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a b s t r a c t

The calibration method has been widely discussed in the recent literature on survey sam-
pling, and calibration estimators are routinely computed by many survey organizations.
The calibration technique was introduced in [12] to estimate linear parameters as mean
or total. Recently, some authors have applied the calibration technique to estimate the fi-
nite distribution function and the quantiles. The computationally simpler method in [14]
is built by means of constraints that require the use of a fixed value t0. The precision of
the resulting calibration estimator changes with the selected point t0. In the present paper,
we study the problem of determining the optimal value t0 that gives the best estimation
under simple random sampling without replacement. A limited simulation study shows
that the improvement of this optimal calibrated estimator over possible alternatives can
be substantial.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In survey sampling a common task is the estimation of the finite population distribution, as the finite population quantiles
and some poverty measures can be obtained by means of this function.
In the presence of auxiliary information, various general estimation procedures can be used to obtain more efficient

estimators of population means and totals. Work has been done to apply these general procedures directly to estimating
the distribution function.
The design-based ratio F̂r(t) and difference F̂d(t) type estimators for the distribution function [1] suffer from several

drawbacks, the obvious one being that they can take values outside [0, 1]. Furthermore, they are not always monotone
functions and therefore are not recommended for estimating finite population quantiles. Other important papers on this
topic [2,3] have assumed a superpopulationmodel, and have suggestedmodel-based estimators. Carefulmodel checking and
diagnostics need to be carried out before thesemodel-based estimators are used. Under simple random sampling,Wang and
Dorfman [4] combined the Chambers–Dunstan estimator and the Rao–Kovar–Mantel estimator in a hybrid estimator, which
under certain conditions is more efficient than either of the above. However, their estimator also inherits the drawbacks of
the other two estimators and cannot be readily generalized tomore complex designs. Other references related to estimating
the distribution function are [5,6].
In the last decade, calibration estimation [7–11] has become an important field of research in survey sampling. Calibration

is now an important methodological instrument in the production of statistics. It was introduced in [12] to estimate the
population total, but this approach canbe adapted to the estimation ofmore complexparameters than just a population total.
Harms and Duchesne [13] and Rueda et al. [14] use different ways to implement the calibration approach in the estimation
of the distribution function and the quantiles.
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Both methods give nearly design-unbiased estimation and compare favorably with earlier estimation methods for the
distribution function, not based on the calibration approach but using the same auxiliary information (see [15]).
The computationally simplermethod of Rueda et al. [14] is an application ofmodel calibration, in that they calibrate with

respect to the predicted y-values. The weights are obtained by minimizing the chi-square distance subject to calibration
equations that require the use of an arbitrarily fixed value t0. The precision of the resulting calibration estimator changes
with the selected point t0. Furthermore, this estimator undergoes a loss of efficiency when t0 is far away from t , the point
where the distribution function is being evaluated. Thus, the selection of the point t0 is a serious problem and one not
analyzed in the above mentioned work. In this paper, we study the problem of the optimal value t0 that gives the best
estimation under simple random samplingwithout replacement. Finally, a simulation study compares themethod proposed
with other conventional methods.
Section 2 summarizes Cumulative distribution function (CDF) calibration estimation. In Section 3 we derive an optimum

calibration point when estimation by CDF calibration is based on one point. Section 4 is similar to the previous section but
with estimation by CDF calibration based on two points. A brief simulation study is performed and our conclusions are
reported in Section 5.

2. Calibration estimation of distribution function

Consider a finite population U = {1, . . . , k, . . . ,N}, consisting of N different elements. Let s = {1, . . . , n} be the set
of n units included in a sample, selected according to a specified sampling design with inclusion probabilities πk and πkl
assumed to be strictly positive. Let yk be the value of the study variable y, for the kth population element, with which
an auxiliary value xk is also associated. The values x1, x2, . . . , xN are known for the entire population but yk is known
only if the kth unit is selected in the sample s. The finite population distribution function of the study variable y is given
by Fy(t) =

∑
k∈U ∆(t − yk)/N with ∆(t − yk) = 1 if t ≥ yk and ∆(t − yk) = 0 otherwise. A purely design-based

estimator of the distribution function is the Horvitz–Thompson estimator, defined by F̂YH(t) =
∑
k∈s dk∆(t − yk)/N with

dk = 1/πk describing the basic design weights. The estimator F̂YH(t) is unbiased, but in general, it is not a distribution
function (limt→+∞ F̂YH(t) 6= 1) and does not use the auxiliary information provided by the variable x.
Rueda et al. [14] consider a calibration estimator by first defining a pseudo-variable gk = β̂ ′xk for k = 1, 2, . . . ,N , where

β̂ =

(∑
k∈s

dkqkxkx′k

)−1∑
k∈s

dkqkxkyk (1)

is a weighted estimator of the multiple regression coefficient β between y and x. The qk are known positive constants
unrelated to dk = 1/πk. They then define the calibration estimator

F̂yc(t) =
1
N

∑
k∈s

ωk∆(t − yk)

where the new weights ωk are modified from dk = 1/πk by minimizing the chi-square distance measure

Φs =
∑
k∈s

(ωk − dk)2

dkqk
(2)

subject to the calibration equations

1
N

∑
k∈s

ωk∆(tj − gk) = Fg(tj) j = 1, 2, . . . , P. (3)

The term Fg(tj) denotes the finite distribution function of the pseudo-variable g evaluated at the point tj, where tj for
j = 1, 2, . . . , P are points chosen arbitrarily, assuming that

t1 < t2 < · · · < tP .

The resulting estimator can be written as

F̂yc(t) = F̂YH(t)+
(
Fg(t)− F̂GH(t)

)′
D̂ (4)

where t = (t1, . . . , tp)′, F̂GH is the Horvitz–Thompson estimator of Fg and

D̂ = T−1
∑
k∈s

dkqk∆(t− gk)∆(t − yk)

assuming that the inverse of symmetric matrix T

T =
∑
k∈s

dkqk∆(t− gk)∆(t− gk)′

exists.
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This estimator is a distribution function (continuous on the right, monotone nondecreasing and limt→−∞ F̂yc(t) = 0;
limt→+∞ F̂yc(t) = 1) and gives a nearly design-unbiased estimation. The estimator gives perfect estimates of the distribution
function Fg(t) in tj; j = 1, 2, . . . , P , but with these conditions we have assumed that the study variable y and the auxiliary
vector x are linearly related.1
The calibrated estimator uses the same t for any t in F(t). If different values t are used to estimate various arguments t ,

nonmonotonicity is unsatisfying froma theoretical point of view and causes complications in the inverse problemof quantile
estimation. The solution to this issue is to consider the same calibration point. This optimum for the fixed point is obtained
in Section 3.

3. Optimal point for estimating the cumulative distribution function by one-point calibration

In this section, we study the optimal choice of the point in the calibration equations (3). We consider the case where one
point t = t0 is used in the calibration estimator F̂yc(t) under simple random sampling. The following theorem summarizes
the main result.

Theorem 1. Let gk = β̂ ′xk, k = 1, . . . ,N and Fg represent the finite population distribution function of g-values. Suppose that
we wish to estimate Fy at point t. Let

G(γ ) =
B

N − 1

[
2NFy(t)Fg(γ )− (1+ Fg(γ ))

∑
k∈U

∆(t − yk)∆(γ − gk)

]
where

B =
∑
k∈U

∆(t − yk)∆(γ − gk)
/∑
k∈U

∆(γ − gk).

y-values are denoted in ascending order by y[1], . . . , y[N] and g-values are arranged by the y-variable by g[1], . . . , g[N]. Let
At = {g[k] | k ∈ U, y[k] ≤ t}.
Then, the point at which the calibration estimator is optimum is given by

topt = argmin
gk∈At

G(gk).

A proof of the above result is as follows. In a first step, the variance of the F̂yc(t) estimator is expressed as a real function
G(γ ). In a second step, the G(γ ) properties are studied and, finally, we find the optimum t0.
Variance of the F̂yc(t) estimator
The estimator F̂yc(t) is given by

F̂yc(t) = F̂YH(t)+
(
Fg(t0)− F̂GH(t0)

)
Bs (6)

where

Bs =

∑
k∈s
dkqk∆(t − yk)∆(t0 − gk)∑
k∈s
dkqk∆(t0 − gk)

.

Rueda et al. [14] show that the asymptotic behaviour of F̂yc(t) is the same as the estimator

FYH(t)+
(
Fg(t0)− F̂GH(t0)

)
· B

1 Note. If the relation between y and x is not linear, the pseudo-variable gk and the condition (3) are inadequate and it is necessary to adapt or to modify
these conditions for nonlinear models.
Rueda et al. [16] assume that the relationship between y andx canbedescribedby the following superpopulationmodel (the linear or nonlinear regression
model)

yk = µ(xk, θ)+ νkεk k = 1, 2, . . . ,N (5)

where θ = (θ0, . . . , θJ )
′ and σ 2 are unknown superpopulation parameters, µ(xk, θ) is a known function of x and θ, the νk = ν(xk) is a strictly positive

known function of xk , and the εk are independently and identically distributed random variables with

Eξ (εk) = 0 and Vξ (εk) = σ 2

where Eξ and Vξ denote the expectation and variance with respect to the superpopulation model. Under this model the authors propose an alternative
estimator based on nonparametric regression.
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with

B =

∑
k∈U
qk∆(t − yk)∆(t0 − gk)∑
k∈U
qk∆(t0 − gk)

.

Consequently, the asymptotic variance of F̂yc(t) is

V (̂Fyc(t)) = V (̂FYH(t))+ B2V (̂FGH(t0))− 2B Cov(̂FYH(t), F̂GH(t0)).

Thus, we must choose the value of t0 that minimizes the following expression

B2V (̂FGH(t0))− 2B Cov(̂FYH(t), F̂GH(t0)). (7)

Expression (7) can be written in the following way

B
[
BV (̂FGH(t0))− 2Cov(̂FYH(t), F̂GH(t0))

]
. (8)

Under simple random sampling, we have:

V (̂FGH(t0)) =
N
N − 1

Fg(t0)
(
1− Fg(t0)

)
(9)

Cov(̂FGH(t0), F̂YH(t)) =

∑
k∈U

∆(t − yk)∆(t0 − gk)− NFy(t)Fg(t0)

N − 1
. (10)

Let H =
∑
k∈U ∆(t − yk)∆(t0 − gk). Expressions (9) and (10) can be replaced in (8)

B
[
B
[
N
N − 1

Fg(t0)
(
1− Fg(t0)

)]
−

2
N − 1

(
H − NFy(t)Fg(t0)

)]
. (11)

Now, we consider the term

B
[
N
N − 1

Fg(t0)
(
1− Fg(t0)

)]
−

2
N − 1

(
H − NFy(t)Fg(t0)

)
=

1
N − 1

[
B
(
NFg(t0)

(
1− Fg(t0)

))
− 2

(
H − NFy(t)Fg(t0)

)]
(12)

if we take into account that:

B
(
NFg(t0)

(
1− Fg(t0)

))
=

∑
k∈U
qk∆(t − yk)∆(t0 − gk)∑
k∈U
qk∆(t0 − gk)

(
NFg(t0)

(
1− Fg(t0)

))
and we choose qk = 1 for all k ∈ U (this choice guarantees that the calibration estimator is monotone nondecreasing,
see [14]), the previous expression takes the form∑

k∈U
qk∆(t − yk)∆(t0 − gk)∑
k∈U
qk∆(t0 − gk)

(
NFg(t0)

(
1− Fg(t0)

))
=

∑
k∈U

∆(t − yk)∆(t0 − gk)

NFg(t0)

(
NFg(t0)

(
1− Fg(t0)

))
=
(
1− Fg(t0)

)
H

and

B
(
NFg(t0)

(
1− Fg(t0)

))
=
(
1− Fg(t0)

)
H. (13)

Next, if we replace (13) in (12), we obtain

1
N − 1

[(
1− Fg(t0)

)
H − 2

(
H − NFy(t)Fg(t0)

)]
=

1
N − 1

[
2NFy(t)Fg(t0)− (1+ Fg(t0))H

]
. (14)

Finally, if we replace (14) in (11), we have

G(t0) =
B

N − 1

[
2NFy(t)Fg(t0)− (1+ Fg(t0))

∑
k∈U

∆(t − yk)∆(t0 − gk)

]
. (15)

Properties of G(γ )
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Therefore, we must obtain the value of t0 that minimizes the function G(t0) given in (15). To do so, let us consider the
population values of the study variable y in ascending order

y[1] ≤ y[2] ≤ · · · ≤ y[N]. (16)

Next, we consider the population values of the variable g , arranged by the variable y, that is

g[1]; g[2]; . . . ; g[N] (17)

where, for example, the value g[1] is not the smallest value of the variable g but the value of the variable g that corresponds
to the value y[1], g[2] corresponds to the value y[2], . . ., that is

(y[1], g[1]); (y[2], g[2]); . . . ; (y[N], g[N]).

Thus, if we wish to estimate the distribution function Fy at the value t , we must prove that the function G(t0) reaches the
minimum at a point in the set

At = {g[k] : k ∈ Ct} (18)

where Ct is the following set

Ct =
{
k ∈ {1, 2, . . . ,N} : y[k] ≤ t

}
. (19)

The set At is finite and we suppose that a1 < a2 < · · · < aP are the P different elements of At in ascending order.
Now, we study the choice of t0 with the function G(t0), which can take various values:

(1) If t0 < a1 the function G(t0) takes the value 0, because∑
k∈U

∆(t − y[k])∆(t0 − g[k]) = 0.

(2) If t0 ≥ aP , we have∑
k∈U

∆(t − y[k])∆(t0 − g[k]) = NFy(t)

and

B =
NFy(t)
NFg(t0)

.

Then, the function G(t0) is

G(t0) =
B

N − 1

[
2NFy(t)Fg(t0)− (1+ Fg(t0))

∑
k∈U

∆(t − y[k])∆(t0 − g[k])

]

=
NFy(t)

(N − 1)NFg(t0)

[
2NFy(t)Fg(t0)− (1+ Fg(t0))NFy(t)

]
=

N2(Fy(t))2

(N − 1)NFg(t0)

[
Fg(t0)− 1

]
=
N(Fy(t))2

(N − 1)

[
1−

1
Fg(t0)

]
< 0.

(3) Finally, we consider the case where ai ≤ t0 < ai+1. For i ∈ {1, . . . , P − 1}we denote

ki =
∑
k∈U

∆(t − y[k])∆(t0 − g[k]) =
∑
k∈U

∆(t − y[k])∆(ai − g[k]).

For all i ∈ {1, . . . , P − 1}we have ki < NFy(t) and G(t0) takes the value

G(t0) =
ki

(N − 1)NFg(t0)

[
2NFy(t)Fg(t0)− (1+ Fg(t0))ki

]
=

ki
(N − 1)NFg(t0)

[
(2NFy(t)− ki)Fg(t0)− ki

]
=

ki
(N − 1)

[
2NFy(t)− ki

N
−

ki
NFg(t0)

]
.

Thus, G(t0) is a piecewise function given by

G(t0) =



0 t0 < a1
ki

(N − 1)

[
2NFy(t)− ki

N
−

ki
NFg(t0)

]
ai ≤ t0 < ai+1

N(Fy(t))2

(N − 1)

[
1−

1
Fg(t0)

]
aP ≤ t0.
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Now, we consider the interval [aP ,+∞)where the function G(t0) is

G(t0) =
N(Fy(t))2

(N − 1)

[
1−

1
Fg(t0)

]
aP ≤ t0.

It is apparent that G(t0) is monotone nondecreasing in [aP ,+∞). Consequently, the minimum point of G(t0) is at t0 = aP
and this minimum takes the value

N(Fy(t))2

(N − 1)

[
1−

1
Fg(aP)

]
< 0.

If we consider the interval [ai, ai+1)with i ∈ {1, . . . , P − 1}, the function G(t0) is

G(t0) =
ki

(N − 1)

[
2NFy(t)− ki

N
−

ki
NFg(t0)

]
where ki is constant for all t0 ∈ [ai, ai+1) and equal to

ki =
∑
k∈U

∆(t − y[k])∆(ai − g[k]).

Therefore, the function G(t0), in the interval [ai, ai+1), is monotone nondecreasing and its minimum point is at t0 = ai. This
minimum is equal to

ki
(N − 1)

[
2NFy(t)− ki

N
−

ki
NFg(t0)

]
.

Thus, the local minimum values of G(t0) are:

• 0 at t0 < a1
•

ki
(N−1)

[
2NFy(t)−ki

N −
ki

NFg (ai)

]
at t0 = ai, i = 1, . . . , P − 1

•
N(Fy(t))2

(N−1)

[
1− 1

Fg (aP )

]
< 0 at t0 = aP .

Because the last local minimum value is negative, the value 0 of the first interval cannot be the global minimum of G(t0)
and then the global minimum of the function G(t0) is at one point of At = {ai : i = 1, . . . P}.
The proposed estimator
The optimal value of t0, (topt) depends on some unknown values, so the optimal estimator F̂ycop = F̂YH(t) + (Fg(topt) −

F̂GH(topt))Bs cannot be calculated. In the absence of good a priori knowledge these characteristics, we go to replace the
optimal value topt by sample-based estimates.
First, we have to estimate the function G(t0) by

Ĝ(t0) =
B̂

N − 1

[
2NF̂YH(t )̂FGH(t0)− (1+ F̂GH(t0))

∑
k∈s

dk∆(t − yk)∆(t0 − gk)

]

=
B̂

N − 1

[
2NF̂YH(t )̂FGH(t0)− (1+ F̂GH(t0))

N
n

∑
k∈s

∆(t − yk)∆(t0 − gk)

]

=
B̂N
N − 1

[
2̂FYH(t )̂FGH(t0)− (1+ F̂GH(t0))

1
n

∑
k∈s

∆(t − yk)∆(t0 − gk)

]
where

B̂ =

∑
k∈s
∆(t − yk)∆(t0 − gk)∑
k∈s
∆(t0 − gk)

.

In a similar way, we can prove that the global minimum of the function Ĝ(t0) is at one point of Ast = {gk : k ∈ Cst}with

Cst = {k ∈ s : yk ≤ t}.

Then, with the sample swe can find the global minimum of Ĝ(t0); to do this, we have to calculate the image of the points in
the set Ast = {gk : k ∈ Ast} under Ĝ(t0) and take the point whose image is less than the others.
The value which minimizes Ĝ(t0) is an estimator of topt and after replacing topt by this estimator t̂opt we obtain the

proposed estimator:

F̂ycprop = F̂YH(t)+
(
Fg (̂topt)− F̂GH (̂topt)

)
B̂s (20)
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being

B̂s =

∑
k∈s
∆(t − yk)∆(̂topt − gk)∑
k∈s
∆(̂topt − gk)

.

Thus we consider the estimator F̂ycprop which is obtained by replacing the unknown values with theirs sample estimators.
This estimator does not coincide with the theoretical optimum estimator F̂ycop but we can derive the limit distribution for
such statistics using the results of Randles [17]. We embed our finite population in a sequence of populations where the
sample sizes and the population sizes both increase without bound.
Following Randles’ notation, we denote the estimator F̂ycprop as Tn(γ̂ ) = Tn(γ̂1, γ̂2) with γ̂ = (̂topt, B̂s) an consistent

estimator of γ = (topt, Bs). We embed our finite population in a sequence of populations where the sample sizes and the
population sizes both increase without bound.
We replace γ̂ in Tn(·) with a variable ς . Now we calculate the limit of the expectation of the statistic Tn(ς) when the

current value of the parameter is γ :

µ(ς) = lim
n→+∞

Eγ [Tn(ς)] = lim
n→+∞

Eγ
[̂
FYH(t)+

(
Fg(ς1)− F̂GH(ς1)

)
· ς2

]
= F̃y(t)

where F̃y(t) is the limiting value of Fy(t) as N →∞.
Then

∂µ(ς)

∂ς

∣∣∣∣
ς=(topt,Bs)

= (0, 0).

We conclude that the asymptotic distribution of Tn(γ̂ ) (the proposed estimator, F̂ycprop) is the same as that of Tn(γ ) (the
estimator based on optimum point, F̂ycop).

4. Optimal point for estimating the cumulative distribution function by two-point calibration

We now consider the case in which two points t = (t1, t2)′ are used in the calibration estimator F̂yc(t) under simple
random sampling. The first point t1 is an arbitrary chosen point and the second point is t2 = maxk∈U gk. There is a specific
reason for choosing the point t2. Since the estimator F̂yc(t) is an estimator for the distribution function Fy(t), it is desirable
for the estimator F̂yc(t) to be a genuine distribution function. Therefore, the following property must be satisfied:

lim
t→+∞

F̂yc(t) = 1. (21)

Following Rueda et al. [14], by taking a sufficiently large t2, the condition (21) is satisfied. Therefore, it is logical to take
t2 = maxk∈U gk.
As in Section 3, Theorem 2 summarizes the main result.

Theorem 2. Let gk = β̂ ′xk, k = 1, . . . ,N and Fg be the finite population distribution function of g-values. Assume that we wish
to estimate Fy at the point t. Let

G1(γ ) =
−1
N − 1

[∑
k∈U

∆(γ − gk)∆(t − yk)− NFy(t)Fg(γ )
]2

NFg(γ )(1− Fg(γ ))
.

Assume At = {a1 ≤ · · · ≤ aP} in Theorem 1. Let Bt = {bk : k = 1, . . . , P} defined as

b1 = max
l∈U1
{gl} with U1 = {l ∈ U : gl < a1}

bk = max
l∈Uk
{gl} with Uk = {l ∈ U : ak−1 ≤ gl < ak}; k = 2, . . . , P.

Then, the point at which the calibration estimator is optimum is given by

topt = argmin
gk∈At∪Bt

G1(gk).

As in Section 3, the proof is established in several steps.
Variance of the F̂yc(t) estimator
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The calibration estimator F̂yc(t)with two points t1 and t2 = maxk∈U gk is given by

F̂yc(t) = F̂YH(t)+
(
Fg(t1)− F̂GH(t1)

)
B1s +

(
1−

1
N

∑
k∈s

dk

)
B2s (22)

where

B1s =

∑
k∈s
dkqkδyk(t)δgk(t1)

∑
k∈s
dkqk −

∑
k∈s
dkqkδyk(t)

∑
k∈s
dkqkδgk(t1)∑

k∈s
dkqkδgk(t1)

(∑
k∈s
dkqk −

∑
k∈s
dkqkδgk(t1)

)

B2s =

∑
k∈s
dkqkδyk(t)−

∑
k∈s
dkqkδyk(t)δgk(t1)∑

k∈s
dkqk −

∑
k∈s
dkqkδgk(t1)

with δyk(t) = ∆(t − yk) and δgk(t1) = ∆(t1 − gk).
Under simple random sampling, we have
1
N

∑
k∈s

dk = 1.

Consequently, the estimator F̂yc(t) is

F̂yc(t) = F̂YH(t)+
(
Fg(t1)− F̂GH(t1)

)
B1s.

If we choose qk = 1 for all k ∈ U , the asymptotic variance of F̂yc(t) takes the following expression:

V (̂Fyc(t)) = V (̂FYH(t))+ B21V (̂FGH(t1))− 2B1 Cov(̂FYH(t), F̂GH(t1)) (23)

with

B1 =

∑
k∈U

∆(t − yk)∆(t1 − gk)− NFg(t1)Fy(t)

NFg(t1)(1− Fg(t1))
.

Then, we must find the value of t1 that minimizes

B21V (̂FGH(t1))− 2B1 Cov(̂FYH(t), F̂GH(t1)) = B1
[
B1V (̂FGH(t1))− 2Cov(̂FYH(t), F̂GH(t1))

]
. (24)

Under simple random sampling

V (̂FGH(t1)) =
N
N − 1

Fg(t1)
(
1− Fg(t1)

)
(25)

Cov(̂FGH(t1), F̂YH(t)) =

∑
k∈U

∆(t − yk)∆(t1 − gk)− NFy(t)Fg(t1)

N − 1
(26)

and we have

B1V (̂FGH(t1)) =
1

N − 1

[∑
k∈U

∆(t1 − gk)∆(t − yk)− NFy(t)Fg(t1)

]

2Cov(̂FGH(t1), F̂YH(t)) =
2

N − 1

[∑
k∈U

∆(t1 − gk)∆(t − yk)− NFy(t)Fg(t1)

]
and

B1V (̂FGH(t1))− 2Cov(̂FGH(t1), F̂YH(t)) =
−1
N − 1

[∑
k∈U

∆(t1 − gk)∆(t − yk)− NFy(t)Fg(t1)

]
. (27)

Now, if we replace (27) in (24), we obtain the following function

G1(t1) = B1
[
B1V (̂FGH(t1))− 2Cov(̂FGH(t1), F̂YH(t))

]

=
−1
N − 1

[∑
k∈U

∆(t1 − gk)∆(t − yk)− NFy(t)Fg(t1)
]2

NFg(t1)(1− Fg(t1))
. (28)
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The properties of G1(γ ) are given in Appendix.
Now, if we wish to estimate the distribution function Fy at point t , we must prove that the global minimum G1(t1) is at

a point of the set At or Bt , by studying the values of G1(t1):

G1(t1) =



N(Fy(t))2

N − 1
Fg(t1)

(Fg(t1)− 1)
t1 < a1

−1
N(N − 1)

[
ki − NFy(t)Fg(t1)

]2
Fg(t1)(1− Fg(t1))

ai ≤ t1 < ai+1

N
[
Fy(t)

]2
(N − 1)

(
1−

1
Fg(t1)

)
aP ≤ t1.

In the interval (−∞, a1), the function

G1(x) =
N(Fy(t))2

N − 1
x

(x− 1)
is monotone nondecreasing, and because Fg(t1) is monotone nondecreasing, the function G1(t1) is monotone nondecreasing
and its minimum point is at t1 = b1, and this minimum takes the value

N(Fy(t))2

N − 1
Fg(b1)

(Fg(b1)− 1)
.

It is now apparent that G1(t1) is monotone nondecreasing in [aP ,+∞) and its local minimum is at t1 = aP . This minimum
is given by

N
[
Fy(t)

]2
(N − 1)

(
1−

1
Fg(aP)

)
.

Finally, if we wish to study the monotonicity of G1(t1) in the interval [ai, ai+1) with i = 1, 2, . . . , P − 1, we must consider
the function

f (x) =
−1

N(N − 1)

[
ki − NFy(t)x

]2
x(1− x)

where ki is constant for all [ai, ai+1) given by

ki =
∑
k∈U

∆(ai − g[k])∆(t − y[k]) < NFy(t).

The derivative of f (x) is equal to

f ′(x) =
1

N(N − 1)
NFy(t)(2ki − Fy(t))x2 − 2k2i x+ k

2
i

(x− x2)2

and the equation f ′(x) = 0 has two solutions

x1 =
ki

NFy(t)
; x2 =

ki
2ki − NFy(t)

.

It is clear that the solution x1 ∈ (0, 1) because ki < NFy(t) and the solution x2 ∈ (−∞, 0) if (2ki − NFy(t)) < 0 or
x2 ∈ (1,+∞) if (2ki − NFy(t)) > 0.
Thus, if (2ki − NFy(t)) < 0 we have

f ′(x) < 0 for x ∈ (−∞, x2) ∪ (x1, 1) ∪ (1,+∞)
f ′(x) > 0 for x ∈ (x2, 0) ∪ (0, x1).

If (2ki − NFy(t)) > 0

f ′(x) > 0 for x ∈ (−∞, 0) ∪ (0, x1) ∪ (x2,+∞)
f ′(x) < 0 for x ∈ (x1, 1) ∪ (1, x2).

In both cases f ′(x) > 0 for x ∈ (0, x1) and f ′(x) < 0 for x ∈ (x1, 1) and consequently

f (x) is monotone nondecreasing for x ∈ (0, x1)
f (x) is monotone nondecreasing for x ∈ (x1, 1).

Because Fg(t1) ∈ (0, 1) and Fg(t1) is monotone nondecreasing, the local minimum of the function G1(t1) in the interval
[ai, ai+1) is at the point t1 = ai or t1 = bi+1.
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Therefore, the global minimum of the function G1(t1) is at one point of At = {ai : i = 1, 2, . . . , P} or Bt = {bi : i =
1, 2, . . . , P}.
The proposed calibration estimator
We need the entire population value of the study variable y in order to obtain the function G1(t1). This problem can be

solved by estimating G1(t1) by

Ĝ1(t1) =
−1
N − 1

[∑
k∈s
dk∆(t1 − gk)∆(t − yk)− NF̂YH(t )̂FGH(t1)

]2
NF̂GH(t1)(1− F̂GH(t1))

=
−1
N − 1

[∑
k∈s

N
n∆(t1 − gk)∆(t − yk)− NF̂YH(t )̂FGH(t1)

]2
NF̂GH(t1)(1− F̂GH(t1))

=
−N2

n2(N − 1)

[∑
k∈s
∆(t1 − gk)∆(t − yk)− n̂FYH(t )̂FGH(t1)

]2
NF̂GH(t1)(1− F̂GH(t1))

. (29)

In a similar way, if we consider the set

Ast = {gk : k ∈ Cst} (30)

with Cst = {k ∈ s : yk ≤ t} and assume that Ast has p points, that is

Ast = {ai : i = 1, 2, . . . , p}

and we define the set

Bst = {bi : i = 1, 2, . . . , p} (31)

by

• b1 = maxl∈s1{gl}with s1 = {l ∈ s : gl < a1}
• bk = maxl∈sk{gl}with sk = {l ∈ s : ak−1 ≤ gl < ak}; k = 2, . . . , p

the global minimum of the function Ĝ1(t1) is at one point of Ast or Bst .
Now we define the calibration estimator obtained with the values that minimize the function Ĝ1(t1). This estimator is

denoted by F̂ymprop(t). In the same way that it was done in the Section 3, one can prove that F̂ymprop(t) and the obtained
calibration estimator using the optimal value of t1 have the same asymptotic behaviour.

5. Simulation study

The optimum calibration points are determined by minimizing the asymptotic variance. In this section, a limited study
has been conducted to investigate the design-based finite sample performance of the proposed estimators in comparison
with that of conventional calibration estimators.
We compare the precision of the proposed calibration estimators F̂ycprop(t) and F̂ycmprop(t)with the following estimators:

F̂CD(t) [2], F̂RKM(t) [1] the difference estimator F̂d(t), the usual calibration estimator F̂yc(t) from (6) with t0 = Qg(0.5) and
finally the calibration estimator F̂ycm(t), from (22) with two points t1 = Qg(0.5) and t2 = maxk∈U {gk}.
Several simulated and natural populations with different relationships between the study variable and the auxiliary

variable are used in this study.
First, two natural populations are considered. The cars population consists of the number of cars in the Spanish region of

Andalusia in 2003 (variable of interest) and the number of cars in 2002 (the auxiliary variable). This population is available
from the Andalusian Statistics Institute web site: http://www.juntadeandalucia.es/institutodeestadistica.
In this case, the study variable y and the auxiliary variable x present a good linear relation. The murthy population

consists of 80 factories where the variable of interest is the output and the auxiliary variable is the number of workers. This
has been studied in [18–20]. Examination of the scatter plots in Fig. 1 reveals that the linearity assumption is no longer valid
in this population.
A finite population of size N = 1000 (bump, population) was also generated from a regression model yk = 2 + 2(xk −

0.5)+exp(−200(xk−0.5)2)+εk (see [21]) where x is uniformly distributed over [0, 1] and the εi’s are i.i.d random variables
from N(0, 0.1). This model is used because we wish to observe the effect of model misspecification on the estimators and
to provide an indication of the robustness of the estimators.
We selected 1000 samples for three different sample sizes under simple random sampling without replacement

(SRSWOR). The considered sample sizes were 50, 75 and 100 for the cars and bump populations but the population size
of the murthy population was small (N = 80), and so samples of size 25, 30 and 35 were considered for this population.

http://www.juntadeandalucia.es/institutodeestadistica
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Fig. 1. Scatter plots for cars, murthy and bump populations.

For each sample and for each estimator, estimates of the distribution function F(t)were calculated for 11 different values
of t , namely the quantiles Qy(α) for α = 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8 and 0.9.
The performance of all the estimators is measured by means of the average relative bias (avrb) and the average relative

efficiency (avre), given respectively by

avrb(t) =
1
11

11∑
q=1

|rb(tq)|, avre(t) =
1
11

11∑
q=1

re(tq)

where rb and re are defined as

rb(t) =
1
B

B∑
b=1

F̂(t)b − Fy(t)
Fy(t)

and re(t) =
MSE [̂F(t)]

MSE [̂FYH(t)]
, (32)

where b indexes the bth simulation run, F̂(t) is an estimator for the distribution function, MSE [̂F(t)] = B−1
∑B
b=1 [̂F(t)b −

Fy(t)]2 is the empiricalMean Square Error for F̂(t) andMSE [̂FYH(t)] is similarly defined for the Horvitz–Thompson estimator.

Note that the measures avrb and avre have also been used in [22] and reveal the average behaviour of the various
estimators at different values of t . Table 1 shows our results for all the populations.
Table 1 gives the values of the bias and the efficiency for all populations.
It can be seen in Table 1 that:

– In the cars population, the F̂CD(t), F̂d and F̂RKM estimators have small biases, compared with the calibration estimators
F̂yc and F̂ycm. However, when the estimators based on the optimal points are considered, the bias is reduced considerably.
Thus the F̂ycprop and F̂ycmprop estimators have the lowest avrb of all the estimators considered.

– The F̂CD(t), F̂d, F̂RKM , F̂yc(t) and F̂ycm(t) estimators provide estimates with a large avrb in the populations where the linear
model does not fit. The estimated biases deviate significantly from zero for most quantiles, especially for the lower
quantiles. This is not surprising given the extreme nonlinearity of these populations. In these populations, the F̂ycprop
and F̂ycmopt estimators reduce the bias compared to the corresponding calibration estimators based on the median. This
reduction is very significant in the murthy population.

– In all populations and all sizes the estimator F̂ycmprop produces the lowest avrb.
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Table 1
Average relative bias (avrb) and the average relative efficiency (avre).

murthy cars bump

avrb avre avrb avre avrb avre
n = 25 n = 50 n = 50

F̂CD 0.169 0.4233 0.0503 0.2179 0.1374 0.3675
F̂d 0.1549 0.401 0.0222 0.1734 0.1043 0.3345
F̂RKM 0.1400 0.3755 0.0359 0.1944 0.1033 0.3299
F̂yc 0.1597 0.4106 0.1285 0.3691 0.1407 0.3878
F̂ycm 0.0875 0.4004 0.1231 0.3593 0.1344 0.3774
F̂ycprop 0.0348 0.2305 0.022 0.1707 0.1337 0.3729
F̂ycmprop 0.0291 0.2228 0.0184 0.1638 0.1003 0.3219

n = 30 n = 75 n = 75

F̂CD 0.1494 0.3998 0.0506 0.2157 0.1336 0.3561
F̂d 0.1318 0.3756 0.0187 0.1526 0.086 0.3014
F̂RKM 0.1173 0.3481 0.0294 0.1721 0.0818 0.2938
F̂yc 0.1339 0.3784 0.1012 0.3285 0.1123 0.3475
F̂ycm 0.1293 0.3692 0.0964 0.3192 0.1066 0.3367
F̂ycprop 0.0256 0.2009 0.018 0.1473 0.1062 0.3329
F̂ycmprop 0.0206 0.1871 0.0157 0.1401 0.0785 0.286

n = 35 n = 100 n = 100

F̂CD 0.1309 0.3744 0.0523 0.2148 0.1291 0.3478
F̂d 0.115 0.3454 0.0166 0.1406 0.0739 0.2788
F̂RKM 0.1036 0.3225 0.0262 0.1616 0.0699 0.271
F̂yc 0.1183 0.3522 0.0859 0.3024 0.095 0.3196
F̂ycm 0.1135 0.3437 0.0821 0.2944 0.0913 0.3103
F̂ycprop 0.0194 0.1739 0.0158 0.1327 0.0894 0.3061
F̂ycmprop 0.0162 0.1599 0.0139 0.1252 0.0666 0.2634

– In terms of average relative efficiency, we observe that F̂ycmprop performs better than F̂ycprop, and that both estimators are
more efficient than the F̂yc(t) and F̂ycm(t) estimators.

– In all cases, the estimator F̂ycmprop is the most efficient. This was expected in the case of the cars population, where the
linear model describes the data very well. However, in the case of themurthy population, this result is more impressive.

The main finding of this study is that both of the proposed calibration estimators obtained perform satisfactorily. The
sizes of their biases decline as n increases and a gain in precision is obtained in comparison with alternative calibrated
estimators. They are also robust against model misspecification.
In conclusion, we suggest that the research of optimum points for calibration provides a practical approach to estimating

distribution functions, which offers useful gains in efficiency.
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Appendix. Properties of G1(γ)

The functionG1(t1) always takes a negative value for any value t1 selected andwemust obtain the point t1 thatminimizes
G1(t1). Let us again consider the population values of y in ascending order as in (16), the population values of the variable
g , arranged by the variable y as in (17) and the set At given by (18), but in this case we consider another set of values

Bt = {bk : k = 1, 2, . . . , P} (A.1)

where

b1 = max
l∈U1
{gl} with U1 = {l ∈ U : gl < a1}

bk = max
l∈Uk
{gl} with Uk = {l ∈ U : ak−1 ≤ gl < ak}; k = 2, . . . , P

and the values a1 < a2 < · · · < aP are the P elements of At . The value b1 does not exist when a1 = mink∈U {gk}, but in this
case, it makes no sense for us to consider t1 < a1 in the calibration equation because Fg(t1) = 0.
Next we observe that the function G1(t1) is defined by:



S. Martínez et al. / Journal of Computational and Applied Mathematics 233 (2010) 2265–2277 2277

(1) If t1 < a1 the function G1(t1) is

G1(t1) =
−N
N − 1

−
(
Fy(t)Fg(t1)

)2
Fg(t1)(1− Fg(t1))

=
N(Fy(t))2

N − 1
Fg(t1)

(Fg(t1)− 1)
.

(2) If t1 ≥ aP

G1(t1) =
−1

N(N − 1)

[
NFy(t)− NFy(t)Fg(t1)

]2
Fg(t1)(1− Fg(t1))

=
N
[
Fy(t)

]2
(N − 1)

(Fg(t1)− 1)
Fg(t1)

=
N
[
Fy(t)

]2
(N − 1)

(
1−

1
Fg(t1)

)
.

(3) If ai ≤ t1 < ai+1 with i = 1, 2, . . . , P − 1

G1(t1) =
−1

N(N − 1)

[
ki − NFy(t)Fg(t1)

]2
Fg(t1)(1− Fg(t1))

where

ki =
∑
k∈U

∆(t1 − g[k])∆(t − y[k]) =
∑
k∈U

∆(ai − g[k])∆(t − y[k]).

Consequently, G1(t1) is a piecewise function.
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