sa(1 2 s)b(1 2 xs)c ds

and studied the behavior of the level lines of the absolute value of the function
r 5 us(1 2 s)/(1 2 xs)u. If r is small, the level lines approximate small circles with
centers at the points s 5 0 and s 5 1. As r increases, these contours expand and,

2 The possibility that Cauchy actually ‘‘had’’ the ‘‘saddle-point method’’ was pointed out by M. V.
Chirikov [9]. Our analysis qualifies this significantly.
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at a certain time, meet each other for the first time at some point s. Then we
obviously have

d
ds Fs(1 2 s)

1 2 xs GUs5s
5 0.

Solving this equation, Riemann found two roots

s1 5
1

1 1 Ï1 2 x
and s2 5

1

1 2 Ï1 2 x
,

at which he took the branch of the square root for which Re Ï1 2 x . 0. Therefore,
us1u , us2u, and since

Usi(1 2 si)
1 2 xsi

U5 us2
i u, for i 5 1, 2,

the level lines are tangent precisely at the point s1 . In the integral In , Riemann
deformed the contour joining the points s 5 0 and s 5 1 so that it would pass
through the point s1 and bisect the angle between the branches of the level lines
(which intersect in a right angle at the point s1). In other words, he drew the
contour through the saddle point s1 in the direction of steepest descent. He then
estimated the integral In approximately as we indicated above; as a result, he
obtained the desired estimate

In p !f
n

1

(1 1 Ï1 2 x)2n1a1b11
(1 2 x)(b1c)/211/4.

We note that the entire text and the majority of the computations in the second
half of Riemann’s paper were added by Schwarz. For that reason, we cannot be
completely sure that Riemann reasoned exactly as we have described above. One
thing, however, is incontrovertible. Riemann understood that in estimating integrals
of the form (3) one must draw the contour through a saddle point along the line
of steepest descent. Confirmation that Riemann had the technique of the saddle-
point method is also provided by an estimate of the function Z(t) using this method
found by Carl Ludwig Siegel among Riemann’s papers in 1932. The function Z(t)
is connected with the zeta-function (the Riemann–Siegel formula, cf. [10]).

4. P. A. NEKRASOV AND THE SADDLE-POINT METHOD

Pavel Alexeevich Nekrasov was born on February 1, 1853, the son of a priest.
He studied in a seminary and then in the Department of Mathematics and Physics
at Moscow University, where one of his teachers, Nicolai V. Bugaev, developed in
him a taste for philosophy. In 1878, he was retained at the University for 2 years
to prepare to become a professor. However, in 1879, by a directive of the superin-
tendant of the Moscow school district, he was appointed to the private Voskresenskiı̆
Vocational Institute in Moscow as a teacher of mathematics.
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The topic of his master’s thesis (1883) was ‘‘A Study of Equations of the Form
um 2 pun 2 q 5 0,’’ and the title of his doctoral dissertation (1886) was ‘‘The
Lagrange Series.’’ For 20 years beginning in 1885, he taught at the University of
Moscow, becoming a full professor in 1886. There, he lectured on integral calculus,
the theory of functions of a complex variable, and probability. From 1893 to 1897,
he was rector of the University of Moscow. In 1905, he moved to St. Petersburg
to work in the Ministry of Public Education. He undertook the reform of elementary
education, considering it necessary to introduce the elements of probability theory
into the school mathematics curriculum.

Nekrasov was an active member of the Moscow Mathematical Society, acting as
its vice-president after 1891, and, from the death of Bugaev in 1903 until his own
move to St. Petersburg, as its president. In addition to numerous papers, he pre-
sented several interesting reports on the scientific activity of S. V. Kovalevskaya,
A. Yu. Davidov, N. V. Bugaev, V. G. Imshenetskiı̆, and others at meetings of the
Society. His publications number about 50 titles, reflecting his versatile scientific
and social interests. He died December 20, 1924.

The main areas of Nekrasov’s research were analysis and probability, and he
called himself an analyst. His doctoral dissertation, ‘‘The Lagrange Series and
Approximate Expressions for Functions of Very Large Numbers,’’ which was pub-
lished as a separate monograph, was devoted to a detailed study of the convergence
of the Lagrange series [11].

In order to determine the radius of convergence of this series and to study
its convergence on the boundary of the disk of convergence, it is necessary to
find an asymptotic estimate of the coefficients an of the series, expressed by the
integral (5). It is this kind of problem that Nekrasov stated and solved. In the
first part of his dissertation, he gives a very detailed survey of papers devoted
to the problem of convergence of the Lagrange series. He devotes an especially
large amount of attention to the paper of Cauchy discussed above, which, in
Nekrasov’s words, subsequent authors had forgotten. Nekrasov probably did not
know of Riemann’s work. It is not associated with the Lagrange series and,
naturally, it is not found among the papers referred to in the dissertation.
However, Nekrasov did not mention Riemann’s paper even later, in particular
in 1900, when he published a monograph devoted to methods of finding asymptotic
estimates and gave a rather complete list of papers of authors who had studied
this topic [12].

In the third chapter of his dissertation, which was published separately in Vol.
12 (1885) of the Matematicheskiı̆ Sbornik, Nekrasov estimated the integral (5). If
we compare this integral with the general integral (3), to the estimate of which the
saddle-point method is applied, we can see that the small restriction amounts to
the fact that in (5) the contour is closed, while the function f(z) 5 w(a 1 z)/z has
a simple pole at 0. Obviously, this is unimportant for the development of the saddle-
point method. Nekrasov assumed in addition that the function w is meromorphic,
i.e., its only singularities are poles, but at the end of the paper he considered also
the cases of essential singularities and branch points.
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Nekrasov began his analysis by choosing the contour in the integral (5). He
showed that there always exists a contour enclosing the origin but no singularities
of the function w(a 1 z) and passing along the directions of steepest descent through
the principal saddle points. These are the points at which u f(z)u 5 uw(a 1 z)/zu has
the same maximal value on this contour. To prove this, he used a very original
geometric argument, which we summarize as follows:

Consider a horizontal complex plane over which the graph of the function u f(z)u
is constructed. This surface will have no vertices, but at points where f 9(z) 5 0, it
will have saddle points. At the poles, it will have infinitely high peaks. If a liquid
is poured onto this surface to a very high level, only small round regions correspond-
ing to poles will lie above this level. In particular one region, which we paint red,
will correspond to the pole at the origin. The other regions, at which the surface
of the absolute value is above this level, we paint black. Let us now lower the level
of the liquid. As we do this, the regions will expand monotonically, and at a certain
moment, one or several black regions will become tangent to the red region. With
this kind of reasoning Nekrasov showed that there can only be a finite number of
points of tangency.

He then chose the contour C so that it enclosed only the red region and passed
through all the points of tangency, which are obviously saddle points. By construc-
tion, the value of u f(z)u is the same at all these points, and on the remainder of
the contour C, this value will be smaller. For the sake of generality, Nekrasov as-
sumed that at each such saddle point z 5 z0 the expansion of the function has the
form

f(z) 5 f(z0) 1
f (m)(z0)

m!
(z 2 z0)m 1 o[(z 2 z0)m], m $ 2.

He showed that the contour C can always be drawn through all the principal saddle
points in such a way that, in a neighborhood of each point, the contour passes
along a line of steepest descent. Having chosen the contour in this way, Nekrasov
proceeded to estimate the integral (5). He did this by breaking the integral into a
sum of integrals taken over parts of the contour in a neighborhood of each saddle
point, and the integral over the part of the contour outside these neighborhoods.
By a rough estimate, he showed that the last integral is infinitely small in comparison
with the integrals over the neighborhoods of the saddle points. To estimate the
integral over each neighborhood, Nekrasov, unlike Cauchy, Riemann, and many
later authors, did not reduce this estimate to the computation of an integral of
exponentials. Rather, he applied his own original technique, breaking the integral
over a neighborhood into two integrals, one over the part ascending to the saddle
point and one over the part descending from it. Each such integral is estimated by
the quantity

eiaF 9(a 1 z0)
f n(a0)
2fin

E«

0
(1 2 Atm)n dt, (9)
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where z0 is the saddle point, a is the angle defining the direction of steepest descent,
and A 5 u f (m)(z0)/m! f(z0)u. The integral (9) can be estimated by the gamma function
as n R y,

E«

0
(1 2 Atm)n dt p

n!GS1 1
1
mD

A1/mGSn 1 1 1
1
mD

,

and this last fraction is easily estimated using Stirling’s formula. This, in brief, is a
description of the saddle-point method in the work of Nekrasov.

5. THE WORK OF DEBYE

In 1909, 25 years after Nekrasov, the famous physicist Peter Debye published
his paper [5], in which he applied the saddle-point method to find an asymptotic
estimate of the Bessel functions, which are solutions of the equation

u0 1
1
x

u9 1 S1 2
a2

x2D u 5 0

for the case when the argument x tends to infinity, while the ratio a/x 5 j remains
constant. (We remark that an estimate of the Bessel functions as x R y with fixed
a can be obtained without the saddle-point method.)

At the beginning of his paper, Debye notes that the idea of the saddle-point
method came to him from reading the note of Riemann discussed above. A large
part of Debye’s paper is devoted to estimating the Hankel functions, which are
represented by contour integrals of the form

Ha
1(x) 5 2

1
f
E

C1

e 2ixsinz ? e iaz dz, Ha
2(x) 5 2

1
f
E

C2

e 2ixsinz ? eiaz dz.

The contours C1 and C2 have the following form (cf. Fig. 2).
Debye took the function Ha

2(x) (everything is analogous for Ha
1(x)) and wrote it

in the form

Ha
2(x) 5 2

1
f
E

C2

e 2xu(z) dz,

where u(z) 5 i(sin z 2 jz) and j 5 a/x. He found a saddle point z0 at which
u9(z0) 5 0 and drew a contour through this point so that the imaginary part
Im u(z) is constant on the contour and the real part Re u(z) has a maximum at
the point z0 . In other words, he also drew the contour C2 through the saddle point
along the line of steepest descent. He then divided the contour C2 into two parts,
the part up to the saddle point and the part after the saddle point. In each integral,
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FIGURE 2

he made the change of variable R(z) 2 R(z0) 5 t. Thus he brought the Hankel
function into the form

Ha
2(x) 5

e 2xu(z0)

f FEy

0
e 2xtw(t) dt 2 Ey

0
e 2xtw1(t) dtG.

The functions w(t) and w1(t) were not found explicitly, since the equation R(z) 2
R(z0) 5 t cannot be solved explicitly for z; however, Debye had no need to do so.
By methods known since the time of Newton, he expanded the functions w and w1

at zero into series in fractional powers of the variable t. Integrating these series
termwise, he obtained an expansion of the function Ha

2(x) into an asymptotic series
(in particular, the first term of this series gives the desired asymptotic relation).

Debye thus used, without proof, the following proposition that later came to be
known as Watson’s lemma [4, ch. 17]:

If I (x) 5 ey

0 e2xtw(t) dt converges absolutely for some x, and the function w(t) can be expanded
in an asymptotic series

w(t) p Oy
n50

ant np1q, p . 0, q . 21,
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on a right-hand neighborhood of t 5 0, then as x R y the integral I (x) can be expanded
into an asymptotic series obtained by termwise integration:

I (x) p Oy
n50

anG(np 1 q 1 1)
xnp1q11 .

Next, proceeding in the same manner, Debye obtained asymptotic expansions for
the other Bessel functions.

The saddle-point method in the works of Nekrasov and Debye may now be
compared in this way:

1. Nekrasov developed the saddle-point method for the general integral (3),
while Debye estimated a specific and rather simple integral by the saddle-point
method.

2. Nekrasov considered the most general case when there are several saddle
points and each has an arbitrary multiplicity. Debye considered only the case of a
single saddle point at which u0(z0) ? 0. For this reason, we can say with complete
justification that Nekrasov established the general saddle-point method. (However,
Debye obtained not only an asymptotic estimate but also the complete asymptotic
expansion, something Nekrasov did not have.)

3. Nekrasov proved the existence of a closed contour passing through the
saddle points along the directions of steepest descent in the general case, whereas
Debye did this for a specific and simple integral, which is, of course, conceptually
much easier.
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